
Mathematics in Industry Reports (MIIR) 1

Physics-based and data-driven modeling of
lava flows

Toluwanimi Akinwande 1, Kausik Das 2, Darsh Gandhi 3,

Maria Camila Mejia Garcia 4, Geoffrey Hewitt 5, Zhihua Li 6, Luan

Fabricio Lopes 7, Adam Petrucci 8, Isabelle Sanz 9, Hangjie Ji ∗

1 Claremont Graduate University, CA, USA
2 University of Michigan, Ann Arbor, MI, USA

3 The University of Texas at Arlington, TX, USA
4 The University of Texas Rio Grande Valley,USA

5 Claremont Graduate University, CA, USA
6 University of Iowa, Iowa City, IA, USA

7 Oklahoma State University, Stillwater, OK, USA
8 Michigan State University, East Lansing, MI, USA
9 Georgia Institute of Technology, Atlanta, GA, USA

∗ Mentor - North Carolina State University Raleigh, NC, USA.

(Communicated to MIIR on 11 June 2025)

Study Group: Graduate Student Mathematical Modeling Camp, California State Polytechnic

University, Pomona, June 4− 7, 2025.

Key Words: Lava flows, lubrication, asymptotics, temperature cooling, sensor placement



2

Summary

This project, presented by Hangjie Ji (Department of Mathematics,

North Carolina State University) at the Graduate Student Mathemat-

ical Modeling Camp (GSMMC 2025), explores the dynamics of lava

flows through a combination of physics-based modeling, numerical sim-

ulations, and data-driven sensor placement strategies. Lava flows pose

major risks to communities and infrastructure, especially in volcanic

regions with rising population density. We model this process by under-

standing how lava behaves as a gravity-driven viscous flow, influenced

by factors such as:

(1) Topography and slope,

(2) Eruption conditions (effusion rate, vent geometry, initial temper-

ature),

(3) Cooling effects and crust formation, and

(4) Thermal and physical properties of lava (e.g., viscosity, thermal

conductivity).

A variety of simplified models are introduced, including 1D isoviscous

flow models and spreading flows on inclined planes, with emphasis on

how lava cooling and effusion rate (including time-dependent rates)

impact spreading dynamics. These models are solved using numeri-

cal methods, particularly finite difference methods, to approximate the

behavior of lava over time, incorporating a temperature profile to cap-

ture the cooling of lava as it spreads. The coupling of thermal and

flow models enhances physical realism and provides deeper insight into

the evolution of lava domes and flows. We use similarity solutions and

asymptotic analysis to aid in the theoretical understanding of such

flows.

The project also explores how to reconstruct lava flow thermal video

from a limited number of sensors. We develop and contrast two data-

driven strategies. The first is a stationary method that uses SVD and

QR decomposition on an offline training dataset to find a single, fixed

set of optimal sensor locations. While effective, this approach is inflexi-

ble if the lava flow evolves significantly. To address this, we introduce a

dynamical method that adapts sensor locations in real-time. Crucially,

this method operates online without requiring access to the full global

data, instead learning from a sliding window of recent sparse measure-

ments. This adaptive strategy proves more flexible at tracking the flow,

though its responsiveness to rapid events is linked to its parameters,

revealing key challenges for real-time monitoring.
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1 Introduction

Volcanic activity poses a significant threat to human life and society. In the past quarter

century alone, despite modern forecasting and prevention procedures, volcanic eruptions

accounted for over eight hundred lives lost and two and a half billions US dollars in

damages [23]. Moreover, long-term consequences of volcanic eruptions on human health

include a variety of severe respiratory conditions, to which infants and children are par-

ticularly vulnerable [12]. This threat is of global relevance, as nearly 600,000,000 people

live within 100 kilometers from an eruptive volcano [13].

As such natural disasters are currently beyond the scope of direct human intervention,

the priority is on preventing damage and injury following an eruption event. These mea-

sures include the establishment of evacuation protocols at both regional and local levels

[25], and consistent monitoring of potential volcanic activity [24, 32].

Optimal implementation of these efforts requires a thorough understanding of the

physics involved in volcanic eruptions. In particular, accurate models for lava flows,

which pose some of the most immediate danger in an eruption event, are of the utmost

importance. In conjunction, sensor placement for the monitoring of lava flows is critical

to both developing models and advising live-response to volcanic activity. All told, an

understanding of lava flows is key to the protection of life and property in the event of a

volcanic eruption.

The islands of Hawai’i feature many active volcanoes whose lava flows are useful for

constructing and validating models. The pantheon of Hawai’ian volcanoes includes such

prominent examples as the Kilauea, Mauana Kea, and Mauana Loa volcanoes [36]. Ki-

lauea is among the most active volcanoes on the planet, erupting almost continuously

between 1983 and 2018. Hawaiian volcanoes are typically shield volcanoes, which are

large, wide volcanoes constructed by thin lava flows over long periods of time. They ex-

perience effusive eruptions, meaning hot magma does not spew out far into the sky and

lava flows down volcanic slopes easily.

The shape and roughness of lava flow help determine lava properties [33]. Lava flow

is dependent on viscosity and the terrain or path upon which it moves. Further, lava

viscosity depends on silica content, temperature, and shear rate [30]. Higher silica content

and lower temperature correspond to higher viscosity in lava. Basaltic magmas, like

those produced by the shield volcanoes of Hawai’i, have relatively little silica and an

intermediate temperature (1000-1200◦C) [28], leading to a low viscosity. Due to the size

of shield volcanoes and their gentle, convex slopes, lava can flow quickly down these

volcanoes. Such eruptions are especially dangerous, so are of the greatest interest to

model.

Lava flows exhibit a wealth of distinct behaviors, admitting a variety of interrelated

models [15]. One approach, especially useful in predicting the thickness of a flow, adapts

the Navier-Stokes equations according to lubrication theory [26] to interpret the fluid

dynamics as a free boundary problem. This was applied to the study of axisymmetric

flows and used to model the development of a two-dimensional lava dome with both

constant and variables effusion rates from a point source [17]. These ideas were extended

to consider time-dependent effusion from both point and line sources on an inclined plane
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[20]. Within the more generalized framework, solutions exhibited distinct short-time and

long-time behaviors.

Various forms of sensors are used to track, model, and forecast volcanic activity. Satel-

lites can monitor gas, thermal, and ash emissions as well as surface changes and de-

formation due to the destructive movement and cooling of lava [29]. Thermal infrared

sensors can capture the escape of hot air and gases out of vents and lava flows down

channels [7]. Further, remote thermal infrared sensors can provide imaging of lava flows

that are hidden behind volcanic smoke and plume. Visible light sensors, compared to

thermal infrared sensors, cannot capture as much information about flowing lava; for ex-

ample, thermal infrared sensors can supply temperature data corresponding to different

colors in the image, while visible light cameras can only capture lava flow incandescence

at night and will not provide associated temperature data [9]. Volcanologists also use

seismometers to detect seismic activity before, during, and after volcanic eruptions and

tremors [22]. Strategic placement of seismometers, cameras, and other sensors are crucial

for extracting important volcanic data quickly and is key for providing volcano warnings

to people in areas which could be affected.

Some previous studies have investigated optimal sensor placement for volcano monitor-

ing [31, 16, 19, 27], but few have looked into mathematically optimal sensor placement.

The optimal sensor placement problem can be equivalently formulated as a fluid flow re-

construction problem if given video/imaging data during an eruption. Many mathemati-

cal studies have investigated fluid flow reconstruction from sparse data [4, 2, 3, 1, 14, 37]

using methods such as proper orthogonal decomposition (POD) and dynamic mode de-

composition (DMD). Chaturantubut and Sorensen proposed the POD DEIM algorithm

for nonlinear model order reduction [5, 6] and many have applied this methodology for

reconstructing fluid flow [10, 35, 18]. In [11], Farazmand and Saibaba proposed a tensor-

based approach for flow estimation and sensor placement from sparse data as opposed

to a vector-based approach investigated in [8, 21]. In this report, we apply some of these

techniques (specifically POD-DEIM and vector-based flow estimation) to reconstruct

images of lava flow from volcanic sources and determine the optimal location of sensors.

The rest of the report is organized as follows: Section 2 presents the physics-based

modeling, asymptotic analysis, and numerical simulation of lava flow down an inclined

plane. Section 3 discusses optimal sensor placement strategies for lava flow image data and

presents numerical results of the proposed algorithms. Concluding remarks are presented

in Section 4.

2 Physics-based modeling

In this section, we first derive a lubrication model for a thin viscous lava flow flowing down

an inclined plane in Subsection 2.1. Analysis for asymptotically self-similar solutions

describing lava flow profiles in short and long time limits are presented in Subsection 2.2.

Numerical simulations of the lava profile with and without temperature cooling dynamics

are discussed in Subsection 2.3 and Subsection 2.4, respectively.
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Figure 1. Schematic of inclined lava flow.

2.1 Lubrication Approximation of Lava Flow

Modeling lava flow down an incline of angle θ (see Figure 1) requires lubrication theory.

Because lava is a highly viscous fluid (Re ≪ 1), the Navier-Stokes equations in two

dimensions reduce to the Stokes equations:

∂u

∂x
+

∂v

∂y
= 0, (2.1)

ν

(
∂2u

∂x2
+

∂2u

∂y2

)
+ g sin θ − 1

ρ

∂p

∂x
= 0, (2.2)

ν

(
∂2v

∂x2
+

∂2v

∂y2

)
− g cos θ − 1

ρ

∂p

∂y
= 0. (2.3)

where u is the fluid velocity in the x-direction, v is the fluid velocity in the y-direction, ρ

is the fluid density, ν is the fluid kinematic viscosity, and p(x, y, t) is the fluid pressure.

Equation (2.1) is known as the continuity equation, and equations (2.2) and (2.3) are the

x and y momentum equations, respectively.

To nondimensionalize the equations, two length scales are introduced: H, the average

film thickness, and L, the incline scale in the flow direction. The lubrication theory

approximation assumes that

ϵ =
H

L
≪ 1. (2.4)

Additional dimensionless variables can be introduced:

ũ =
u

gH2/ν
, ṽ =

v

V
, p̃ =

p

ρgL
, x̃ =

x

L
, ỹ =

y

H
, t̃ =

t

νL/gH2
, (2.5)

where V is the undetermined longitudinal velocity scale. In terms of the dimensionless

variables, the incompressibility equation becomes

ϵ
gH2

νV

∂ũ

∂x̃
+

∂ṽ

∂ỹ
= 0. (2.6)

For the terms to balance, we require ϵgH2/νV = O(1) such that V = ϵgH2/ν. With this
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scaling applied, the momentum equations now become

ϵ2
∂2ũ

∂x̃2
+

∂2ũ

∂ỹ2
+ sin θ − ∂p̃

∂x̃
= 0, (2.7)

ϵ4
∂2ṽ

∂x̃2
+ ϵ2

∂2ṽ

∂ỹ2
− ϵ cos θ − ∂p̃

∂ỹ
= 0. (2.8)

Dropping O(ϵ2) terms and higher yields the lubrication approximation

∂ũ

∂x̃
+

∂ṽ

∂ỹ
= 0, (2.9)

∂2ũ

∂ỹ2
+ sin θ − ∂p̃

∂x̃
= 0, (2.10)

∂p̃

∂ỹ
= −ϵ cos θ. (2.11)

Furthermore, the no-slip boundary condition (BC) is imposed at the surface of the incline

ỹ = 0, and the tangential stress balance BC is imposed at the air-lava interface ỹ = h̃(x, t):

ũ(x̃, ỹ = 0, t̃) = 0, ṽ(x̃, ỹ = 0, t̃) = 0, (2.12)

∂ũ

∂ỹ
(x̃, ỹ = h̃(x̃, t̃), t̃) = 0. (2.13)

Integrating (2.11) with respect to ỹ and applying the BC p̃(x̃, ỹ = h̃(x̃, t̃), t̃) = 0 results

in the pressure

p̃(x̃, ỹ, t̃) = ϵ cos θ(h̃(x̃, t̃)− ỹ). (2.14)

Substituting the pressure expression into (2.10), integrating twice with respect to ỹ, and

applying the BCs gives

ũ(x̃, ỹ, t̃) =

(
ỹ2

2
− hỹ

)(
∂p̃

∂x̃
− sin θ

)
. (2.15)

By mass conservation, the lava-air interface is governed by

∂h̃

∂t̃
+

∂

∂x̃

[∫ h̃

0

ũ(x, y, t) dỹ

]
= 0. (2.16)

Inserting the formula into (2.16) produces the final form:

∂h̃

∂t̃
− ϵ cos θ

12

∂2h̃4

∂x̃2
+

sin θ

3

∂h̃3

∂x̃
= 0. (2.17)

2.2 Similarity Solution of Lava Profile

In order to obtain a similarity solution to the PDE modeling inclined lava flow, we begin

by introducing a scaling change of variables for the dimensional version of (2.17) with

equation

∂h

∂t
− g cos θ

12ν

∂2h4

∂x2
+

g sin θ

3ν

∂h3

∂x
= 0, (2.18)
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and a one-dimensional (line) variable flux source BC∫ xn

0

h(x, t) dx = Qtα, (2.19)

where Q and α are prescribed constants and xn marks the layer’s zero-height edge loca-

tion. We denote β = g cos θ/12ν, and γ = g sin θ/3ν in (2.18). This problem formulation

represents a reduced-order model of the two-dimensional version found in the work of

Lister [20]. The scaling change of variables for the lava layer’s height, its length, and time

are respectively defined as

h = Hh, x = Lx, t = T t, (2.20)

where H, L, and T represent the dimensional scaling constants—or characteristic scales;

h, x, and t represent the dimensionless variables.

The first step is to determine whether this problem is scale invariant, meaning whether

there exists a choice of characteristic scales such that the dimensional PDE and BC for

h can be equivalently written as a dimensionless PDE and BC for h. The benefit of

scale invariant problems is that they can have similarity solutions—solutions where the

characteristic scales are related so their variables have no dependence on the free scaling

parameter. Similarity solutions are usually easier to derive and provide key characteristic

behavior of the problem’s system. Given scale invariance, relations between the charac-

teristic scales can be established, which determine the form of the similarity solution

from resulting scale-invariant (S-I) groups. The similarity solution for h(x, t) can then be

substituted back into the original problem to produce a reduced problem in the form of

an ODE for the similarity profile function f(η).

To check for scale invariance, substitute the scaling change of variables into (2.18) and

(2.19) and group the characteristic scales:

∂h

∂t
− β

H3T

L2︸ ︷︷ ︸
Coeff. 1

∂2h 4

∂x 2
+ γ

H2T

L︸ ︷︷ ︸
Coeff. 2

∂h 3

∂x
= 0,

HL

Tα︸︷︷︸
Coeff. 3

∫ xn

0

h dx = Qt
α
.

(2.21)

There are two possible sets of scaling relations formed from the three coefficients in

(2.21); coefficient 3 must be included in both sets of scaling relations to ensure consistent

adherence to the BC.

2.2.1 Short-term similarity solution

One set of scaling relations involves balancing coefficients 1 and 3 in (2.21):

H3T

L2 = 1,
HL

Tα = 1. (2.22)
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An S-I group can be formed from the relations in (2.22) to determine the similarity

solution:

L ∼ T
3α+1

5 , H ∼ T
2α−1

5 , (2.23)

η = xt−
3α+1

5 , h = t
2α−1

5 f(η). (2.24)

Substituting this similarity solution for h(x, t) back into the original problem of (2.18)

and (2.19) results in the following ODE:(
2α− 1

5

)
f(η)−

(
3α+ 1

5

)
ηf ′(η)− 4β

[
f3(η)f ′(η)

]′
+ 3γt

α+2
5 f2(η)f ′(η)︸ ︷︷ ︸

Asymptotic Term

= 0, (2.25)

Because as t→ 0, the asymptotic term → 0, the final form of the similarity ODE drops

this term and represents a leading-order solution valid for the short-term:(
2α− 1

5

)
f(η)−

(
3α+ 1

5

)
ηf ′(η)− 4β

[
f3(η)f ′(η)

]′
= 0, (2.26)

for α > 0.

α = 0 corresponds to constant volume, and α = 1 corresponds to constant flux. Pos-

itive values of α less than or greater than 1 correspond to time-varying flux. The time

t exponent associated with the asymptotic term in (2.25) matches the corresponding

asymptotic term exponent of the two-dimensional representation derived in [20], verify-

ing that this analytical model captures some expected system dynamics.

Because the short-term ODE (2.26) is a second-order equation, two boundary condi-

tions are required. To determine what these are, the original PDE (2.18) can be thought

of in a form storing the time variation and flux of the system:

∂h

∂t
+

∂q

∂x
= 0, (2.27)

where q is the system flux. Comparing (2.27) with (2.26) considered in the original

dimensional space implies that

q = −β ∂h
4

∂x
. (2.28)

Taking the time derivative of (2.19) we have

∂

∂t

∫ xn

0

h(x, t) dx = αQtα−1 = q(0, t), (2.29)

giving the BC for h as

h3 ∂h

∂x

∣∣∣∣
x=0

= −αQtα−1

4β
. (2.30)

Substituting in the expression for h from (2.24) into (2.30) to obtain the BC relation for

f(η) results in

f3(0)f ′(0) = −αQ

4β
. (2.31)

The leading-order similarity ODE (2.26) with its corresponding BCs was implemented

in a MATLAB script to solve for f(η). It was numerically integrated using ode45. Given
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f(0), the initial condition f ′(0) was obtained using (2.31) and the value of Q was chosen

such that f(η) had a positive root, marking the layer’s zero-height edge location xn.

Figure 2 depicts a solution for f(η) with parameters θ = 0.4, Q = 0.2791, f(0) = 1, α =

1.1. Physically, this figure represents a case where a volcanic vent releases an increasing

lava flux over time since α > 1. This results in a relatively limited spread of the lava down

the incline—denoted by the small range for η, which agrees with expected behavior for a

very viscous fluid. Overall, the plot exhibits qualitative agreement with plots produced

in the work of Huppert et al. [17] for radial flows.

Figure 2. Short-term solution for f(η) for θ = 0.4, Q = 0.2791, f(0) = 1, α = 1.1.

2.2.2 Long-term similarity solution

The other set of scaling relations involves balancing coefficients 2 and 3 in (2.21):

H2T

L
= 1,

HL

Tα = 1. (2.32)

An S-I group can be formed from the relations in (2.32) to determine the long-term

similarity solution:

L ∼ T
2α+1

3 , H ∼ T
α−1
3 , (2.33)

η = xt−
2α+1

3 , h = t
α−1
3 f(η). (2.34)

Substituting the long-term similarity solution for h(x, t) back into the original problem

of (2.18) and (2.19) results in the following ODE:(
α− 1

3

)
f(η)−

(
2α+ 1

3

)
ηf ′(η)−4βt−

α+2
3

[
f3(η)f ′(η)

]′︸ ︷︷ ︸
Asymptotic Term

+3γf2(η)f ′(η) = 0. (2.35)
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Because as t→∞, the asymptotic term → 0, the final form of the similarity ODE drops

this term and represents a leading-order solution valid for the long-term:(
α− 1

3

)
f(η)−

(
2α+ 1

3

)
ηf ′(η) + 3γf2(η)f ′(η) = 0, (2.36)

for α > 0.

Once again, the time t exponents associated with the asymptotic term in (2.35) matches

the corresponding asymptotic term exponent of the two-dimensional representation de-

rived in [20].

Because the leading order ODE (2.36) is a first-order equation, one boundary condition

is required. An equivalent procedure for determining the short-term similarity ODE BCs

is applied here. Comparing (2.27) with (2.36) considered in the original dimensional space

implies that

q = γh3. (2.37)

By (2.29):

αQtα−1 = γ h3
∣∣
x=0

, (2.38)

giving the BC for h as

h(0, t) =
[αQtα−1

γ

] 1
3

. (2.39)

Substituting in the expression for h from (2.34) into (2.39) to obtain the BC relation for

f(η) results in

f(0) =
(αQ

γ

) 1
3

. (2.40)

The leading-order similarity ODE (2.36) with its corresponding BC was numerically

solved for f(η) using MATLAB. It was numerically integrated using ode45. Figure 3

shows the long-term solution for f(η) for various values of α with Q = 1 and θ = 0.2.

Note that solutions cannot be computed for the full domain due to a singularity in the

(2.36) occurring when

f(η) =

[
(2α+ 1)η

9γ

]1/2
. (2.41)

Physically, this figure represents a qualitative study of a volcanic vent releasing various

levels of increasing lava flux over time since α ≥ 1. For larger values of α—meaning, those

that account for larger increasing flux levels—the lava experiences less spread down the

incline. This observation agrees with expected behavior for a very viscous fluid because

as more volume is released, the fluid ”sticks” to itself, increasingly hindering its ability

to spread easily. It is as if the vent essentially becomes increasingly clogged with more

lava release. This means that for smaller values of α, more spread will be observed. Thus

the overall trend shows a receding spread with larger levels of increasing lava flux. This

plot exhibits qualitative agreement with those shown in [20].
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Figure 3. Long-term solution for f(η) for α = 1, 2, 4, 8 when Q = 1 and θ = 0.2.

2.3 Numerical Approximation of Lava Profile

The dimensional form of equation (2.17) is:

∂h

∂t
− g cos θ

12ν

∂2h4

∂x2
+

g sin θ

3ν

∂h3

∂x
= 0 (2.42)

When the angle of the inclined plane approaches zero, equation (2.42) becomes a second-

order nonilnear diffusion equation modeling the spreading of liquid on a flat substrate

fluid:

∂h

∂t
− g

12ν

∂2h4

∂x2
= 0. (2.43)

We apply second-order central finite differences and forward Euler method to numerically

simulate the PDEs (2.42) and (2.43) using a uniform spatial grid of size ∆x and time

step ∆t. The finite difference discretization at the grid point (xj , tn) yields

∂h

∂t
≈

hn+1
j − hn

j

∆t
,

∂h

∂x
≈

hn
j+1 − hn

j−1

2∆x
,

∂2h

∂x2
≈

hn
j+1 − 2hn

j + hn
j−1

∆x2
, (2.44)

where hn
j represents the lava/air interface at spatial position xj and time step tn. This

yields the following discrete equations for PDEs (2.42) and (2.43), respectively:

hn+1
j = hn

j +∆t
g

12ν

(hn
j+1

4 − 2hn
j
4 + hn

j−1
4

∆x2

)
, (2.45)

hn+1
j = hn

j + cos θ∆t
g

12ν

(hn
j+1

4 − 2hn
j
4 + hn

j−1
4

∆x2

)
(2.46)

− sin θ∆t
g

6ν

(hn
j+1

3 − hn
j−1

3

∆x

)
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2.4 Numerical Approximation of the Temperature Field

Given the lava flow profile, the lava eventually cools as it spreads. To model this thermal

behavior, we introduce a temperature distribution governed by the heat equation:

∂T

∂t
= k

∂2T

∂x2
, (2.47)

where T (x, t) is the temperature at location x and time t, and k is the thermal conduc-

tivity of the lava. This partial differential equation captures the diffusion of heat through

the lava. To solve the equation (2.47) numerically, we apply finite differences again. Let

Tn
j denote the temperature at the spatial position xj and time step tn, T

n
j ≈ T (xj , tn).

Applying forward Euler in time and central finite difference in space to equation (2.47),

we obtain the discretization for the temperature field in a one-dimensional space:

Tn+1
j = Tn

j +
k∆t

∆x2

(
Tn
j+1 − 2Tn

j + Tn
j−1

)
. (2.48)

Figure 4 presents a typical temperature distribution obtained from simulating the one-

dimensional heat equation (2.47) within a given fluid body domain defined by y = h(x, t),

y = 0, and 0 ≤ x ≤ xn.

Figure 4. A typical temperature profile obtained by solving the one-dimensional heat

equation (2.47) within a prescribed lava fluid domain.

A more accurate model for the temperature profile can be described in a two-dimensional

space. To describe and numerically solve for the temperature profile in 2D, we consider

the two-dimensional heat equation

∂T

∂t
= k

(∂2T

∂x2
+

∂2T

∂y2

)
(2.49)

and the corresponding finite difference discretization

Tn+1
i,j = Tn

i,j + k∆t
(Tn

i+1,j − 2Tn
i,j + Tn

i−1,j

∆x2
+

Tn
i,j+1 − 2Tn

i,j + Tn
i,j−1

∆y2

)
, (2.50)

where Tn
i,j ≈ T (xi, yj , tn). This explicit finite-difference scheme can be used to simulate

the temperature evolution of the lava over time, allowing us to track how the lava cools

while flowing down the incline. The numerical results will be shown and discussed in

Subsection 2.6 of this report.
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2.5 Stability Considerations

Since the forward Euler time-stepping is used to solve the lava flow dynamics, one needs

to discuss the stability constraints on the time step ∆t. We obtain stability restrictions

for equations (2.42) and (2.43) using Von-Neumann analysis.

Let hn
j = Gneij∆x and define a = g/12ν∆x2. Substituting hn

j = Gneij∆x into equation

(2.45), we obtain

Gn+1eij∆x = Gneij∆x+
g∆t

12ν∆x2

[
(Gn)

4
e4i(j+1)∆x − 2 (Gn)

4
e4ij∆x + (Gn)

4
e4i(j−1)∆x

]
.

Dividing both sides by Gneij∆x gives:

Gn+1

Gn
= 1 + a∆t (Gn)

3
e3ij∆x

(
e4i∆x − 2 + e−4i∆x

)
.

The stability condition for the numerical scheme (2.45) is given by∣∣1 + a∆t h3
m

(
e4i∆x − 2 + e−4i∆x

)∣∣ ≤ 1, (2.51)

where hm = maxn,j G
neij∆x. Using Euler’s identity e4i∆x + e−4i∆x = 2 cos(4∆x), we

reduce the inequality (2.51) to

−1 ≤ 1 + a∆t h3
m(2 cos(4∆x)− 2) ≤ 1.

Since −1 ≤ cos(4∆x) ≤ 1, the worst case gives the constraints on the time step ∆t:

1− 4a∆t h3
m ≥ −1 ⇒ ∆t ≤ 1

2ah3
m

⇒ ∆t ≤ 6ν∆x2

gh3
m

.

Stability restrictions are found in a similar fashion for equation (2.43),

hn+1
j = hn

j − β(θ)
∆t

2∆x

((
hn
j+1

)3 − (
hn
j−1

)3)
+ γ(θ)

∆t

∆x2

((
hn
j+1

)4 − 2
(
hn
j

)4
+
(
hn
j−1

)4)
(2.52)

where

γ(θ) =
g cos θ

12ν
, β(θ) =

g sin θ

3ν
We also define

c(θ) =
γ(θ)

∆x2
, s(θ) =

β(θ)

2∆x
, hn

j = Gneij∆x.

Substituting in equation (2.52), we obtain

Gn+1eijx = Gneijx + c(θ)∆t
[
(Gn)

4
e4i(j+1)∆x − 2 (Gn)

4
e4ij∆x + (Gn)

4
e4i(j−1)∆x

]
−s(θ)∆t

[
(Gn)

3
e3i(j+1)∆x − (Gn)

3
e3i(j−1)∆x

]
.

To guarantee the stability of the numerical scheme, we need
∣∣Gn+1/Gn

∣∣ ≤ 1, which leads

to ∣∣1 + c(θ)∆t h3
m (2 cos(4∆x)− 2)− 2i s(θ)∆t h2

m sin(3∆x)
∣∣ ≤ 1,

where hm = maxn,j G
neij∆x is the maximum height of the free interface. This inequality

yields the constraint on the time step ∆t

∆t ≤ −gh2
m

3ν

(
sin θ sin(3∆x)

∆x
+

cos θhm

4(∆x)2
(cos(4∆x)− 1)

)
.
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Figure 5. Snapshots of lava flow dynamics over a flat substrate with temperature cooling.

2.6 Numerical Results

The following boundary and initial conditions are applied to the lava flow profile illus-

trated in Figure 1:

h(0, t) = 1 (Dirichlet condition at the left boundary) (2.53)

h(xN , t) ≈ 0 (Dirichlet condition at the right boundary) (2.54)

h(x, 0) =

{
1, for x = 0 and x = ∆x

0, otherwise
(2.55)

For the heat equation (2.49), the following boundary conditions are applied to the tem-

perature profile T (x, y, t):

T (0, y, t) = Thigh, 0 < y < 1, t > 0 (2.56)

T (x, h(x), t) = Tlow, 0 < x < xn(t), t > 0 (2.57)

T (x, 0, t) = Thigh, 0 < x < xn(t) t > 0, t > 0, (2.58)

where Thigh and Tlow are the lava temperature at the inlet and the ambient temperature,

respectively. In numerical simulations, we set Thigh = 2000 and Tlow = 0. To handle the

moving contact line at x = xn(t), we regenerate a new spatial grid using the updated

profile modeled from equations (2.42) or (2.43) every time the lava profile y = h(x)

evolves. If the contact line of the lava profile shifts more than a distance of ∆x, the en-

tire temperature profile is shifted to the right to simulate a uniform velocity. Numerical

simulation of the lava flow with temperature cooling with zero and 0.2 radian incline

angles at three different times are shown in Figure 5 and Figure 6. Time constraints pre-

cluded the development of an algorithm to solve for the 2D viscous velocity profile, which

we note would have provided much more accurate position updates for the temperature

field.

3 Optimal sensor placement

Next, we switch gear to discuss the optimal sensor placement problem for lava flow

thermal images. Specifically, we discuss stationary optimal sensor placement strategies

in Subsection 3.1 and the dynamical strategies in subsection 3.2. Numerical results are

presented in Subsection 3.3.
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Figure 6. Snapshots of lava flow dynamics over an inclined plane at 0.2 radian angle with

temperature cooling.

3.1 Stationary Optimal Sensor Placement and Reconstruction from Sparse

Measurements of All Time

In an ideal scenario, the optimal sensor placement problem could be solved deterministi-

cally if we had perfect knowledge of the system’s governing partial differential equations

and access to complete snapshots of the entire physical field. However, acquiring such

comprehensive snapshots is rarely a trivial process. For instance, during a volcanic erup-

tion, crucial areas of the lava flow may be permanently or temporarily obscured by dense

volcanic smoke and ash clouds, or blocked from view by the surrounding topography,

making a complete measurement of the field at any given moment unattainable.

Meanwhile in reality, the full profile of the lava flow is usually not accessible, since

we have a limited budget and also a limited number of sensors to monitor the lava flow

dynamics. Therefore, we are interested in the optimal way to place the limited number of

sensors for reconstructing the full field. More precisely, we address the reconstruction of

a high-dimensional data matrix G ∈ RN×T from r sparse measurements, where r ≪ N .

These measurements are acquired via a sparse row-selection matrix,

ST ∈ Rr×N , (3.1)

whose rows are distinct standard basis vectors eTj . The product STG thus represents

the extraction of r specific rows (sensor readings) from G. Our objective is to find a

reasonable ST that represents the stationary optimal placement of the sensors, and to

design a linear reconstruction operator, R ∈ RN×r, which forms the reconstructed data

Grecon = R(STG). (3.2)

We can firstly address the second question, to find reconstruction operator R if ST is

already given. The aspiration is for Grecon to be the best possible rank-r approximation

of G in the Frobenius norm ∥ · ∥F .
To establish a theoretical target for this best approximation, we refer to the Eckart-

Young-Mirsky theorem. This theorem states that for any matrix G with singular value

decomposition (SVD) G = UΣVT =
∑rank(G)

i=1 σiuiv
T
i , its best rank-r approximation,

Gr, is given by the first r terms of its SVD:

Gr = UrΣrV
T
r =

r∑
i=1

σiuiv
T
i . (3.3)
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Here, Ur = [u1| . . . |ur] ∈ RN×r contains the first r left singular vectors, which also

form the Proper Orthogonal Decomposition (POD) basis [2]. An equivalent and useful

expression for Gr is

Gr = Ur(U
T
r G) (3.4)

where we consider Ur to be the basis and UT
r G the coordinates obtained through pro-

jection or inner product. This matrix Gr uniquely minimizes ∥G−X∥F over all matrices

X where rank(X) ≤ r. The minimum error achieved, representing the information lost

by truncation, is

∥G−Gr∥2F =

rank(G)∑
i=r+1

σ2
i . (3.5)

Thus, Gr serves as the ideal theoretical target for our rank-r reconstruction Grecon.

A direct attempt to make our reconstruction Grecon = RSTG equal to this ideal

Gr = UrU
T
r G for all G would require the operator equality

RST = UrU
T
r . (3.6)

However, this equality generally fails if ST is a sparse row-selection matrix and N > r.

The reason is structural: RST would inherently possess N −r zero columns (correspond-

ing to unmeasured rows), whereas the orthogonal projector UrU
T
r ∈ RN×N (rank r) is

typically dense (maybe all elements and thus columns are nonzero). Consequently, per-

fectly recovering Gr for all G is generally not feasible with a linear reconstruction from

sparse, point-wise measurements if we insist on this strict operator identity.

Given this limitation in achieving the ideal Gr directly through operator equality (3.6)

with sparse sensors, we construct Grecon by enforcing two physically and mathematically

motivated conditions:

(a) The reconstructionGrecon must lie in the optimal r-dimensional subspace span{Ur}.
This is motivated by the fact that Gr, our target, resides entirely in this subspace.

This implies

Grecon = UrA (3.7)

for some coefficient matrix A ∈ Rr×T in the Ur basis.

(b) The reconstruction must be consistent with the actual sensor measurements. This

means if we were to “measure” our reconstructed fieldGrecon with the same sensors

ST , we should obtain the original measurements STG:

STGrecon = STG. (3.8)

To find A, we substitute (3.7) into (3.8), yielding ST (UrA) = STG. This leads to the

linear system for A:

(STUr)A = STG. (3.9)

The r × r matrix STUr consists of the r rows of Ur selected by ST . If this matrix is

invertible, we can determine A as

A = (STUr)
−1STG. (3.10)
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Substituting this A back into Grecon = UrA, the reconstruction becomes

Grecon = Ur(S
TUr)

−1STG. (3.11)

From this form, we identify the linear reconstruction operator R as

R = Ur(S
TUr)

−1. (3.12)

Therefore, R is uniquely determined once S (the sensor locations) and Ur (the data-

driven basis) are fixed. This reconstruction approach is based on the Discrete Empirical

Interpolation Method (DEIM) [5].

The derived form of the reconstruction operator,R = Ur(S
TUr)

−1, highlights that the

selection of the sparse row-selection matrix ST is a critical step. For R to be well-defined

and for the reconstruction to be numerically stable, the r × r matrix STUr must not

only be invertible but also well-conditioned. A well-conditioned STUr ensures that the

norm of its inverse, ∥(STUr)
−1∥2, is not excessively large. This control over the inverse

norm is essential to prevent significant amplification of measurement noise or modeling

inaccuracies during the reconstruction process.

The task thus shifts to finding a suitable ST ∈ Rr×N . The invertibility of STUr is

equivalent to the invertibility of its transpose, which is (STUr)
T = UT

r S. Therefore, the

matrix UT
r S is formed by selecting r specific columns from UT

r ∈ Rer×N . Notably, the

selection matrix S itself can be viewed as a sub-matrix of an N ×N permutation matrix,

specifically, the part that picks out r columns. For this, we employ the column-pivoted

QR factorization algorithm on UT
r , a technique widely used for sparse sensor selection

in data-driven modeling [21]. This algorithm is well-suited for identifying a set of “most

linearly independent” columns from a given matrix. When applied to UT
r , it produces

a factorization where the full permutation matrix P ∈ RN×N is partitioned into two

blocks: P = [P1|P2]. Here, P1 ∈ RN×r consists of the first r columns of P that select

the desired columns, and P2 ∈ RN×(N−r) contains the remaining columns.

This partitioning explicitly highlights the selection process within the QR decomposi-

tion:

[UT
r P1|UT

r P2] = UT
r [P1|P2] = UT

r P = Q[R11|R12] = [QR11|QR12], (3.13)

where Q ∈ Rr×r is an orthogonal matrix, and the right-hand side is an upper trapezoidal

matrix with R11 ∈ Rr×r being upper triangular and non-singular.

By equating the corresponding blocks, we see the dual roles of the permutation. The

full permutation P reorders the entire column space of UT
r . Crucially, its first block P1

acts as our selection matrix, S = P1. This leads to the key relationship for the selected

columns:

UT
r S = QR11. (3.14)

The column pivoting strategy within the QR algorithm is designed to maximize the

volume spanned by the selected columns, which ensures that R11 is well-conditioned.

Since Q is orthogonal (and thus invertible) and R11 is invertible by construction, their

product UT
r S is also invertible. Consequently, the matrix of interest, STUr = (UT

r S)
T =

RT
11Q

T , is also invertible and tends to be well-conditioned. The procedure is detailed in

Algorithm 1.
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Algorithm 1 Column-Pivoted QR for Sensor Selection (acting on A0 = UT
r )

1: Input: A0 = UT
r ∈ Rr×N (transpose of POD basis); number of sensors r.

2: Output: Selection matrix S ∈ RN×r .

3: Initialize permutation matrix P← IN . Let working matrix A← A0.

4: for k = 1 to r do

5: Pivot Selection: Among columns A:,k, . . . ,A:,N of the current A, find column

index jpivot (its original index in A0 is tracked by P) corresponding to the column

with the largest Euclidean norm.

6: Swap column k of A with column jpivot of A.

7: Swap column k of P with column jpivot of P (this records the permutation of

original column indices).

8: Householder Reflection: Determine a Householder vector vk for the k-th column

of the current A (specifically for its sub-vector Ak:r,k) to zero out elements below the

k-th diagonal element Ak,k.

9: Apply the corresponding Householder reflection Hk = (I− 2
vkv

T
k

∥vk∥2
2
) to the subma-

trix Ak:r,k:N .

10: (The matrix Q is implicitly formed by the product of Hk’s; the modified A pro-

gressively becomes Rqr).

11: end for

This selection process, implemented via column-pivoted QR factorization, aims to se-

lect columns of UT
r (which correspond to rows of Ur) that are “most” linearly indepen-

dent so that we can pick out part of the subsequent P to be our sensor selection strategy

ST. This, in turn, makes the crucial matrix STUr well-conditioned, enabling the stable

and effective application of the derived reconstruction operator R = Ur(S
TUr)

−1 for

robust data reconstruction from sparse measurements.

An important remark is that the stationary sensor placement strategy is entirely data-

dependent. The determination of the selection matrix ST follows a direct dependency

chain: G → Ur → ST , and then to R. Specifically, the snapshot matrix G is first

used to compute the POD basis Ur, which in turn dictates the optimal sensor locations.

Consequently, the resulting sensor configuration is intrinsically determined by the specific

dynamics captured in the original lava flow snapshots of all time.

3.2 Dynamical Optimal Sensor Placement and Reconstruction from Real

Time Sparse Measurements

The aforementioned methodology determines an optimal sensor placement that is static

in time. This approach, while effective for a given dataset, presents two primary challenges

when considering real-world, ongoing applications.

First, the method constitutes an offline learning process. To determine the single op-

timal sensor configuration S, it requires access to the entire data matrix G spanning all

time instances. Such a setup is more akin to a post-processing analysis of a fully collected

dataset. The resulting static placement S is fixed once it is computed from G. The hope

is that this placement strategy might offer some utility for economically reconstructing
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future flows at the same physical location, assuming statistical stationarity. However, any

update to this sensor placement would necessitate a new, complete time-series sample of

the global field G.

Second, the computation of the optimal basisUr requires access to the full-field data. In

experimental contexts, such as our use of video data from the 2020–2021 summit eruption

of Kilauea volcano, Island of Hawai’i, provided by the USGS, the pixel information is

analogous to having the entire flow field. This presents a practical contradiction: to find

an optimal sparse sensing strategy S, we first need access to the complete, non-sparse

field information, the acquisition of which is often prohibitively expensive.

The limitations of the stationary approach motivate a new framework for Dynamical

Optimal Sensor Placement and Reconstruction from Real-Time Sparse Measurements.

The intuition arises from the previously established logical process of identifying the

optimal sensor placement G→ Ur → S. Meanwhile, the sensor placement S itself guides

how we sample the field to produce a reconstruction (S→ R&Gsampled → Grecon). We

conjecture that these two processes can be linked to form a closed-loop update scheme,

St → · · · → St+1, that adapts in real-time. This dynamical framework is characterized

by the following principles:

(1) Online Learning. The sensor placement St is constructed and updated dynam-

ically and online, potentially from a random initial state. It is time-varying and

learns adaptively. Crucially, the process of learning St relies less on external infor-

mation, such as requiring a sample of the whole field Gt at each step, and more

on the sparse measurements ST
t−1Gt−1 and the subsequent reconstruction.

(2) Window Sliding. The reason for using a sliding window of recent reconstructions,

Grecon,window, to guide the sensor placement S is that this window contains the

most current available information on the flow’s dynamics, and we desire the sensor

placement to adapt to these recent changes. The use of a window is also motivated

by a key constraint on the system’s rank.

The decision-making basis Ur,local for S is computed from this window matrix

Grecon,window ∈ ReN×W using SVD. The rank of this basis is therefore limited by

the rank of the window matrix, which in turn is limited by its number of columns

W . This relationship can be expressed as a chain of inequalities:

rank(Ur,local) ≤ rank(Grecon,window) ≤ min(N,W ). (3.15)

In typical scenarios where the number of pixels N far exceeds the window size

W , this simplifies to rank(Grecon,window) ≤ W . To effectively utilize r sensors to

identify r distinct modes of the system, the decision basis Ur,local ∈ ReN×r must

be of full rank, i.e.,

rank(Ur,local) = r. (3.16)

Combining these conditions, we have r = rank(Ur,local) ≤ rank(Grecon,window) ≤
W , which leads to the necessary constraint on the window size:

W ≥ r. (3.17)

This provides the fundamental motivation for employing a sliding window. It math-
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Algorithm 2 Dynamical Optimal Sensor Placement and Reconstruction from Real-Time

Sparse Measurements

1: Input: True data snapshots (optional, for simulation) Gtrue ∈ RN×Ttotal ; Number of

exploitation sensors rexploit; Number of exploration (scout) sensors rexplore; Sliding

window size W ; Global basis truncation rank rglobal.

2: Output: Reconstructed data snapshots Grecon ∈ RN×Ttotal ; History of sensor loca-

tions {St}Ttotal
t=1 ; Reconstruction errors {ϵt}Ttotal

t=1 .

Phase 1: Offline Training

3: Compute a global, robust basis Ur,global ∈ RN×rglobal from a comprehensive historical

dataset Gtrain via SVD: Gtrain ≈ Ur,globalΣr,globalV
T
r,global.

Phase 2: Online Adaptive Placement and Reconstruction

4: Initialize:

5: Set sliding window of recent reconstructions W ← {0N×1, . . . ,0N×1} (size W ).

6: Initialize exploitation sensor locations Pexploit ⊂ {1, . . . , N} by selecting rexploit ran-

dom indices. |Pexploit| = rexploit.

7: for t = 1 to Ttotal do

(a) Determine Current Sensor Placement St

8: Determine exploration sensor locations Pexplore by randomly sampling rexplore
indices from {1, . . . , N} \ Pexploit.

9: Combine sensor sets: Pt ← Pexploit ∪ Pexplore.

10: Construct the sparse measurement matrix ST
t ∈ R(rexploit+rexplore)×N from indices

in Pt.

(b) Perform Measurement and Reconstruction

11: Acquire sparse measurements from the true field at time t: yt = ST
t gtrue,t.

12: Define the time-dependent reconstruction operator Rglobal,t using the global ba-

sis:

13: Rglobal,t := Ur,global(S
T
t Ur,global)

−1.

14: Compute the reconstructed field using the operator: grecon,t = Rglobal,tyt.

(c) Record Results and Update History

15: Store the reconstructed field grecon,t.

16: Calculate reconstruction error ϵt = ∥gtrue,t − grecon,t∥/∥gtrue,t∥.
17: Update the sliding window: remove the oldest reconstruction and add grecon,t to

W.

(d) Adapt for Next Time Step

18: Form the snapshot matrix from the window history: Gwindow =

[reconstructions in W].

19: Compute a local basis Ur,local from Gwindow via SVD, with rank rexploit.

20: Determine the next set of exploitation sensor locations Pexploit by applying

column-pivoted QR factorization to UT
r,local: [∼,∼, P ] = qr(UT

r,local).

21: Update Pexploit ← P (1 : rexploit).

22: end for
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ematically explains why a window(single frame) size of W = 1 is insufficient—as

it leads to a rank-1 basis and subsequent sensor clustering—and dictates that the

history used for decision-making must be at least as rich as the number of adaptive

sensors.

(3) Randomness for Exploration and a Global Basis for Reconstruction. A

purely adaptive feedback loop, St → Grecon,t(Grecon,window) → St+1 → . . . , is

susceptible to premature convergence to a suboptimal placement (”self-locking”)

or instability from poor reconstructions. To mitigate this, we introduce two mecha-

nisms. First, to prevent the sensor placement St from becoming permanently locked

onto a local feature, a portion of the sensors are designated as random ”scouts”,

embedded within St at each time step. These scouts are selected from the global set

of locations and ensure persistent exploration. Second, to prevent the reconstruc-

tion quality from degrading and corrupting the feedback loop, the reconstruction

step itself consistently uses a robust, global basis, Ur,global, that was pre-trained

on a comprehensive historical dataset. This ensures reconstruction stability while

the sensor placement remains agile and adaptive.

A detailed procedure is detailed in Algorithm 2.

3.3 Numerical Experiments of Optimal Sensor Placement

To validate the proposed sensor placement methodologies, we apply them to real-world

thermal imagery from a volcanic eruption. This section details the data preparation, the

results from the stationary placement strategy, and followed by the simulations for the

dynamical approach.

3.3.1 Stationary Sensor Placement

The practical implementation begins with data acquisition and processing. Our dataset

is a time-lapse thermal video sequence recorded by the U.S. Geological Survey’s Hawai-

ian Volcano Observatory [34], capturing activity at the Halema’uma’u crater between

February 7 and 10, 2022.

First, the video was preprocessed to remove extraneous elements such as timestamps

and color scales. We extracted a total of T = 462 grayscale frames. Each frame was

then reshaped into a column vector by flattening its pixel values, and these vectors were

organized to form the data matrix G ∈ RN×T , where N = 1, 493, 096 is the total number

of pixels per frame. This matrix was then divided equally into a training set, Gtrain, and

a testing set, Gtest.

To identify the dominant spatial features of the lava flow, we applied singular value

decomposition (SVD) to the training matrix:

Gtrain = UΣVT ≈ UrΣrV
T
r ,

where the columns of Ur represent the most energetic spatial modes (POD basis). The

rapid decay of the singular values, shown in Figure 7, confirms that a low-dimensional
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Figure 7. Spectrum of singular values from Gtrain on a logarithmic scale. The sharp

decay indicates that the system’s energy is concentrated in the first few modes.

Figure 8. Visualization of the first four SVD spatial modes (columns ofUr). These modes

highlight the most persistent and energetic regions of lava activity.
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Figure 9. Comparison of the original time-lapse (left) with the reconstructed time-lapse

(right) using r = 100 optimally placed stationary sensors.

representation can capture most of the data’s variance, justifying the use of a truncated

basis.

By reshaping the columns of Ur back into image dimensions, we can visualize these

dominant spatial patterns. Figure 8 displays the first four modes, where bright regions

correspond to pixels with the most significant contribution to the flow’s dynamics, such

as the active vents and lava lake entry points.

Following the theory from Section 3.1, the optimal sensor locations for this station-

ary basis were determined by applying a column-pivoted QR decomposition to UT
r . This

method selects the pixel locations that best span the feature space captured by the basis.

Using the measurements from these selected locations on the test data, we reconstructed

the entire thermal video sequence. Figure 9 compares the original footage with the re-

constructed sequence using r = 100 sensors, demonstrating a high-fidelity reconstruction

from sparse measurements.

A closer examination of the thermal footage reveals two distinct dynamical phases,

roughly corresponding to the periods before and after a major eruption event. In the

latter phase, the lava covers a significantly broader area. We observe that the station-

ary algorithm, though trained on the entire dataset, identifies optimal points that are

predominantly located within the regions active during the first phase. This suggests a

limitation of the static approach: it is biased towards the initial, more localized dynamics

and lacks the flexibility to account for significant spatial evolution of the flow over time.

We will see this limitation partially addressed by the dynamical placement strategy in

the following section.

3.3.2 Dynamical Sensor Placement Simulation

We now implement the dynamical algorithm from Section 3.2 on the same lava flow

dataset. This approach utilizes a hybrid strategy: sensor locations are determined adap-

tively based on a sliding window of recent reconstructions (local sensing), but the field

reconstruction itself is performed using a fixed, pre-trained global basis (global recon-

struction) to ensure stability.
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(a) Sensor distribution before convergence, during the initial frames.

(b) Sensor distribution after convergence, but before the main eruption event.

(c) Sensor distribution after the main eruption event, showing limited reconfiguration.

Figure 10. Evolution of the exploitation sensor (rexploit = 80) placement at three distinct

stages of the simulation, overlaid on the corresponding thermal video frames.
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For this simulation, we set the number of adaptive ”exploitation” sensors to rexploit =

80 and the number of random ”exploration” sensors to rexplore = 20. The sliding window

size is W = 100, matching the total number of sensors. Crucially, the global reconstruc-

tion basis, Ur,global, was trained in an offline phase using only the first 200 odd-numbered

frames of the video.

Figure 10 illustrates the evolution of the exploitation sensor placements at three crit-

ical time instances of the eruption. The results reveal a distinct pattern of convergence.

As the simulation progresses through the first phase of the eruption, the locations of the

exploitation sensors rapidly converge to a nearly stable configuration, focusing on the

primary areas of lava activity. Once converged, their positions exhibit only minor fluc-

tuations from frame to frame. This rapid convergence in sensor placement corresponds

directly to the behavior of the reconstruction error. The relative Frobenius norm error,

which starts at approximately 0.5, quickly drops and stabilizes within a range of 0.05

to 0.15. This demonstrates the algorithm’s ability to swiftly identify and lock onto the

key features of a relatively stable dynamical system. However, as the simulation enters

the second phase, we observe that the sensor distribution does not significantly recon-

figure, even during the main eruption event. A potential explanation for this inertia is

that the window size (W = 100) is large relative to the duration of the rapid eruption

event, which spans approximately 20 frames. Consequently, the snapshot matrix Gwindow

that determines the sensor placement St is dominated by pre-eruption data, causing the

resulting St to remain largely unchanged. This suggests that increasing the temporal

sampling rate of the source video, which would reduce the physical time spanned by the

frames within the window, could enhance the sensitivity of the sensor placement St to

rapid changes in the flow.

4 Conclusions and Discussions

In this study, we explored both physics-based and data-driven approaches to model and

monitor lava flows. The physics-based approach focused on analytically deriving and

numerically approximating a reduced-order model that represents lava flow down an in-

cline in one dimension. The analytical model, composed of both short-term and long-term

similarity solutions, qualitatively captured expected physical behavior of a highly viscous

fluid and showed agreement with the previously modeled corresponding two-dimensional

problem. Given these promising initial results, future work may consider further char-

acterization of asymptotic behavior, reconciliation of the short-term and long-term so-

lutions, and a more refined definition of the similarity boundary conditions. Numerical

simulations of developed lubrication model presented typical lava flow dynamics both

spreading on a flat substrate and down an inclined plane. Moreover, we numerically

explored the temperature cooling dynamics within an evolving lava flow, showing both

one-dimensional and two-dimensional temperature profiles under different assumptions.

It would be of interest to incorporate temperature-dependent viscosity and crust forma-

tion in the modeling and numerical study of the lava flow problem in the future.

The data-driven component focused on a critical real-world problem: reconstructing

a high-dimensional thermal field from a limited number of sensor measurements. The

stationary strategy of placement of sensors, while effective, proved to have two major
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drawbacks: its sensor locations are inflexible to evolving flow dynamics, and it requires a

complete, offline dataset for training. To address these issues, we developed a dynamical

algorithm. This online approach removes the need for a complete prior dataset and allows

the sensor network to adapt in real-time. By learning from a sliding window of recent

sparse measurements, it demonstrates improved flexibility. However, this adaptivity in-

troduces new challenges, such as tuning the algorithm’s sensitivity to rapid events, which

highlights promising directions for future research in real-time environmental monitoring.
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