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Abstract

With the ongoing COVID-19 pandemic, understanding the character-
istics of the virus has become an important and challenging task in the
scientific community. While tests do exist for COVID-19, the goal of
our research is to explore other methods of identifying infected individ-
uals. Our group applied unsupervised clustering techniques to explore a
dataset of lungscans of COVID-19 infected, Viral Pneumonia infected, and
healthy individuals. This is an important area to explore as COVID-19
is a novel disease that is currently being studied in detail. Our method-
ology explores the potential that unsupervised clustering algorithms have
to reveal important hidden differences between COVID-19 and other res-
piratory illnesses. Our experiments use: Principal Component Analysis
(PCA), K-Means++ (KM-++) and the recently developed Robust Contin-
uous Clustering algorithm (RCC). We evaluate the performance of KM++
and RCC in clustering COVID-19 lung scans using the Adjusted Mutual
Information (AMI) score.

1 Introduction

The COVID-19 pandemic has redirected the efforts of the scientific community
as a whole towards studying the characteristics of the novel virus in order to ef-
fectively limit the spread of the disease and relieve pressures on frontline medical
staff. The following work is an investigation into the morphological effects of the
virus. The goal is to see if one can uncover information about the similarities
of symptomatic presentations of COVID-19 in afflicted individuals—in contrast
to non COVID-19 Viral Pneumonia or healthy individuals via exploration of an
X-ray image data set. This work focuses on using clustering as a means to iden-
tify patterns of pulmonary tissue sequelae in X-ray images which contrasts with
supervised learning, where access to pre-labeled data is needed for training. In
the latter case, the affliction of the patient must be known in advance. Clus-
tering algorithms do not require such knowledge and thus have the capability
to effectively group novel or even unknown conditions. Furthermore, clustering
will allow greater insight into COVID-19 as it places data-points into groups
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based upon the similarities within their features; this will allow us to draw
comparisons between COVID-19 cases and other illnesses, revealing underlying
information within the data given.

In this work, we use the new COVID-19 Radiography Database by Chowd-
hury et al. [10, 2]. The dataset is composed of X-ray and CT scan images sepa-
rated into three classes: COVID-19 cases, Viral Pneumonia cases, and Normal
lungs. From here, we have applied the K-Means++ (KM++) [1] and Robust
Continuous Clustering (RCC) [11] algorithms to this database of X-ray images
of patients labeled by cause to explore the structure of the dataset.

We have found that RCC indeed exhibits better clustering performance when
used on the COVID-19 database versus the benchmark KM++ algorithm. It is
better able to, on the whole, correctly identify which datapoints belong in the
same group based upon their true labelings, showing the promise of implement-
ing RCC in this context.

Visualizing a high dimensional dataset is a difficult challenge, but doing so
can help to gain intuition about any potential structure of the dataset. Recently
t-Distributed Stochastic Neighbor Embedding (t-SNE) was introduced by van
der Maaten and Hinton[14]. This method maps high dimensional data to a lower
dimensional representation while attempting to preserve any pairwise neighbor
structure present in the dataset. Principal Component Analysis (PCA) [9, 4]
is often used for preliminary dimensionality reduction. The combination of



PCA and t-SNE allows us to view the similarity of the lung scans clusters in
2 and 3 dimensions. More details and related work to t-SNE can be found in
[3, 12, 15, 13].

The Adjusted Mutual Information (AMI) [8, 16, 17] score is used to evaluate
the clustering performance of RCC and KM++ in our experiments. AMI is
useful as a comparative measurement for the following experiments due to its
adjustment for agreement by chance.

2 Methods

We make use of four main techniques in our experiments: Principal Component
Analysis (PCA) for dimensionality reduction, t-Distributed Stochastic Neighbor
Embedding (t-SNE) for visualization, and K-Means++ (KM++) and Robust
Continuous Clustering (RCC) for clustering.

2.1 Principal Component Analysis (PCA)

Principal component analysis is a data analysis technique which looks to extract
information from a dataset via a change of basis along the orthogonal princi-
pal components of the data. Relevantly, PCA highlights the directions of the
greatest variance within the data along the main principal components. Thus,
allowing for a great amount of information to be captured in a reduced number
of dimensions. Intuitively this is done by calculating the direction of the great-
est variance within the data which is the first principal component. Then, the
remaining principal components are found along the direction of the vector with
the next greatest variance with the condition that it is orthogonal to the other
principal components. Since the most variability will be captured by the first
principal components, PCA is often used to reduce dimensionality by neglect-
ing the later principal components which should hold much less information.
This makes PCA a relevant technique for processing large, high-dimensionality
datasets while maintaining fidelity of information [6].

2.2 K-Means++ (KM++)

To serve as a benchmark comparison for our experimentation we used the
the well-known unsupervised clustering algorithm K-Means++ (KM++). The
KM++ algorithm improves upon the clustering performance of the standard K-
Means algorithm while preserving its speed and simplicity [1]. The standard K-
Means Algorithm originally proposed by Lloyd [7] looks to cluster a given dataset
X = {z1,%2,...,2,} by selecting k initial cluster centers C' = {c1,¢a,...,cx} as
arbitrary datapoints from a set of data for a predetermined k. The iterative
method then proceeds by assigning each datapoint x; € x to the nearest cluster
center. The position of the cluster center is then adjusted to be the center of



mass of each point in cluster C;:
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This process of assigning points to the nearest center and recomputing center
location continues until the composition of the clusters (and thereby the center
of mass of each cluster) no longer changes.

Now, KM++ sets out to account for the fact that, on its own the K-Means
algorithm is initialization sensitive—performance of the algorithm in general de-
pends upon the random initial selection of the first cluster centers. This can
lead to suboptimal clustering performance, as shown by Arthur and Vassilvit-
skii [1]. Instead, it is proposed that initial cluster centers are chosen in a more
calculated manner, by first picking one point at random be the first of k centers,
then picking the next center to be a another datapoint with the probability:
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given that D(x) is the straight-line distance between the closest center already
chosen and = € x is an element of our dataset. This process is repeated until
all initial k cluster centers are chosen at which point the standard K-Means
interative process is employed. Choosing cluster centers in this manner encour-
ages greater distances between the initial cluster centers, giving the algorithm a
better chance of identifying separable clusters. With its more informed method
of intialization, Arthur and Vassilvitskii show that KM-++ indeed does tend to
outperform K-Means [1].

2.3 Robust Continuous Clustering (RCC)

RCC is a recently developed clustering technique that evolves a continuous
representation of the input data set such that similar data points form tight
clusters [11]. The objective function is as follows:
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where X = [21,29,...,24,...], 2; € RP, and U is the set of representative

points, which are initially set to X. Note, £ is a set of edges connecting data
points to one another. This edge set is constructed via mutual-K Nearest Neigh-
bors (m-KNN). Mutual-K Nearest Neighbors adds the extra criteria that two
points are only neighbors if they are in each others set of k£ nearest neighbors.
An interesting feature of RCC is that the number of clusters is not an explicit



parameter. This contrasts with KM+, wherein this value is fixed for the du-
ration of the algorithm. p is used to represent an estimator function, in our
case we use the Geman-McClure estimator. Below is another form of the RCC
objective function, which takes into account the connections formed by m-KNN:
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RCC can be optimized via alternating minimization, thus:
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the optimal value of [, ; becomes:
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3 Metric - Adjusted Mutual Information

Mutual Information (MI) is an entropy based measure which quantifies the
amount of information given by a random variable in a particular clustering
based on the probability of a particular point lying in any given cluster. The
formulation of MI is given by:
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where U; and V; are clusters in separate partitions of the same set of data
ranging from {Uj,...,Ur} and {Vi,...,Vo} respectively. The probability of a
data point lying in a given cluster is denoted by Py and Py, and the joint
probability between partitions is labeled Pyy .

To obtain the Adjusted Mutual Information (AMI) score from the MI score,
the adjustment of an index for chance proposed by Hubert and Arabie [5] is
applied to the formulation of the MI:

index — expected_index

Adjusted_index = .
] max_index — expected_index

An AMI score of zero would indicate that clustering performance matches the
prediction of simply assigning labels by chance—and thus AMI may be negative.
An AMI score of one indicates a perfect labeling. Performance was measured
using AMI as a metric throughout this paper. AMI was calculated using the
ground truth labeling of the dataset and the labeling produced by each algorithm



to evaluate clustering performance. This method is useful for measuring the
performance of clustering methods as these techniques are exploratory and do
not produce necessarily meaningful class labelings in the same way supervised
classification does.

4 Results

For each experiment the dataset was resized to 128 x 128 pixels, then min-max
scaled, and then PCA was applied to further reduce the dimensionality. The
PCA dimension was chosen such that it preserved 95% of the variance of the
dataset for each dataset. This data was then processed separately with KM++
and RCC. A search was then performed over a range of values of k for KM++
and k for the m-KNN routine of RCC.

H Classes k AMI H
Covid-Normal 170 0.079357
Covid-Viral Pneumonia 3 0.356376
Normal-Viral Pneumonia 3 0.207916
Covid-Viral Pneumonia-Normal 2 0.164900

Table 1: Best results from the KM++ experiments.

H Classes k AMI H
Covid-Normal 20 0.140792
Covid-Viral Pneumonia 100 0.574444
Normal-Viral Pneumonia 170  0.417678
Covid-Viral Pneumonia-Normal 70  0.252518

Table 2: Best results from the RCC experiments.

The main results are shown in Figure 2 and Tables 1 and 2. The AMI score
for KM++ experiments can be seen in figure 2a and the AMI score of RCC
can be seen in figure 2b. Both plots have identically scaled vertical axes: this
allows us to compare the measured clustering performance of each experimental
trial using the AMI metric. In Figure 2a, k is the number of clusters used
for KM++ and in Figure 2b, k the number of nearest neighbors for each data
point in the m-KNN routine used during RCC. Tables 1 and 2 show the AMI
values of the highest scoring trial run for each experiment. Clusterings and
their AMI values were computed for four classification schemes: Three rounds
of two-class comparisons were performed with the two element combinations of
Normal, Viral Pneumonia, and COVID data and experiments were run with all
three classes at once.
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Figure 2

We have included t-SNE visualizations of the datasets with ground truth
labelings and the best performing labelings for KM++ and RCC respectively.
t-SNE allows us to glean some intuition into the shape and structure of the high
dimensional dataset. While it does not give us a performance measure, it does
allow us to visualize the results.

The results show that RCC consistently outperforms KM++ for three of the
four experimental comparisons both in terms of peak performance and lack of
sensitivity to the tested range of each algorithms’ respective parameters.

In the COVID-Normal comparison, RCC reaches a higher peak AMI than
the KM++ experiment, but tapers off in its performance to a similar level as k
increases. We get some intuition as to why this may be occurring by looking at
the t-SNE generated output in Figure 4a. The low dimension representations



(a) Ground truth (¢) RCC

Figure 3: COVID, Viral Pneumonia, and Normal t-SNE visualization

(a) Ground truth

Figure 4

(a) Ground truth (b) KM++ (c) RCC

Figure 5: COVID vs. Viral Pneumonia t-SNE visualization

of the ground truth labelings appear to be more heterogeneous than the other
cases we consider, that is they do not separate nearly as well. This is likely a
main reason why both KM++ and RCC exhibit poor clustering performance in
this case. We can further notice that KM++ did not perform nearly as well as



(a) Ground truth (b) KM++ (c) RCC

Figure 6: Normal vs. Viral Pneumonia t-SNE visualization

it does in the other cases when k € {2, 3}, this is an indicator that the dataset
is not trivially separable in its current form.

From the results, we observe that in general, RCC outperforms KM++ on
the dataset. Nonetheless, we still run into the limitations of unsupervised clus-
tering techniques. This is not a problem, rather it makes the experimentation
quite interesting. RCC likely performs well because it uses a more refined mea-
sure of pairwise similarity than the /s distance. The connectivity structure
constructed by m-KNN places a stricter requirement on determining if two data
points are similar, thus the algorithm produces a better clustering of the data.

5 Conclusions and Future Work

The results from our experiments show that the RCC algorithm is able to cor-
rectly identify clusters of X-ray lung images in a promising fashion, and in-
deed a much more impressive manner than KM++. Despite RCC’s general
outperformance of KM++, both methods proved less effective in one of our
experiments—COVID-Normal-indicating that while there is promise in the ap-
plication of RCC in this context, further exploration is required. Because of
this, our results should be viewed as a presentation of concept rather than a
bona fide method for identifying illness.

One direction for future work is to explore the effectiveness of different fea-
ture engineering techniques on this data set. Future works may also consider
alternate dimensionality reduction techniques that may be more finely tuned to
the COVID-19 dataset. Moreover, further exploration of the applicability of the
RCC algorithm in this among other contexts is needed to fully understand the
potential that this methodolgy presents.
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