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1 Introduction

Traditional insurance is based on a centralized model. Each insurance policy has a bilateral contractual
relationship between a policyholder and an insurer. Decentralized models allow a pool of participants to spread
out risks among each other, removing the role of central authority who traditionally takes on all the risks.
Peer-to-peer (P2P) insurance model is based on a social network concept where a group pool their resources to
compensate each other for losses and cut down on the cost of insurance. Companies such Friendsurance and
Lemonade are known to offer P2P insurance products.

Risk sharing has emerged as a vital mechanism in financial markets to address risks that are often too large or
unpredictable for conventional insurance to handle. For example, the Caribbean Catastrophe Risk Insurance
Facility (CCRIF) was created in response to the significant economic devastation caused by natural disasters
such as hurricanes and earthquakes in the Caribbean region. The severe impact of Hurricane Ivan in 2004,
which led to over $6 billion in losses across nine Caribbean countries, highlighted the urgent need for innovative
risk management solutions, particularly for developing nations with limited financial resources. Recognizing
this need, the World Bank and 19 Caribbean and Central American countries established the CCRIF in 2007
as a sovereign trust fund for disaster financing. This arrangement allows member countries to collectively
pool their risks, diversify their portfolios, retain a portion of the risk through joint capital, and transfer excess
exposure to global reinsurance and capital markets. Although these countries are geographically close, they
are not always simultaneously affected by disasters, enabling them to share the financial impact and support
one another when catastrophes occur. The success of catastrophe risk pooling has led to its adoption in other
regions, including the Florida Hurricane Catastrophe Fund (U.S.), Flood Re (U.K.), African Risk Capacity
(Bermuda), and the Pacific Catastrophe Risk Assessment and Financing Initiative (Pacific Islands). For a
comprehensive analysis of catastrophe risk pooling.

The study of risk sharing arises naturally from insurance, particularly from the reinsurance line of business.
In the past few years, there has been a surge in risk sharing research related to P2P insurance models. Feng
et al. [2023] introduce a hierarchical P2P model with applications to flood insurance products. An extension to
the dynamic, time-dependent setting is done by Abdikerimova et al. [2024]. Denuit et al. [2022] lay basic
foundational properties that are deemed attractive/desirable in a risk sharing model. A specific example of a
rule that is based on quantile is studied in Dhaene et al. [2025].

2 Mathematical preliminaries and classical model

2.1 Mathematical formulation of risk sharing

To formulate the risk sharing problem, we first introduce some notation.
Definition 2.1.1. Let X = (X1, . . . , Xn)

T be a non-negative random vector with entries Xi representing
the loss of agent i. A risk sharing rule is a nonnegative function h : Rn → Rn. We say that h satisfies the
full-allocation property (zero-balance conservation) if

n∑
i=1

hi(X) =

n∑
i=1

Xi. (1)
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Remark 2.1.2. In the classical risk sharing literature, losses are aggregated first before redistributed to
individual agents, so hi is a function for

∑n
i=1 Xi. On the other hand, the formulation of P2P models relies on

the source of the loss, i.e. hi is a function of (X1, . . . , Xn)
T . Our research focuses on the later type.

We will now introduce some desirable properties of risk-sharing models. An important property is called
actuarial fairness, which say that, on average, the loss of agent i before risk sharing is the same as the loss
after risk sharing, that is,

E[hi(X)] = E[Xi]. (2)
In other words, the expected net return of this risk sharing scheme must be zero. Another property is called the
Pareto optimality condition, which is closely related to some concepts in economics. This property asserts
that the post-exchange variance must be minimized. Mathematically, this leads to the following optimization
problem

min

n∑
i=1

Var(hi(X)).

2.2 n-agent model and results

An example of a risk sharing model is the linear (pro rata) rule:

h(X) = AX,

where A is any matrix that has columns that sum to 1, that is, 1TA = 1T . We will refer to the matrix
A = (αij)

n
i,j=1 as the allocation matrix.

Example 2.2.1. When n = 2, the linear risk sharing rule reduces to

H(X) =

(
α11 α12

α21 α22

)(
X1

X2

)
=

(
α11 1− α22

1− α11 α22

)(
X1

X2

)
.

This formulation is easily generalized to the n-agent problem. Let X̃ = (X̃1, . . . , X̃n) denote the pre-exchange
losses of all agents with mean E[X̃] = µ and positive definite covariance Cov(X̃) = Σ. The components of
Σ are denoted σij = Cov(X̃i, X̃j) = ρijσiσj where σi = std(X̃i) and ρij = corr(X̃i, X̃j). Consider the
allocation matrix A and suppose that after the group enters a risk-sharing agreement, the new joint risk is
given by X = AX̃ . We use the notation 1 = [1, . . . , 1]T ∈ Rn. The allocation ratio matrix of the optimal risk
sharing pool will be the minimizer of the sum of the variances of the individual agents subject to actuarial
fairness and loss conservation conditions. Mathematically, the following theorem was formulated in Feng et al.
[2023]:
Theorem 2.2.2 (Feng et al., 2023). Consider the problem of finding the optimal allocation matrix Ã that
minimizes

min
A∈Rn×n

n∑
i=1

Var(Xi) = min
A∈Rn×n

tr(AΣAT )

s.t. Aµ = µ,

1TA = 1T

(3)

Then,

Ã =
1

n
11T +

1

µTΣ−1µ

(
I − 1

n
11T

)
µµTΣ−1. (4)

Proof. We use the method of Lagrange multipliers. Define the Lagrangian,

L = tr(AΣAT ) + (1T − 1TA)λ+ βT (µ−Aµ).

Differentiating, we have that

0 =
∂L
∂A

= AΣT +AΣ− 1λT − βµT ,

0 =
∂L
∂λ

= 1T − 1TA,

0 =
∂L
∂β

= µ−Aµ,
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and so the minimizer Ã satisfies
Ã = (1λT + βµT )(2Σ)−1.

Inserting into the second equation, we have

0 = 1T − 1T (1λT + βµT )(2Σ)−1

=⇒ 1T = 1T (1λT + βµT )(2Σ)−1

=⇒ 1T (2Σ) = 1T (1λT + βµT )

=⇒ 1T1λT + 1TβµT = 1T (2Σ)

=⇒ 1T1λT = 1T (2Σ− βµT )

=⇒ λT =
1

n
1T (2Σ− βµT ).

Inserting into the third equation, we have

0 = µ− (1λT + βµT )(2Σ)−1µ

=⇒ 0 = µ− 1λT (2Σ)−1µ− βµT (2Σ)−1µ

=⇒ 0 = µ− 1

n
11T (2Σ− βµT )(2Σ)−1µ− βµT (2Σ)−1µ

=⇒ 0 = µ− 1

n
11Tµ+

1

n
11TβµT (2Σ)−1µ− βµT (2Σ)−1µ

=⇒ 0 =

(
I − 1

n
11T

)
µ−

(
I − 1

n
11T

)
βµT (2Σ)−1µ

=⇒ 0 =

(
I − 1

n
11T

)
(µ− βµT (2Σ)−1µ)

=⇒ β = (µT (2Σ)−1µ)−1µ.

To summarize, we have that

Ã = (1λT + βµT )(2Σ)−1,

λT =
1

n
1T (2Σ− βµT ),

β = (µT (2Σ)−1µ)−1µ,

and so

Ã =

(
1

n
11T (2Σ− (µT (2Σ)−1µ)−1µµT ) + (µT (2Σ)−1µ)−1µµT

)
(2Σ)−1

=
1

n
11T (2Σ)(2Σ)−1 − 1

n
11T (µT (2Σ)−1µ)−1µµT (2Σ)−1 + (µT (2Σ)−1µ)−1µµT (2Σ)−1

=
1

n
11T + (µT (2Σ)−1µ)−1

(
I − 1

n
11T

)
µµT (2Σ)−1

=
1

n
11T +

1

µTΣ−1µ

(
I − 1

n
11T

)
µµTΣ−1

as desired.

Remark 2.2.3. In the special case, µ1 = µ2 = · · · = µn, then Ã = 1
nI . That is, the optimal allocation is to

split all losses equally among all agent.

Remark 2.2.4. It is often useful to rewrite the objective function via Cholesky decomposition for numerical
optimization purposes. Indeed, since Σ is positive definite, we have that Σ = LLT for some lower triangular
matrix L and therefore

tr(AΣAT ) = tr(ALLTAT ) = tr((AL)(AL)T ) = (AL)T (AL) = ∥AL∥2F
where ∥ · ∥F is the Frobenius norm.

4



Remark 2.2.5. Each agent has post-pooling variance

Var(Xi) =
1

n2
1TΣ1+

µ2
i

µTΣ−1µ
− 1

n2µTΣ−1µ

(
n∑

i=1

µi

)2

≥ 1

n2
1TΣ1.

This follows from noting that (µTΣ−1µ)−1 > 0 since Σ is positive definite and applying the Cauchy-Schwarz
inequality on µ:

n∑
i=1

µ2
i ≥ 1

n2

(
n∑

i=1

µi

)2

.

This implies that the post-pooling variance of each agent is not less than the mean covariance of all agents

2.3 Python implementation

To investigate how changing the difference in the mean expected loss between two agents in this simplified
example we perform a numerical experiment to implement this optimization problem for a series of different
mean loss vectors. All codes used throughout this paper can be found at: https://github.com/Harbour-N/
Risk_sharing_GSMMC/tree/main. We generate 1,000 random losses for each agent (X1 and X2) and
perform the optimization to find the optimal coefficients of the allocation matrix A. We compare both a
numerical optimization scheme (differential evolution) with the analytical solution provided in Feng et al.
[2023]. We then repeat this keeping the mean loss of Agent One the same but multiplying Agent Two’s mean
by a scale factor. The results are shown in Figure 1.

Figure 1: Optimal α1,1 and α2,2 for a series of different losses. The x-axis represents the difference(ratio) in
means between the two agents loss samples.

Agent One has a fixed mean of 0.1, while the mean loss of Agent Two is varied. We define the difference in
means in the multiplicative sense, that is:

difference in means =
X̄2

X̄1
. (5)

Thus, a difference in mean of 0.5 corresponds to X̄2 is half X̄1. The means are the same when the difference in
means is 1. Figure 1 verifies that when the means are the same this corresponds to α1,1 = 0.5 and α2,2 = 0.5,
as expected – the agents share risk equally.

When the difference in means is small then the mean expected loss of Agent One is much higher than Agent
Two thus they are allocated much more of the risk. As the mean loss of Agent Two increases relative to Agent
One its allocation decreases.
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3 Multi-period extension

A multi-period peer-to-peer (P2P) risk sharing model refers to a framework in which a group of agents
(participants) repeatedly share risk among themselves over multiple time periods. This concept is a gener-
alization of the classical static risk-sharing model (which occurs at a single point in time) by introducing a
dynamic, temporal structure where sharing rules, wealth, and risk exposure evolve over time. Most of the
current literature focuses on single-period P2P risk-sharing models. Agents can benefit from participating in
long-term risk sharing, enabling them to smooth out fluctuations arising from risks and uncertainties over time.
The literature on dynamic risk sharing has primarily focused on the objective of the temporal effect on the
participants’ long-term capital.

3.1 Spatial versus Temporal Effect

In a single-period peer-to-peer (P2P) risk-sharing model, such as catastrophe risk pooling, the system operates
on a “pay-as-you-go” basis, where losses are distributed and settled immediately as they arise, rather than
being managed in advance or deferred to the future. This structure inherently avoids any transfer of risk
between generations, preventing situations where the younger cohort bears the financial burden of the older
participants. Consequently, the primary function of such a system is spatial risk diversification, ensuring that
the financial impact of individual losses is shared collectively among all members.

In this study, we extend the analysis to a multi-period P2P risk-sharing framework under a similar “pay-as-you-
go” approach. However, unlike the static model, the multi-period setting allows for the balance of risk-sharing
to be carried forward across different periods. This introduces a temporal dimension to the risk allocation,
enabling partial smoothing of losses over time. With multiple periods under consideration, it becomes crucial
to develop mechanisms that not only distribute risk among participants but also enhance financial stability
throughout the duration of the risk-sharing arrangement.

In a P2P risk-sharing scheme in place, the participants can trade losses with each other to provide some level
of temporary relief. The participants split the losses among themselves, which in turn controls the temporary
effect on the participants’ long-term capital, which stabilizes the reserve fund.

3.2 Problem Formulation

Recall that for a single-period problem, we have the following two-agent problem:

h(X) = AX =

[
α11 1− α22

1− α11 α22

] [
X1

X2

]
. (6)

Considering a multi-period problem, the coefficients of the A matrix are time-dependent, i.e, A := A(t),
α11 := α11(t) and α22 := α22(t), as well as the losses X1 := X1(t) and X2 = X2(t). To get the optimal
values of the coefficients of the matrix At, we solve the optimization problem in terms of all the time dependent
matrices. For example, given time steps t = 0, 1, . . . , T , the optimization problem is formulated as

min{A(t)}T−1
t=0

E[f(X(t))], (7)

for some function f(X(t)) of the losses. As discussed in Abdikerimova et al. [2024], one could use the
optimization problem in Equation (7) to maximize the expected countries’ reserve amounts R(T ) at some final
time T . In particular, for all t = 1, . . . , T , we define R(t) via the recursive relation

R(t) := R(t− 1)−A(t− 1)X(t). (8)

Hence, the optimization problem in Equation 7 can be stated as:

max{A(t)}T−1
t=0

Tr(λE[RT(T )]−ΩE[R(T )RT(T )]), (9)

with the weight vector λ and the weight diagonal matrix Ω. These weights can be though of a balancing two
potentially competing objectives – maximizing the final reserve, while minimizing the variation in the final
reserve, subject to the constraints,

1TA(t)− 1T = 0 (zero-balance loss conservation). (10)

The aim of the optimization problem is to find the optimal values of the coefficients of the matrices A(t) to
maximize the expected value of terminal reserves and minimize their variations.
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3.3 Implementation

Extending on Section 2.3, we implement the following problem setup, inspired by Feng et al. [2023]. Three
participants participate in an optimal dynamic risk-sharing allocation for 7 periods. We assume that losses
(X1, . . . , XT) are independent and identically distributed over time. They follow a multivariate normal
distribution with the vector of expectations = [55, 70, 100] and the variance-covariance matrix given by

Σ =

[
225 50 20
50 121 30
20 30 625

]
.

The weights are pre-set as follows

Ω =

[
1/2 0 0
0 3/2 0
0 0 2

]
and λ′ = [1, 1/2, 2].

All participant are set to have the same initial reserve R0 = [1500, 1500, 1500]. We use Monte Carlo
simulations to generate 1000 sample paths of the realized losses over 7 periods. For each sample path, we
calculate the allocation matrix At given by solving the optimization problem 7. The numerical results are
presented in Figures 2 and 3.

Figure 2: Example coefficients over time
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Figure 3: Reserve over time for the agents following the allocation matrices given in Figure 2

4 New risk sharing rules

In this section, we investigate some risk sharing rules beyond the linear model.

4.1 Ordinary deductible

4.1.1 Two Agents

We consider a risk-sharing mechanism between two agents who each faces uncertain losses, denoted by the
random variables, X1 and X2, respectively. To balance fairness and individual responsibility, we introduce a
deductible-based redistribution rule. Each agent retains responsibility for their own losses up to a personal
deductible threshold di, while any excess loss beyond that threshold is absorbed by the other agent. Formally,
we observe that

Xi = min(Xi, di)︸ ︷︷ ︸
self

+(Xi − di)
+︸ ︷︷ ︸

distribute

, i = 1, 2 (11)

where (Xi − di)
+ = max(Xi − di, 0), the ReLU function. We define the corresponding risk sharing rule

hi(X) = min(Xi, di) + (Xj − dj)
+, i, j = 1, 2; i ̸= j. (12)

Clearly,
h1(X) + h2(X) = X1 +X2

so the rule satisfies zero-balance conservation. We wish to impose actuarial fairness and Pareto optimality
conditions. That is, we want to solve the optimization problem

min
d1,d2

Var(h1(X)) + Var(h2(X))

s.t. E[h1(X)] = E[X1], E[h2(X)] = E[X2]
(13)

Observe that by linearity of expectation,

E[Xi] = E[min(Xi, di)] + E[(Xi − di)
+], i = 1, 2

and
E[h(Xi)] = E[min(Xi, di)] + E[(Xj − dj)

+], i, j = 1, 2; i ̸= j.

Therefore the fairness constraint implies

E[hi(X)] = E[Xi] ⇐⇒ E[(X1 − d1)
+] = E[(X2 − d2)

+]. (14)

For the loss function, suppose that X1, X2 are independent. Then,

Var[hi(X)] = Var[min(Xi, di)]+Var[(Xj−dj)
+]+2Cov[min(Xi, di), (Xj − dj)

+]︸ ︷︷ ︸
0

, i, j = 1, 2; i ̸= j.
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Therefore, our cost function is equivalent to

Var[h(X1)]+Var[h(X2)] = Var[min(X1, d1)]+Var[(X2−d2)
+]+Var[min(X2, d2)]+Var[(X1−d1)

+].

Observe that

Var[Xi] = Var[min(Xi, di)+(Xi−di)
+] = Var[min(Xi, di)]+Var[(Xi−di)

+]+2Cov[min(Xi, di), (Xi−di)
+]

=⇒ Var[min(Xi, di)] + Var[(Xi − di)
+] = Var[Xi]− 2Cov[min(Xi, di), (Xi − di)

+].

Plugging this into our cost function, we want to solve

min
d1,d2

Var[X1]− 2Cov[min(X1, d1), (X1 − d1)
+] + Var[X2]− 2Cov[min(X2, d2), (X2 − d2)

+]

s.t. E[(X1 − d1)
+] = E[(X2 − d2)

+].
(15)

The variance terms are constant with respect to d1, d2, the scaling of 2 does not impact our minimization, and
the negation produces a maximization problem. Therefore, our problem simplifies to finding

max
d1,d2

Cov[min(X1, d1), (X1 − d1)
+] + Cov[min(X2, d2), (X2 − d2)

+]

s.t. E[(X1 − d1)
+] = E[(X2 − d2)

+].
(16)

Observe now that

Cov[min(Xi, di), (Xi − di)
+] = E[min(Xi, di)(Xi − di)

+]− E[min(Xi, di)]E[(Xi − di)
+].

Note,

min(Xi, di)(Xi − di)
+] =

{
0 Xi ≤ di
di(Xi − di) Xi > di

= di(Xi − di)
+

so
Cov[min(Xi, di), (Xi − di)

+] = (di − E[min(Xi, di)])E[(Xi − di)
+].

Again we can plug this into the loss function and use the fairness constraint. Our final formulation of the
optimization problem is to find

max
d1,d2

E[(X1 − d1)
+] (d1 + d2 − E[min(X1, d1)]− E[min(X2, d2)])

s.t. E[(X1 − d1)
+] = E[(X2 − d2)

+].
(17)

For arbitrary independent X1, X2, a solution does not exist so instead suppose that X1 ∼ Exp(λ1), X2 ∼
Exp(λ2) for some λ1, λ2 > 0. Then,

E[(X − d)+] =

∫ ∞

d

(x− d)λe−λxdx

=

∫ ∞

0

uλe−λde−λudu

=
[
−ue−λ(u+d)

]∞
0

+

∫ ∞

0

e−λ(u+d)du

=
e−λd

λ
,

E[min(X, d)] =

∫ d

0

xλe−λxdx+ d

∫ ∞

d

λe−λxdx

=
[
−xe−λx

]d
0
+

∫ d

0

e−λxdx+ d

∫ ∞

d

λe−λx

= −de−λd +
1− e−λd

λ
+ de−λd

=
1− e−λd

λ
.
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From the constraint

E[(X1 − d1)
+] = E[(X2 − d2)

+] =⇒ e−λ1d1

λ1
=

e−λ2d2

λ2
.

Taking the logarithm and solving for d2, we have that

d2 =
λ1d1 + log(λ1/λ2)

λ2
. (18)

Therefore, we can minimize directly over d1 and use the above to compute d2. Note that

E[min(X2, d2)] =
1− e−λ2d2

λ2
=

1− e−λ1d1−log(λ1/λ2)

λ2
=

1− e−λ1d1 λ2

λ1

λ2
=

1

λ2
− e−λ1d1

λ1
.

Putting everything together, the problem to minimize can be written

e−λ1d1

λ1

(
d1 +

λ1d1 + log(λ1/λ2)

λ2
− 1− e−λ1d1

λ1
− 1

λ2
+

e−λ1d1

λ1

)
=

e−λ1d1

λ1

(
d1 +

λ1

λ2
d1 +

log(λ1/λ2)

λ2
− 1

λ1
− 1

λ2
+

2e−λ1d1

λ1

)

= e−λ1d1


(

1

λ1
+

1

λ2

)
︸ ︷︷ ︸

C1

d1 +
log(λ1/λ2)

λ1λ2
− 1

λ2
1

− 1

λ1λ2︸ ︷︷ ︸
C2

+
2

λ2
1︸︷︷︸

C3

e−λ1d1


≡ C1d1e

−λ1d1 + C2e
−λ1d1 + C3e

−2λ1d1 .

Therefore, we wish to solve

min
d1

C1d1e
−λ1d1 + C2e

−λ1d1 + C3e
−2λ1d1 ,

where C1 =
1

λ1
+

1

λ2
, C2 =

log(λ1/λ2)

λ1λ2
− 1

λ2
1

− 1

λ1λ2
, C3 =

2

λ2
1

.
(19)

This is a smooth function with at least one point in which the derivative vanishes and is also a local maximum.
Moreover, it is unimodal so this local maximum is a global maximum. Differentiating, we have

0 = C1(1− d1λ1)e
−λ1d1 − C2λ1e

−λ1d1 − 2C3λ1e
−2λ1d1

which implies
eλ1d1 [C1(1− λ1d1)− C2λ1] = 2C3λ1. (20)

It is not possible to obtain an explicit formula for d1 from here so we must use a root finding algorithm to
solve for d1. We summarize the results in the following theorem:
Theorem 4.1.1. Let X1 ∼ Exp(λ1), X2 ∼ Exp(λ2) be independent and define the general rule

hi(X) = min(Xi, di) + (Xj − dj)
+, i, j = 1, 2; i ̸= j (21)

for some deductibles d1, d2 ∈ R. Then, d∗1, d
∗
2 solve the optimization problem

min
d1,d2

Var(h1(X)) + Var(h2(X))

s.t. E[hi(X)] = E[Xi], i = 1, 2
(22)

if and only if they satisfy

eλ1d
∗
1 [C1(1− λ1d

∗
1)− C2λ1] = 2C3λ1, d∗2 =

λ1d
∗
1 + log(λ1/λ2)

λ2
(23)

where

C1 =
1

λ1
+

1

λ2
, C2 =

log(λ1/λ2)

λ1λ2
− 1

λ2
1

− 1

λ1λ2
, C3 =

2

λ2
1

. (24)
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Remark 4.1.2. In the case λ = λ1 = λ2, that is X1, X2 ∼ Exp(λ), we have

d∗2 =
λd∗1 + log(1)

λ
= d∗1

and

C1 =
2

λ
, C2 = − 2

λ2
, C3 =

2

λ2
.

Then, the condition on d∗1 reduces to

eλd
∗
1

[
2

λ
(1− λd∗1) +

2

λ

]
=

4

λ
=⇒ eλd

∗
1

[
1− λd∗1

2

]
= 1.

Let y = λd∗1 − 2. Then,

ey+2

[
1− y + 2

2

]
= 1 =⇒ yey = −2e−2

so
y = W (−2e−2)

where W is the Lambert-W function. Therefore,

d∗1 = d∗2 =
W (−2e−2) + 2

λ
.

4.1.2 n Agents

We begin with an alternative perspective of the case with two agents. Recall:

Xi = min(Xi, di) + (Xi − di)
+, i = 1, 2

hi(X) = min(Xi, di) + (Xj − dj)
+, i, j = 1, 2; i ̸= j

Let X = (X1, X2)
T , d = (d1, d2)

T and define min(X, d), (X − d)+ to be pointwise operations. Then,

h(X) = min(X, d) +

[
0 1
1 0

]
(X − d)+ = X − (X − d)+ +

[
0 1
1 0

]
︸ ︷︷ ︸

P

(X − d)+.

Definition 4.1.3. Let P ∈ Rn×n. Then P is said to be a signed column-stochastic if and only if

n∑
i=1

Pij = 1 ⇐⇒ 1TP = 1T . (25)

Note that here we use the term signed to refer to the fact that the entries can be negative. Observe that in the
two agent case, P is indeed (signed) column-stochastic. We will see that this is a necessary property later for
an arbitrarily large number of agents.

Definition 4.1.4. We say that P ∈ Rn×n is a redistribution matrix if and only if P is signed column-stochastic
and Pii = 0 for all i = 1, . . . , n. For a given redistribution matrix P ∈ Rn×n and deductible d ∈ RN , we
define the multi-agent risk sharing rule

h(X) = X + (P − I)(X − d)+. (26)

Lemma 4.1.5. The multi-agent risk sharing rule is conservative, that is, 1Th(X) = 1TX.

Proof. We have 1Th(X) = 1TX + 1T (P − I)(X − d)+, so we verify 1T (P − I)(X − d)+ = 0 for any
redistribution matrix P and deductible d. In fact, we can compute

1T (P − I)(X − d)+ = 1TP (X − d)+ − 1T (X − d)+ = 1T (X − d)+ − 1T (X − d) = 0

where we used that 1TP = 1T since P is signed column-stochastic.

11



Let us count the number of parameters we need. The matrix P ∈ Rn×n has n2 entries with zeros on
the diagonal which leaves n2 − n potentially non-zero entries. For each column, we need the n − 1 non-
diagonal entries to sum to 1 which implies that each column has n − 1 − 1 = n − 2 degrees of freedom.
Thus, P has n(n − 2) degrees of freedom. Since d ∈ RN we have n degrees of freedom in d and so
n(n− 2) + n = n(n− 1) total degrees of freedom in this problem. For the two agent case (n = 2), we see
that P is completely determined and only d = (d1, d2)

T must be solved for. More generally, however, we can
develop an optimization problem of both variables.
Remark 4.1.6. We impose our expectation condition but adapt it to this matrix problem:

E[h(X)] = E[X] + (P − I)E[(X − d)+]

which implies
E[h(x)] = E[X] ⇐⇒ (P − I)E[(X − d)+] = 0. (27)

The matrix equation (P − I)E[(X − d)+] = 0 admits non-unique solutions when one exists. Indeed,
since 1TP = 1T by column-stochasticity, we have 1T (P − I) = 1TP − 1T I = 1T − 1T = 0 and so
1 ∈ Ker((P − I)T ). This implies P − I has non-trivial kernel and therefore this is a valid constraint to impose.

We are now able to consider our variance minimization problem. The covariance-variance matrix of h is the
symmetric matrix

Cov(h(X)) = Cov(X) + (P − I) Cov((X − d)+)(P − I)T

+Cov(X, (X − d)+)(P − I)T + (P − I) Cov((X − d)+, X).

Here, we use the notation that for a random vector Y = (Y1, . . . , Yn)
T , Cov(Y )ij = Cov(Yi, Yj). In

particular, for A = P − I and Z = (X − d)+, the trace is given by

tr(Cov(h(X))) = tr(Cov(X)) + tr(ACov(Z)AT ) + 2 tr(ACov(X,Z))

Note that
∑n

i=1 Var(hi(X)) = tr(Cov(h(X))) and that tr(Cov(X)) does not depend on P or d so minimiz-
ing the variance of h like before is equivalent to minimizing

tr(B Cov(Z)BT ) + 2 tr(B Cov(X,Z)).

Therefore, our multi-agent optimization problem is to solve

min
P∈Rn×nd∈Rn

tr((P − I) Cov((X − d)+)(P − I)T ) + 2 tr
(
(P − I) Cov(X, (X − d)+)

)
s.t. 1TP = 1T ,

(P − I)E[(X − d)+] = 0,

diag(P ) = 0.

(28)

For compactness, we define A = P − I , Σd = Cov((X − d)+), Λd = Cov(X, (X − d)+), and µd =
E[(X − d)+]. Adjusting the constraints, we now wish to solve

min
A∈Rn×n, d∈Rn

tr(AΣdA
T ) + 2 tr(AΛd)

s.t. 1TA = 0,

Aµd = 0,

diag(A) = −1.

(29)

For well-posedness, we need the following result.
Lemma 4.1.7. For any real valued random variable X and deductible d ∈ R,

Var((X − d)+) = 0 ⇐⇒ P[X > d] = 0. (30)

Proof. Let Z = (X − d)+ and note that

Var(Z) = E[Z2]− (E[Z])2

so
Z = 0 ⇐⇒ X ≤ d, Z > 0 ⇐⇒ X > d.

12



Assume that P[X > d] = 0. Then, X ≤ d almost surely which implies Z = 0 almost surely. Therefore, Z = 0
with probability 1 and Z is a constant random variable, that is, Var(Z) = 0. Assume now that Var(Z) = 0.
Then Z is constant almost surely and Z = (X − d)+ ≥ 0 always. The only valid constant is 0. Indeed,
suppose that Z = c > 0. Then, X > d almost surely which is not true in general. So

Z = 0 a.s. =⇒ P[Z > 0] = 0 =⇒ P[X > d] = 0.

as desired.

Assume that X1, . . . , Xn are independent and chosen from unbounded (possibly identical) distributions. Then,

Σd = diag(Var((X1 − d1)
+), . . . ,Var((Xn − dn)

+)) (31)

and so Σd is positive definite if and only if Var((Xi − di)
+) > 0 for all i = 1, . . . , n. By a contrapositive of

the previous lemma, we have

Var((X − d)+) > 0 ⇐⇒ P[X > d] > 0. (32)

and so it suffices to show that P[X > d] > 0. Indeed, when each Xi has unbounded support from above, then
P[Xi > di] > 0 for all di ∈ R and for all i = 1, . . . , n. If Xi has bounded support, then Σd is positive definite
for d < sup supp(X). While we formulated the initial problem in Rn, we must consider a sufficiently sized
compact domain instead to obtain d∗. This does not present an issue in practice as d∗ will be a finite value. We
shall see later that this assumption is necessary as well. Therefore, we can assume Σd to be positive definite.
We now fix d ∈ [a, b]n and consider

f(A; d) = tr(AΣdA
T ) + 2 tr(AΛd) (33)

This function is strictly convex in A because tr(AΣdA
T ) is a strictly convex quadratic form and tr(AΛd) is

linear. Furthermore, the constraint set

1TA = 0, Aµd = 0, diag(A) = −1

is affine. Therefore, for each fixed d ∈ [a, b]n, the constrained minimization over A has a unique solution
A∗(d).

We will now construct such a matrix using Lagrange multipliers. Let d ∈ [a, b]n be fixed with associated
Σd ∈ Rn×n diagonal and positive definite, Γd ∈ Rn×n, and µd ∈ Rn. We wish to solve

min
A∈Rn×n, d∈[a,b]n

tr(AΣdA
T ) + 2 tr(AΛd)

s.t. 1TA = 0,

Aµd = 0,

diag(A) = −1

(34)

For the last set of constraints on the diagonal entries, we set up the Lagrange multipliers {γi} so that the term∑n
i=1 γi(Aii + 1) appears in the Lagrangian. We introduce Γ so that for λ, β, γ ∈ Rn and diag(Γ) = γ, the

associated Lagrangian of this problem is

L(A;λ, β,Γ) = tr(AΣdA
T ) + 2 tr(AΛd) + (1TA)λ+ βTAµd + tr(ΓA) + tr(Γ). (35)

Note that
1TAλ = λTAT1 = tr(λTAT1) = tr(AT1λT )

and
βTAµd = tr(Aµdβ

T )

where we used that for any u, v ∈ Rn, tr(uvT ) = tr(vTu) = vTu. Therefore, our Lagrangian is equivalent to

L(A;λ, β,Γ) = tr(AΣdA
T ) + 2 tr(AΛd) + tr(AT1λT ) + tr(Aµdβ

T ) + tr(ΓA) + tr(Γ). (36)

Differentiating term by term with respect to A, we compute that

∇A tr(AΣdA
T ) = 2AΣd,

∇A2 tr(AΛd) = 2ΛT
d ,

∇A tr(AT1λT ) = 1λT ,

∇A tr(Aµdβ
T ) = βµT

d ,

∇A tr(ΓA) = Γ.

13



and so the first variation and necessary condition ∇AL(A∗(d)) = 0 then implies that

2A∗(d)Σd + 2ΛT
d + 1λT + βµT

d + Γ = 0.

Since Σd is positive definite,

A∗(d) = −ΛT
d Σ

−1
d − 1

2
1λTΣ−1

d − 1

2
βµT

d Σ
−1
d − 1

2
ΓΣ−1

d . (37)

Plugging A∗(d) into the constraints, we obtain the three systems for λ, β,Γ

−1TΛT
d Σ

−1
d − 1

2
1T1λTΣ−1

d − 1

2
1TβµT

d Σ
−1
d − 1

2
1TΓΣ−1

d = 0, (38)

−ΛT
d Σ

−1
d µd −

1

2
1λTΣ−1

d µd −
1

2
βµT

d Σ
−1
d µd −

1

2
ΓΣ−1

d µd = 0, (39)

diag

(
−ΛT

d Σ
−1
d − 1

2
1λTΣ−1

d − 1

2
βµT

d Σ
−1
d − 1

2
ΓΣ−1

d

)
= −1. (40)

This 3n× 3n system can be solved for (λ∗, β∗,Γ∗) ∈ Rn × Rn × Rn×n where γ∗ = Γ∗
ii.

With an explicit construction of the minimizer A∗(d) for arbitrary d ∈ [a, b]n, we can now minimize on d.
Define

ϕ(d) = f(A∗(d), d) = tr(A∗(d) Cov((X − d)+)A∗(d)T ) + 2 tr(A∗(d) Cov(X, (X − d)+)). (41)

The function ϕ(d) is continuous on Rn so for sufficiently large compact regions [a, b]n,

min
d∈[a,b]n

ϕ(d) (42)

has a global minimizer by the extreme value theorem. Because this problem is nonlinear and in general
non-convex, a numerical solver must be used to physically compute d∗. To summarize, we present the
following theorem.
Theorem 4.1.8. There exists a d∗ ∈ [a, b]n and corresponding A∗ ∈ Rn×n that solve

min
A∈Rn×n, d∈[a,b]n

tr (Cov(h(X)))

s.t. 1TA = 0,

Aµd = 0,

diag(A) = −1

(43)

We may also recover P ∗ = A∗ + I for determining the optimal allocation matrix.
Remark 4.1.9. Uniqueness of the global solution depends on the strong convexity and coercivity of f(A(d), d).
In general, this is not attained but may hold for sufficiently nice distributions.
Remark 4.1.10. We can impose non-negativity of entries in P , which in turn implies 0 ≤ Pij ≤ 1 for all
i, j = 1, . . . , n because P is column-stochastic. This means that agent i can cover up to 100% of agent j’s loss
but never more and never a negative amount. This prevents individuals from profiting. or charging someone’s
excess back to them. For brevity, we use the notation 0 ≤ P ≤ 1. In this case, the problem is generally not
solvable.

To test our approach, we consider X1 ∼ Exp(1), X2 ∼ Exp(0.8), X3 ∼ Exp(1.2) for 100000 samples. We
let d = (1, 1, d3) and vary d3 ∈ (0, 5]. We compute A∗(d) (equivalently P ∗(d) through a direct minimization
of

min
A(d)∈Rn×n

tr (Cov(h(X)))

s.t. 1TA = 0,

Aµd = 0,

diag(A) = −1,

and through our proposed approach based on Lagrange multipliers. Both methods are compared based on their
computed value of tr (Cov(h(X))). We also examine the ability of both methods to enforce the constraints by
examining ∥Pµd − µd||2, ∥ diag(P )∥2, and ∥1TP − 1T ∥2.
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Figure 4: A comparison of the classical optimization and our proposed method. Both methods enforce
the constraints on the level of machine epsilon. However, our proposed approach successful computes the
minimum value in comparison to the classic solver which frequently diverges.

4.2 Exponential deductible

For simplicity, the concept of sharing rules would be presented here for the case of agents. The distribution
rules are as follows: {

H1(X1, X2) = h1(X1) +X2 − h2(X2),

H2(X1, X2) = h2(X2) +X1 − h1(X1).

In this subsection, we explore other new distribution rules for h1 and h2. Most of the rules could be applied
for equivalent functions h1 and h2, that is, h1(x) = h2(x) for all x ≥ 0.
Proposition 4.2.1. If a system with two agents has equivalent local gain rules h1(X) = h2(X) and
E[hi(X)] = E[X] for all i, then the fair distribution rule is satisfied, i.e. E[H1(X1, X2)] = E[X1]
and E[H2(X1, X2)] = E[X2].

Proof. Here,

E[H1(X1, X2)] = E[h1(X1) +X2 − h2(X2)] = E[h1(X1)] + E[X2]− E[h2(X2)] =

= E[X1] + E[X2]− E[X2] = E[X1].

Similarly it can be shown that E[H2(X1, X2)] = E[X2].

In the case of ordinary deductible from the previous subsection, there is an issue of differentiability at the
point d. The lack of smoothness may lead to the peers experiencing sharp changes in the region around d.
In this subsection, the problem is further studied and a possible approach is presented. For small amounts
of loss, say in the interval [0, d], we use the same mapping as in the ordinary deductible case. For amounts
of loss exceeding d, a more smooth solution is provided. Let the remaining part of the mapping be f(x) for
x ∈ [d,∞). Then f(x) should satisfy the following smoothness conditions:
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1. f ′(d) = 1. This ensures that the derivative of f at d is smooth.
2. f(d) = d. This constraint arises directly from the derivative condition above.
3. f(x) should be from the class f(x) = k−βe−αx. A different class of functions could also be chosen

as long as it results in smoothness.
4. limx→∞ f(x) = ω, where ω is the maximum amount the agent would pay for its own loss.

The four conditions above give rise to

f(x) = ω − d− (ω − 2d)e
d

ω−2d e−
1

ω−2dx, x ≥ d

The mapping h(x) is:

h(X) =

{
x, forx ≤ d

ω − d− (ω − 2d)e
d−x
ω−2d , forx > d.

An illustration is provided in Figure 5.

Figure 5: Exponential loss function

Now, we caculate some expected values. Let f(x) be the probability density function of X . Then,

E[h(X)] =

∫ d

0

x · f(x) dx+

∫ ∞

d

(ω − d− (ω − 2d)e
d−x
ω−2d )f(x) dx

= E[X] +

∫ ∞

d

(ω − d− (ω − 2d)e
d−x
ω−2d − x)f(x) dx

Assume that X is exponentially distributed with mean 1
λ , that is,

f(x) =

{
λe−λx, x ≥ 0,

0, x < 0.

It can be shown that the integral in E(h(X)) becomes

I(d, ω, λ) ≡
∫ ∞

d

(ω − d− (ω − 2d)e
d−x
ω−2d − x)f(x) dx

= (ω − d)(e−λd) + (ω − 2d)e
d

ω−2dλ

(
− ω − 2d

1 + λω − 2λd

)
(e−

1+λω−2λd
ω−2d d)− e−λd

The equation for the relation of the expected values can now be represented by

E[h(X)] = E[X] + I(d, ω, λ).
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To satisfy the fairness rule E[h(X)] = E[X], we require
I(d, ω, λ) = 0

In this risk sharing scheme, we can control d and ω, but not λ. Therefore, we can write
d = G(ω),

where G(ω) is the implicitly defined by the equation I(G(ω), ω, λ) = 0, which can be determined numerically.

4.3 Quantile risk-sharing

4.3.1 α quantile and comonotonicity

We define the cumulative distribution function (CDF) as F (x) = P(X ≤ x) and the inverse of the CDF gives
us the quantile function

F−1(p) = min{x ∈ R|FX(x) ≥ p}, p ∈ (0, 1).

Sometimes, F−1(p) is also called a quantile of order p.

For a more precise definition that resolves the ambiguity at discontinuities in quantiles, Dhaene et al. [2025]
suggested α-quantile function of order p to be:

F−1
X(α)(p) =


F−1+
X (0) if p = 0,

αF−1
X (p) + (1− α)F−1+

X (p) if p ∈ (0, 1),

F−1
X (1) if p = 1.

where F−1
X (p) = inf{x ∈ R|FX(x) ≥ p}, F−1+

X (p) = sup{x ∈ R|FX(x) ≤ p}. The term α is a parameter
that determines the quantile of an agent at discontinuity.

Comonotonicity is another important concept that helps define quantile risk-sharing: A random vector
X = (X1, X2, . . . , Xn) is comonotonic if there exist non-decreasing functions gi : R → R such that
X = (g1(SX), g2(Sx), . . . , gn(Sx)). In terms of quantile functions of order U, Xc is comonotonic (or the
comonotonic counterpart of X) if Xc =

(
F−1
X1

(U), F−1
X2

(U), . . . , F−1
Xn

(U)
)
.

For example, consider the vector X⃗ = (X1, X2, X3), with densities f1 = ex, f2 = 1
2e

− x
2 , and f3 =

1
3e

− x
3 , respectively. Then, the comonotonic vector X⃗C

3 contains the quantile functions for X1, X2, and

X3. That is, X⃗C
3 = (F−1

1 , F−1
2 , F−1

3 ) =
(
lnx, −2 ln x

ln( 1
2 )+1

, −3 ln x
ln( 1

3 )+1

)
. Furthermore, the comonotonic sum

SC
3 = F−1

1 + F−1
2 + F−1

3 = lnx+ −2 ln x
ln( 1

2 )+1
+ −3 ln x

ln( 1
3 )+1

.

Comonotonicity ensures that all agents in the sharing pool move together; if one agent faces a high loss, so do
all the others. This does not necessarily mean that the total risk is being shared fairly.

4.3.2 Quantile risk-sharing rule

Quantile risk-sharing rule is defined as a risk-sharing rule h for any pool X , where the contribution for
individual i is given by hi(X) = hi(Sn) = F

−1(αSn )
i (FSc

n
(Sn)), i = 1, 2, . . . , n.

The idea of joining the pool based on quantile risk-sharing is to replace the possibility of different pi by
unique and uniform probability levels. The solution is to ask participant i to contribute the amount F−1

X (p(s))

where p(s) satisfies
∑n

i=1 F
−1
Xi

(pi) =
∑n

i=1 F
−1
Xi

(p(s)) = s. In other words, given the individual’s risk level
and the total loss realized, we can calculate the quantile level for all agents. As a result, each agent will be
assigned a dollar amount based on their own risk distribution F−1

Xi
(p(Sn)).

The quantile risk-sharing rule satisfies the reshuffling, normalization, translativity, positive homogeneity,
constancy, no-ripoff, comonotic, stand-alone for comotonic losses, and uniform for exchangeable losses
properties (Denuit et al. [2022]). Additionally, we have that a risk-sharing rule H is the quantile risk-sharing
rule if and only if H is aggregate, dependence-free, and stand-alone for comonotonic pools (Dhaene et al.
[2025]).
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4.3.3 Actuarial fairness

The quantile risk-sharing rule does not necessarily satisfy the actuarial fairness (Denuit et al. [2022]). For
example, let n = 2, X1 have distribution function F , and X2 have distribution function F ◦ g−1, where g is a
continuous, positive and increasing function. Consider the vector of losses X⃗ = (X1, X2). Then,

P [Hquant
1 (X⃗2) > v] = P [S2 > (F−1 + g ◦ F−1) ◦ F (v)]

= P [S2 > F−1 ◦ F (v) + (g ◦ F−1) ◦ F (v)]

= P [S2 > v + g(v)]

= P [h−1(S2) > v],

where h(v) = v + g(v). Therefore,

E[Hquant
1 (X⃗2)] = E[h−1(S2)]

= E[h−1(X1 + g(Z1))]

= E[h−1(X1 − Z1 + h(Z1))].

The second equality is true because S2 = X1 +X2 = X1 + g(Z1).

We want E[Hquant
1 (X⃗2)] = E[X1] so that can say that the quantile risk-sharing rule is fair. In other words,

we want E[h−1(X1 − Z1 + h(Z1))] = E[X1]. This will only happen if g is linear or if X1 and Z1 are
comonotonic. Let us look at the case where g is linear. Then, g(Z1) = aZ1, where a ∈ R. Hence,
h(v) = v + g(v) = v + av = (1 + a)v and h−1(v) =

v

1 + a
. Thus,

E[h−1(X1 − Z1 + h(Z1))] = E[h−1(X1 − Z1 + (1 + a)(Z1)]

= E[h−1(X1 + aZ1)]

= E
[
X1 + aZ1

1 + a

]
=

1

1 + a
E[X1] +

a

1 + a
E[Z1]

=
1

1 + a
E[X1] +

a

1 + a
E[X1]

= E[X1].

Notice that E[X1] = E[Z1] because X1 and Z1 are comonotonic.

Now consider the second case where X1 and Z1 are comonotonic. Then,

E[h−1(X1 − Z1 + h(Z1))] = E[h−1(X1 −X1 + h(X1))]

= E[h−1(h(X1))]

= E[X1].

However, if X1 and Z1 are not comonotonic and g is nonlinear, then E[Hquant
1 (X⃗2)] ̸= E[X1]. Thus, the

quantile risk-sharing rule would not satisfy the actuarial fairness property.

4.3.4 Examples

To better understand the definitions and the scheme, the examples below showcase two types of transformation
which differ in terms of actuarial fairness. For both examples, let us consider n = 2, then the pair of losses is
defined as the vector X2 = (X1, X2), and let U be a uniform random variable over the interval [0, 1].

Example 4.3.1. Let X1 = 2U and X2 = 1+U . The aggregate loss is given by S2 = 3U + 1 and S2 ∈ [1, 4].
The CDF of each agent is given by FX1

(x) = x
2 , for any x ∈ [0, 2] and FX2

(x) = x− 1, for any x ∈ [1, 2],
respectively. By taking the inverse of CDF, we get the quantile function for each agent F−1

X1
(p) = 2p

and F−1
X2

(p) = 1 + p, respectively. Hence, the comonotonic modification of Xc
2 = (F−1

X1
(U), F−1

X2
(U)) =

(2U,U + 1)
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It is straightforward to calculate the comonotonic sum Sc
2 = 3U + 1. Its distribution function and quantile

function are given by FSc
2
(s) = s−1

3 for any s ∈ [1, 4]. The result would be the quantile level both agents have
to abide by in the scheme.

To calculate the exact amount through pooling, we solve for F−1
X1

(Fsc2(S2)) = 2(S2−1
3 ) = 2U and

F−1
X2

(Fsc2(S2)) = (S2−1
3 ) + 1 = U + 1. Notice that the amount after pooling ended up the same amount for

individual loss payment before pooling. This result satisfies the definition of actuarial fairness such that the
payment amounts before and after pooling stay the same. Additionally, notice that the transformation gi is
linear in this example, this further proves the fairness defined in the previous section.

Example 4.3.2. Let X1 = 2U and X2 = 1 − U/2. The aggregate loss is given by S2 = 3
2U + 1 and

S2 ∈ [1, 5
2 ]. The CDF of each agent is given by FX1

(x) = x
2 , for any x ∈ [0, 2] and FX2

(x) = 2x −
1, for any x ∈ [ 12 , 1] respectively. The quantile functions are given by F−1

X1
(p) = 2p and F−1

X2
(p) = p+1

2 ,
respectively. Notice that the transformation is nonlinear in this example, it is reasonable to expect the scheme
to not be actuarially fair.

It is straightforward to verify that the comonotonic sum is Sc
2 = 5U+1

2 and the quantile level in the scheme is
given by FSc

2
(s) = 2s−1

5 for any s ∈ [1/2, 3]. The exact amount through pooling is given by F−1
X1

(Fsc2(S2)) =
6U+2

5 and F−1
X1

(Fsc2(S2)) =
3U+6
10 .

5 Additional structures

In this section, we are interested in other aspects of the risk sharing model.

5.1 Sustainable pool of contributions/premiums

In order to be a member of the pool, participants are required to contribute a fixed, regular or periodic premiums
Ci over the T period that the pool operates. Even though the premiums are paid to the common fund as a fee
to protect participants from big losses in the future, there may be a long gap between contributing and actually
receiving benefits at the time of losses. That leads to cases where participants withdraw from the pool to avoid
paying for the losses that other participants may incur. Collectively, these actions can be detrimental to the
whole pool as premiums increase for the remaining high-risk agents. To maintain a sustainable and stable
pool of risk-sharing agents, the premiums can be considered as a form of investment with penalties for early
contract termination. If the losses are expected, a termination payment can offset the costs, ensuring fairness
in the pool. Another aspect to consider is the heterogeneity among participants. Vriens et al. [2022] found that
more heterogeneous groups are better at coping with instability and short-term cost oscillations than more
homogeneous ones. This suggests that Ci should be proportional to the level of risk of each participant i. In
other words, Ci ∝ Xi. In addition, before expected large losses, high-risk individuals tend to join the pool to
benefit from the support. Hence, the pool can require additional upfront contributions (entry fees) that reflect
the current risk level and surplus of the pool.

5.2 Addition and Removal of Agents

While the local redistribution properties of fair merging and fair splitting touch upon the removal and addition
of risks, they do so in specialized contexts. Fair merging applies only to a specific type of removal where one
participant’s loss becomes zero because it has been entirely transferred to another participant already in the
pool. Fair splitting applies to only a specific type of addition where a new participant is created specifically
to take on a portion of an existing member’s loss. We now consider the broader implication of expanding or
reducing a risk pool through the entry or removal of a new member with their own separate risk.

5.2.1 Addition of agents

Suppose we begin with a risk-sharing pool of n participants with an individual loss vector X = (X1, . . . , Xn)
T

and an allocation rule h(X) = (h1(X), . . . , hn(X))T satisfying the full-allocation property

n∑
i=1

hi(X) =

n∑
i=1

Xi.
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A new participant joins, n + 1, joins the pool with an individual loss Xn+1. The new loss vector becomes
X ′ = (X1, . . . , Xn, Xn+1)

T , and the aggregate loss increases to S′
n+1 =

∑n+1
j=1 Xj . Thus, we have the new

allocation vector h′(X ′) = (h′
1(X

′), . . . , h′
n+1(X

′))T , which redistributes the total loss S′
n+1 among the

n+ 1 participants. By the full-allocation property:

n+1∑
j=1

h′
j(X

′) =

n+1∑
j=1

Xj .

An example is the linear rule h(X) = AX , where A is a column stochastic matrix with
∑

i αij = 1 for each
j. If we start with n = 3, the rule is:

h(X) =

[
α11 α12 α13

α21 α22 α23

α31 α32 α33

][
X1

X2

X3

]
with

3∑
i=1

αij = 1.

If a fourth agent joins with loss X4, we must expand the matrix A to a new 4× 4 column stochastic matrix A′

to accommodate the new participant and loss. The new coefficients α′
ij must be defined to ensure this property

is preserved. The specific method for defining these new coefficients depends on the pool’s design principles,
but the resulting risk-sharing rule becomes:

h′(X ′) =

α
′
11 α′

12 α′
13 α′

14
α′
21 α′

22 α′
23 α′

24
α′
31 α′

32 α′
33 α′

34
α′
41 α′

42 α′
43 α′

44


X1

X2

X3

X4

 with
4∑

i=1

α′
ij = 1.

The static analysis above assumes the pool’s composition changes at the boundary of an observation period.
In a real, ongoing P2P system operating over T periods, a new participant i joining at an intermediate time
t < T raises questions regarding their initial contribution, Ci. The issue is how to treat the pool’s accumulated
financial history. If past contributions have exceeded past losses, the pool holds a surplus. We need to consider
how a new member interacts with this surplus:

• Standard Contribution: The new participant pays the standard contribution for the current period,
without any adjustment for the pool’s history. They immediately benefit from the stability provided
by any existing surplus. This may be perceived as unfair by the original members.

• Contribution with a Buy-In Fee: To ensure fairness, the new participant is required to pay an initial
contribution plus a "buy-in" fee. This fee would represent their share of the accumulated surplus,
bringing their net position in line with that of existing members.

• NAV-Based Contribution: The "buy-in" is handled automatically. The new member’s contribution
buys them a number of "shares" at the current net asset value, which already reflects the accumulated
surplus or deficit, ensuring they pay the current fair price.

Mathematically, with a participant joining at time τ ∈ (0, 1], the input vector for the allocation rule becomes,
X ′ = (X

(0,1]
1 , . . . , X

(0,1]
n , X

(τ,1]
k ), a set of random variables that are not identically distributed. This violates

the model’s implicit assumption that the input vector consists of temporally homogeneous random variables,
and hence making the allocation function h is ill-defined. Therefore, the resulting redistribution of risk and
contributions depends on the specific operational rules the pool uses to handle such mid-period entries.

5.2.2 Removal of agents

In the simplest case, a participant leaves before claiming any support from the pool. Consider removing
a participant i from the pool by setting their loss to 0, define: X = (X1, . . . , Xi−1, 0, Xi+1, . . . , Xn)

T .
Because Xi = 0, participant i incurs no loss and withdraws from the risk-sharing pool. Under the full-
allocation rule, the total pooled loss is unchanged since other Xj remain the same but the share from
i must now be reallocated to the remaining n − 1 participants. Thus, we have the new allocation vector
h(\i) = (h

(\i)
1 , . . . , h

(\i)
i−1, h

(\i)
i+1, . . . , h

(\i)
n ), which redistributes the total loss

∑
j ̸=i Xj among n−1 participants.

Then, by the full-allocation rule, ∑
j ̸=i

h
(\i)
j (X) =

∑
j ̸=i

Xj .
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An example is the linear rule h(X) = BX , where B is any column stochastic matrix with
∑

i αij = 1 for
each j. If n = 3, the linear risk-sharing rule reduces to

h(X) =

[
α11 α12 α13

α21 α22 α23

α31 α32 α33

][
X1

X2

X3

]
with

3∑
i=1

αij = 1

If agent 3 leaves at time t = 2, we have to drop the αi3 which means the stochastic property no longer
preserves. Hence, one solution is to normalize the remaining coefficients: α′

ij =
αij∑2

k=1 αkj
. The risk-sharing

rule now becomes:

h(\3)(X) =

[
α′
11 α′

12
α′
21 α′

22

] [
X1

X2

]
with

2∑
k=1

α′
ij = 1

In the case where we remove a person who has contributed to the pool but has not received compensation for
(potential) losses. In particular, the pool operates over T periods. Participant i is active until time t < T , then
leaves. Participant i made contribution Ci during the periods 1 : t, but have not received compensation for
events in (t + 1) : T because of their withdrawal from the pool. We need to consider issues related to the
accummulated contributions they made to the pool before their withdrawal. If

• Ci is premiums and if participant i didn’t claim, they don’t get refunded. Ci is added to the pool and
used to pay for future claims of other participants.

• Ci is fully refunded. People can exploit by exiting before big losses that won’t affect them.

• Ci is partially refunded: participants can withdraw and get a refund for the remainder of the period
they’ve paid for. The rest of your premiums (which you paid before cancelling) go towards paying
claims for the remaining participants. This is the policy of companies such as Lemonade, a kind of
Peer-to-Peer insurer.

Now, consider the case where participant i has received some benefit Bi as some losses happen during the
period i : t. The net balance before they exit is NBi =

∑t
s=1(C

s
i −Bs

i ) where s can be any payment period
during the multi-period cycle. We have two scenarios:

• If NBi > 0, participant i could negotiate partial payout or just leave the remaining Ci in the pool
which is then redistributed and exit without refunds.

• If NBi < 0, participant i received more than they contributed so no refund. This can be abused for
expected large losses.

Under different risk-sharing rules, the redistribution of contributions vary.

6 Future work

6.1 The FEMA flood data

The National Flood Insurance Program (NFIP) was established through the National Flood Insurance Act
of 1968 to protect lives and property from flood damage. It is aimed to reduce the burden on the nation’s
resources rather than with any expectation of profitability.

Open access data from the National Flood Insurance Program is available through https://www.fema.gov/
about/openfema/data-sets. A summary statistics of our numerical variables are provided in Table 1.
Table 3 illustrates the mean claims value by state while table 2 shows the mean of claims paid in dollar values
by state. Our study opens several directions for future exploration using this FEMA flood data. A natural
extension is to investigate state-specific risk factors, such as flood zones, building codes, and mitigation efforts
to develop regionally customized insurance pricing models using FEMA flood maps and historical claim data.
More advanced clustering methods could be applied to uncover subtler patterns in claim and coverage data.
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Table 1: Summary Statistics of Main Numerical Variables

Variable No. of obs. Mean SD Min Max

amountPaidOnBuildingClaim 775117 54861.96 75717.50 0.00 10741476.00

amountPaidOnContentsClaim 775117 16524.85 30329.09 0.00 750000.00

amountPaidOnIncreasedCostOfComplianceClaim 775117 817.42 4626.86 0.00 60000.00

totalBuildingInsuranceCoverage 775117 207880.60 1099448.00 0.00 243903000.00

totalContentsInsuranceCoverage 775117 54988.90 56242.84 0.00 3000000.00

buildingDamageAmount 775117 59300.07 667801.50 0.00 555560000.00

netBuildingPaymentAmount 775117 54810.43 75666.23 0.00 10741476.00

buildingPropertyValue 775117 1697410.00 41336310.00 0.00 2063468000.00

contentsDamageAmount 775117 21757.52 89885.96 0.00 19230510.00

netContentsPaymentAmount 775117 16493.62 30293.95 0.00 500000.00

contentsPropertyValue 775117 35814.54 520247.40 0.00 281895300.00

iccCoverage 775117 28545.95 4078.55 0.00 30000.00

netIccPaymentAmount 775117 814.91 4618.88 0.00 60000.00

buildingReplacementCost 775117 2090920.00 48601130.00 0.00 2128050000.00

contentsReplacementCost 775117 3867.84 53622.98 0.00 20000000.00

Table 2: Mean of Claim Payouts by State in dollar value

State Total Claims State Total Claims State Total Claims State Total Claims

AK 51264.24 AZ 40186.11 CO 54065.32 CT 47301.62

AL 52079.96 CA 43436.50 DC 32605.44 DE 37991.87

AR 50197.95 AS 10447.53 FL 74903.58 GA 44916.23

GU 27371.08 HI 67142.84 IA 63999.28 ID 27318.93

IL 29114.75 IN 35889.60 KS 43518.81 KY 34562.70

LA 86834.26 MA 30590.48 MD 35703.17 ME 36955.45

MI 31788.40 MN 35136.97 MO 48933.68 MS 104186.47

MT 38345.03 NC 41522.58 ND 69120.93 NE 58114.53

NH 35814.68 NJ 62937.61 NM 46268.29 NV 71685.48

NY 68581.99 OH 32566.66 OK 49362.56 OR 43327.59

PA 40218.57 PR 17429.47 RI 51290.08 SC 44093.33

SD 43986.77 TN 54470.55 TX 89200.45 UN 29414.10

UT 21680.97 VA 28312.09 VI 43016.20 VT 66700.47

WA 46398.86 WI 33832.48 WV 33032.29 WY 62121.88
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Table 3: Average Claim Payouts by State in dollar value

State Building Contents ICC State Building Contents ICC

AK 44775.20 6282.17 206.87 MT 31722.73 6470.06 152.25

AL 38729.20 12588.73 762.03 NC 32302.04 8442.30 778.24

AR 39040.50 10655.35 502.10 ND 59720.74 9338.63 61.56

AS 6797.33 3650.20 0.00 NE 44833.27 12542.42 738.83

AZ 32391.67 7751.18 43.25 NH 26233.48 8428.21 1152.99

CA 34711.29 8641.54 83.67 NJ 48103.85 11959.83 2873.93

CO 43314.55 10439.80 310.97 NM 39970.86 6210.73 86.71

CT 38624.23 7740.17 937.22 NV 45732.15 25953.33 0.00

DC 28944.79 3660.64 0.00 NY 54298.85 13561.04 722.09

DE 25712.83 11348.39 930.65 OH 22911.87 9440.96 213.83

FL 60862.52 13848.27 192.79 OK 36227.70 12931.25 203.61

GA 34158.69 10448.93 308.60 OR 29669.67 11820.49 1837.43

GU 20979.79 6391.28 0.00 PA 29367.74 10322.72 528.10

HI 53741.43 13401.41 0.00 PR 9375.37 8054.10 0.00

IA 44837.17 17795.47 1366.64 RI 37770.84 13305.06 214.18

ID 21468.38 5850.55 0.00 SC 34754.07 9085.53 253.72

IL 21915.20 6140.38 1059.16 SD 34891.30 8778.84 316.63

IN 25723.48 9223.64 942.49 TN 39458.85 14741.05 270.64

KS 28073.94 15001.86 443.01 TX 65248.93 23636.43 315.08

KY 25702.40 8624.74 235.55 UN 13980.14 9433.96 6000.00

LA 64821.16 20818.83 1194.27 UT 18333.56 3347.41 0.00

MA 24606.89 5857.06 126.54 VA 21523.65 5976.31 812.12

MD 26546.60 7646.51 1510.06 VI 32478.70 10537.50 0.00

ME 31535.91 5339.08 80.47 VT 54596.41 11764.71 339.35

MI 25460.60 6156.60 171.20 WA 36285.72 9277.30 835.83

MN 27866.05 6944.50 326.42 WI 24793.81 8423.40 615.28

MO 33669.61 13826.56 1437.51 WV 21963.00 10784.04 285.25

MS 75171.25 26952.01 2063.21 WY 36717.49 25404.39 0.00
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(a) Comparison of Amount Paid On Building
Claim by State, for Claims < $100,000 USD

(b) KMeans Clusters of 5,000 Representative
Claims

6.2 Multi-period With Agents Added

Now we consider the multi-period problem with agents added. This in return will change the size of the A(t)
matrix with time, as can be seen in Section 5.2. For example, if we start with three agents, then we have
A(t) ∈ R3×3. If a fourth agent is added at some time t = t∗, then A(t∗) ∈ R4×4, which will be inconsistent
with the calculations given in Subsection 3.2. In order to solve this problem, we propose that we fix the size of
A(t) to be the maximum number of possible agents, for example, if the maximum number of possible agents
is five agents, then A(t) ∈ R5×5, for all t = 0, . . . , T . However, for any t = 0, . . . , T , we assign zero values
for the rows and columns of A(t) corresponding to the inactive agents. We give a simple illustrative example
as follows: Suppose we start with three agents at t = 0. At t = 1, a new agent is added. At t = 2, no other
agents are added. Finally, at t = 3, a second agent was added so that we have a total number of five agents at
t = 3. For this case, the allocation matrices will be

A(0) =



α11 α12 α13 0 0

α21 α22 α23 0 0

α31 α32 α33 0 0

0 0 0 0 0

0 0 0 0 0


, A(1) =



α11 α12 α13 α14 0

α21 α22 α23 α24 0

α31 α32 α33 α34 0

α41 α42 α43 α44 0

0 0 0 0 0


,

A(2) =



α11 α12 α13 α14 0

α21 α22 α23 α24 0

α31 α32 α33 α34 0

α41 α42 α43 α44 0

0 0 0 0 0


, A(3) =



α11 α12 α13 α14 α15

α21 α22 α23 α24 α25

α31 α32 α33 α34 α35

α41 α42 α43 α44 α45

α51 α52 α53 α54 α55


.
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