

Overview of Quantum Software and Compilers

2024 SIAM Quantum Intersections Convening

October 9, 2024

Kaitlin N. Smith Assistant Professor, Computer Science Northwestern University

Northwestern

Outline

- Primer on Quantum Software
- The Role of Quantum Compilers
- Future Directions for the Quantum Stack

Outline

- Primer on Quantum Software
- The Role of Quantum Compilers
- Future Directions for the Quantum Stack

Why Quantum Software?

For wider adoption, tools are required to make quantum algorithms and hardware more accessible. Quantum software helps with both!

- Provides languages and abstractions to reason about algorithms and verify logic
- Translates and optimizes information from high-level specifications to low level representations that are compatible with hardware
- Creates models that improve our understanding of quantum systems
- Accelerates research

Development of Quantum Programming Toolchains

First programming languages from academia, 2000 – mid 2010s

- Quantum Computation Language (QCL),
- Quipper: A scalable quantum programming language
- ScaffCC: a framework for compilation and analysis of quantum computing programs

Software emerges from industry,

late 2010s

Figure 3.1: The hybrid architecture of QCL

Figure: http://www.itp.tuwien.ac.at/~oemer/doc/quprog.pdf

While this is great progress, quantum application and device development has outpaced the middleware!

WIP: The Quantum Software Stack

Layers involved in classical computing circa 1950s vs current classical computing and quantum tool flows

Figure: https://arxiv.org/abs/1903.10541

Software Stack Research

- Device compilation
- Logic and gate synthesis
- Programming languages
- Quantum intermediate representations
- Resource estimation
- Error mitigation
- Optimal control
- Interfaces with classical hardware
- Heterogeneous system interfacing
- Architecture and security in the quantum cloud
- Hybrid HPC ecosystem management

Additional Examples of Quantum Software

- Circuit simulators
- Device design and analysis tools
- Device characterization
- Benchmarking suites

Outline

- Primer on Quantum Software
- The Role of Quantum Compilers
- Future Directions for the Quantum Stack

Today's Quantum Hardware

- Scale: < ~1000 qubits per device....millions are needed for fault-tolerance!
 - Fault-tolerance quantum computation where many physical qubits encode a single logical qubit
- Architectural constraints: Error rates, coherence windows, gate sets, operation time, qubit connectivity, etc.
 - High variation between qubit technologies
 - Extremely low temperatures / high isolation often required

Figure: https://arxiv.org/abs/2403.08780

Northwestern

Oubit Two-qubi Coherence Gate Companies Pros Cons Connected Time (sec) Fidelity **Natural Oubits** Trapped lons Electrically charged atoms or ions, are held in place Very stable IonQ, Quantinuum Slow operation. with electric fields. Qubits Highest >1000 99.9% High AQT Oxford lonics Many lasers are achieved gate are stored in electronic Universal Quantum needed. fidelities. states, lons are pushed with laser beams to allow the gubits to interact. Neutral Atoms Hard to program and Neutral atoms, like ions Very high Inflection, Atom store aubits within eleclow Many gubits, 2D control 99.5% Computing, QuEra, tronic states. Laser activates individual and maybe 3D. individual Pasgal, Plange, M² the electrons to create control aubits: prone to interaction between gubits. noise. Single-photon Detectors **Photonics** Each program Photonic gubits are sent requires its through a maze of optical Linear optical PsiQuantum, own chip with channels on a chip to intergates, inte-Xanadu unique optical act. At the end of the maze. grated on-chip. channels. No the distribution of photons is memory. measured as output. Electro **Diamond Vacancies** Difficult to A nitrogen atom and a Vacancy create high Quantum Diamond Can operate at vacancy add an electron to a numbers of 10 99.2% Low Technologies, room tempera diamond lattice. Its guantum ubits, limiting Quantum Brilliance spin state, along with those ture. compute Laser of nearby carbon nuclei, can capacity. be controlled with light. Synthetic Qubits Superconducting Circuits Must be A resistance-free current cooled to near Google, IBM, QCI, Can lav out oscillates back and forth absolute zero. Capacitors 0.00005 99.9% High Rigett, Oxford physical ciraround a circuit loop. An High variability Quantum Circuits cuits on chip. in fabrication. injected microwave signal excites the current into Lots of noise. Microwaves super-position states Microwave Only a few Silicon Quantum Dots HRL, Intel, SQC, connected. These "artificial atoms" are Borrows Oxford Quantum Must be cooled made by adding an electron from existing 0.03 ~99% Very Low Ocean, DIRAQ, to near to a small piece of pure silisemiconductor Quantum Motion absolute zero. con. Microwaves control the industry EeroQ High variability electron's quantum state. in fabrication. **Topological Qubits** Quasiparticles can be seen Designed to be in the behavior of electrons more robust to Existence not channeled though semi-Microsoft environmental vet confirmed. conductor structures. Their

> braided paths can encode guantum information.

noise

Today's Quantum Hardware

- Heterogeneity: Significant variation between devices, even of same base technology.
- Quality: Noise prevents large circuit widths and depths in quantum programs.

The Role of the Compiler

Compilation involves translation of source code into a machine-ready specification in a way that preserves program semantics. Important considerations include:

- Supported hardware instructions
- Rules of the hardware (connectivity, operator time, etc.)
- Optimization rules

Motivating Quantum Compiler Research

- 1. Reliability and architectural constraints block widespread adoption of quantum technologies. *How do we adapt programs to intrinsic QC properties?*
- 2. System improvements via hardware alone will lead to unacceptable scaling timelines.

Two-qubit (transmon) gate error has lowered by ~0.77x per year,¹ but the rate at which systems improve must be accelerated!

Let's consider a simplified compiler pipeline including **gate decomposition**, **placement**, **routing**, and **low-level optimization**!

Gate Decomposition

Translate multi-qubit gates into the supported gate set with unitary synthesis

Placement and Routing

- Noise aware mapping to assign logical qubits to best regions on-chip
 - Consider: errors, coherence, gate time, etc.
- Inject SWAP operations to make quantum circuit agree with backend connectivity
 - Minimize to prevent additional gate error

Fig. 4: (a) Layout of a 6-qubit quantum computer, (b)-(e) are possible routes from A to F. Note that options (b)(c)(d) have identical number of swaps and (e) incurs higher swaps. An intelligent policy would choose one from (b)(c)(d).

Figure: https://arxiv.org/abs/1805.10224

Northwestern

Low-level Optimization

- Gate cancellation with commutativity rules
- Pulse-level optimization

Time (ns)

128 144

Standard QAOA Circuit Compilation

Figures: <u>https://arxiv.org/abs/1902.01474</u>

Gate Commutation Relations

Aggregated Instruction QAOA Circuit Compilation

Northwestern

-6 16 32 48 64 80 96 112

Additional Complexity...

- Many stages of compilation are stochastic / heuristic to minimize cost function
- Hardware and applications might need other special considerations

[Submitted on 29 Aug 2022 (v1), last revised 7 Sep 2022 (this version, v2)]										
Let Each Quantum Bit Choose Its Basis Gates										
ophia Fuhui Lin, Sara Sussman, Casey Duckering, Pranav S. Mundada, Jonathan M. Baker, Rohan S. Kumar, Andrew A. Houck, Frederic T. Chong										
-te [Submitted on 3 Dec 2020 (v1), last revised 19 Mar 2021 (this version, v3)] ⁵ 9- ers. CutQC: Using Small Quantum Computers for Large Quantum Circuit Evaluations										
^{type} ga Wei Tang, Teague Tomesh, Martin Suchara, Jeffrey Larson, Margaret Martonosi										
aims to Quantum [Submitted on 11 Sep 2021] novel 2 doubles t ADAPT: Mitigating Idling Errors in Qubits via Adaptive Dynamical Decoupling										
demons low qubit Poulami Das, Swamit Tannu, Siddharth Dangwal, Moinuddin Qureshi										
transme Our res Classical alternativ system ru an iden Almudena Carrera Vazquez, Caroline Tornow, Diego Riste, Stefan Woerner, Maika Takita, Daniel J. Egger										
Overall, to verall, to verall vith as a guantum computers process information with the laws of quantum mechanics. Current quantum hardware is noisy, can only store information for a short time, and is limited to a few overall, to verall with as a quantum bits, i.e., qubits, typically arranged in a planar connectivity. However, many applications of quantum computing require more connectivity than the planar lattice offered by the hardware on more qubits than is available on a single quantum processing unit (QPU). Here we overcome these limitations with error mitigated dynamic circuits and circuit-cuttin to create quantum states requiring a periodic connectivity employing up to 142 qubits spanning multiple QPUs connected in real-time with a classical link. In a dynamic circuit, quantum gates can be classically controlled by the outcomes of mid-circuit measurements within run-time, i.e., within a fraction of the coherence time of the qubits. Our real-time classical link allows us to apply a quantum gate on one QPU conditioned on the outcome of a measurement on another QPU which enables a modular scaling of quantum hardware.	Iformation for a short time, and is limited to a few re connectivity than the planar lattice offered by rror mitigated dynamic circuits and circuit-cutting ne with a classical link. In a dynamic circuit, the coherence time of the qubits. Our real-time nables a modular scaling of quantum hardware.									
Northwestern										

Outline

- Primer on Quantum Software
- The Role of Quantum Compilers
- Future Directions for the Quantum Stack

The Future of Quantum Systems

- Modular architectures
- Many technologies
- Quantum clouds
- QEC on the horizon

Continued opportunity for scaling with HW / SW co-design:

- 1. Make the most of existing architecture
- 2. Guide the design of future infrastructure

Intel's Road to a Universal Quantum Computer Is Via Chiplets

The Top 5 Benefits of Modular Quantum Computing for Business

	Developmer	nt Roadmap												IBM Quantun
		2016-201	19 💿	2020 🛛	2021 💿	2022 👁	2023 🛛	2024	2025	2026	2027	2028	2029	2033+
		Run quantum circuits on the IBM Quantum Platform		Release multi- dimensional roadmap publicly with initial aim focused on scaling	Enhancing quantum execution speed by 100x with Qiskit Runtime	Bring dynamic circuits to unlock more computations	Enhancing quantum execution speed by 5x with quantum serveriess and Execution modes	Improving quantum circuit quality and speed to allow 5K gates with parametric circuits	Enhancing quantum execution speed and parallelization with partitioning and quantum modularity	Improving quantum circuit quality to allow 7.5K gates	Improving quantum circuit quality to allow 10K gates	Improving quantum circuit quality to allow 15K gates	Improving quantum circuit quality to allow 100M gates	Beyond 2033, quantum- centric supercomputers will include 1000's of logical qubits unlocking the full power of quantum computing
Data Scientist								Platform						
								Code assistant 📎	Functions	Mapping Collection	Specific Libraries			General perpose QC libraries
	Researchers						Niddleware				_			
							Quantum 💌 Servertess	Transpiler Service 📎	Resource Management	Circuit Kritting x P	Intelligent Orchestration			Circuit libraries
	Quantum Physicist				Qiskit Funtime									
		10M Quartern Experience	-	•	QVGH1 🕑	Dynamic circuits 🤤	Execution Modes 2	Heron (5K) 🏵 Error Mitigation	Flamingo (5K) Error Mitigation	Flamingo (7.5K) Error Mitigation	Flamingo (10K) Error Mitigation	Flamingo (15K) Error Nitigation	Starling (100M) Error correction	Blue Jay (1B) Error correction
		Early Falcon Canary Abatross Preguin Prototype Benchmarking Squbits 16 qubits 20 qubits 53 qubits		Falcon Brochmarking 27 qubits	 Eagle Benchmarking 127 qubits 		ø	Sk gates 133 qubits Classical modular 133x3 = 399 qubits	Sk gates 156 qabits Quantum modular 156s7 = 1092 qabits	7.5k gates 156 qubits Quantum modular 156x7 = 1092 qubits	10k gates 156 qubits Quantum modular 156x7 = 1092 qubits	15k gates 156 qubits Quantum modular 156x7 = 1092 qubits	200H gates 200 qubits Error corrected modularity	18 gates 2000 qubits Error corrected modularity
	Innovation Roadmap													
	Software Innovation	IBM Ø Quantum Experience	Qiskit Circuit and operator API with compliation to multiple targets	Application modules Modules for domain specific application and aggrithm workflows	Qiskit Runtime Performance and abstract through Primitives	Serverless Demonstrate concepts of quartum centric- supercomputing	Al enhanced quantum Prototype demonstrations of Al enhanced circuit transpolation	Resource management System partitioning to enable parallel execution	Scalable circuit knitting Gircuit partitioning with classical reconstruction at HPC scale	Error correction decoder Demonstration of a quantum system with real-time error correction decoder				
	Hardware Innovation	Early Canary Perguin Sopatris 20 qubits Albatross Prototype 16 qubits 53 qubits	Falcon O Demonstrate scaling with 1/0 routing with Bump bonds	Hummingbird © Demonstrate scaling with multipliciting readout	Eagle Corrorstrate scaling with MLW and TOV	Osprey Enabling scaling with high density signal delivery	Condor Single system scaling and fridge capacity	Flamingo O Demonstrate scaling with modular connectors	Kookaburra Derronstrate scaling with nonlocal c-coupler	Demonstrate path to improved quality with logical memory	Cockatoo Demonstrate path to improved quality with logical communication	Starling Demonstrate path to improved quality with logical gibbs		
	 Executed by IBM On target 						Heron Architecture based on tambia- couplers	Crossbill ® rr-coupler						
	IBM Quantum / @	2023 IBM Corpora	ation											

Northwestern

Open-ended Problems for Quantum Software

- System characterization and benchmarking ٠
- Architecturally-dependent quantum error ٠ mitigation (QEM)
- Synergistic implementations of QEM and ٠ QEC
- Heterogeneous system interfacing ٠
- Modularity-aware algorithm mapping and ٠ compilation
- Scalable software stacks ٠
- Architecture and security in the quantum ٠ cloud
- Hybrid HPC ecosystem management ٠

Northwestern

IBM Quantum / @ 2023 IBM Cornoration

Quantum Physicist

Opportunities for Multidisciplinary Engagement

Much space for applied mathematicians to contribute!

- Optimization everywhere within the software stack
- New techniques for gate synthesis / optimal control
- Formal methods for validation / verification
- New QEC codes

Thank you!

Overview of Quantum Software and Compilers

Kaitlin N. Smith

Assistant Professor, Computer Science Northwestern University

Northwestern