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ABSTRACT

Subspace based parameter estimation techniques are well known to the signal processing community. The most popular
subspace-based parameter estimation techniques include the MUSIC, ESPRIT and Matrix Pencil algorithms. The common
thread within this line of techniques is the exploitation of the inherent orthogonality that exists between the noise subspace
and signal vectors that span the (signal + noise) subspace. Recently, Model-based Al/ML approaches have been developed
that derive surrogate matrices which behave like noise subspace-based projection matrices. These surrogate matrices are
learned by the Al/ML algorithms by processing a sufficiently large amount of input/output data through their structure using
backpropagation or a similar type of learning approach. A very brief analysis that delved into the characteristics of these
surrogate matrices, showed they behave like an interesting cross between beamforming and noise subspace projection
matrices, but without the limitations of either group of matrices. Furthermore, it was postulated that these surrogate matrices
may serve as a basis for developing some intriguing virtual sensor concepts,

The purposes of this SIAM Challenge problem would be to:

» develop an understanding of the characteristics of these surrogate matrices

« leverage these surrogate matrices to develop virtual sensor concepts that provide enhanced number of degrees-of-
freedom for parameter estimation purposes

« develop extensions to this concept of AI/ML subspace-based parameter estimation approaches

The parameter estimation discussed in this brief paper will be DOA estimation.

Brief Motivation for the study of Direction-of-Arrival (DOA) estimation

Over the last few decades, a wide range of applications have spawned interest in advanced (possibly
Al/ML based) DOA estimation approaches in the signal processing community. These include radar,
sonar, acoustics, astronomy, wireless communications, mobile communications, vehicular
communications and various biomedical applications. Our specific interests here stem from radar
applications, where various challenges have been shown to impact the precision/accuracy of DOA
estimation, such as calibration errors, multipath, nonstationary effects and the need for real time
processing. Model-based Al/ML approaches to DOA estimation have shown significant promise in
surmounting these challenges and it is one such approach that we are interested in studying here. Our
approach started from curiosities about how Al/ML could be used to augment the capabilities of the well-
known subspace-based method called Multiple Signal Classification (MUSIC). This ultimately leads us to
the Complex Orthogonal Search Network (CosNET) algorithm, our model-based Al/ML approach to DOA
estimation, which appears to be an interesting mix/hybrid of the Capon Estimator and MUSIC.

Discussion

The following sections expand on the concepts introduced in the abstract above. The format follows a
line of questions posed by the MPI selection committee that sought to provide a more complete picture
for the reader. The answers to these questions are shown in blue to highlight the author’s response.



The MPI committee believes this could be a particularly interesting problem, especially for those with a
statistical focus. However, its current framing is rather generic. Providing a more specific physical context
(e.g., a specific example) would be helpful, particularly as a potential basis for proposing surrogate
matrices. Sample data and/or codes (MATLAB or Python) would also be appreciated.
- Even though the conceptis applicable to both Direction-Of-Arrival (DOA) and range estimation, we
have focused specifically on DOA estimation.
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- Will provide sample data and test code from a recent model-based Al/ML approach that we
developed which is called CosNET. A basic description of the CosNET architecture will be
provided (see below).

Additionally, could you provide some particularly helpful references to orient problem solvers to the
MUSIC, ESPRIT, and Matrix Pencil algorithms in advance of the workshop? Similarly, references on the
"recent model-based Al/ML approaches," "beamforming," and "a very brief analysis" would enable
problem solvers to make more efficient use of the workshop.

- References for MUSIC, ESPRIT, Matrix Pencil and a basic description of both MUSIC & CosNET
architectures are given below.

1. R. Schmidt, “A signal subspace approach to multiple emitter location and spectral
estimation”,
Ph. D. dissertation, Stanford University, 1981.

2. R. H. Roy, “ESPRIT - Estimation of Signal Parameters via Rotational Invariance Techniques”,
Ph. D. dissertation, Stanford University, 1987.

3. Y.HuaandT. K. Sarkar, “Matrix Pencil Method for Estimating Parameters of Exponentially
damped/Undamped Sinusoids in Noise”, IEEE Transactions on ASSP, Vol. 38, No. 5, May
1990

4. T. K. Sarkar and O. Pereira,” Using the Matrix Pencil Method to Estimate the Parameters of a
Sum of Complex Exponentials”, IEEE AP Magazine, Vol. 37, No. 1, February 1995.
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Regarding the development of an understanding of the characteristics of these surrogate matrices, the
most likely outcome of the workshop would be some statistical performance characterization on
examples, rather than analytical results. Is that the desired outcome?

- No, we simply want to characterize the functionality of the surrogate matrix (as stated above in
objective 1). As a result of a very quick characterization that we did previously, it appears to be a
hybrid between the surrogate matrices of (1) the Capon Estimator (related to adaptive
beamforming), where the surrogate matrix is the inverse correlation matrix and (2) MUSIC, where
the surrogate matrix is the orthogonal projection matrix computed from the noise subspace
matrix.

It would also be beneficial to explain the goal to "develop virtual sensor concepts that provide an
enhanced number of degrees-of-freedom" in more direct language or within the context of a specific test
example. Providing a target model problem with the desired improvements over the "popular subspace-
based parameter estimation techniques" would offer helpful focus. If it is not feasible to provide this in
advance, developing such a test example could be one of the first steps of the workshop.
- Two main objectives:
1. Characterization of the functionality of the surrogate matrix
2. Derive alternative surrogate matrices that explicitly leverage virtual sensors inherent to
cumulant matrices (such as quadricovariance matrices).

- Here are some useful references about the virtual sensors that are inherent to cumulant matrices:

1. B. Porat and B. Friedlander, “Direction finding algorithms based on high-order statistics,”
IEEE Trans. Signal Processing, vol. 39, 2016-2024, Sep. 1991.

2. M. C.Dogan andJ. M. Mendel, “Applications of cumulants to array processing: |. Aperture
extension and array calibration.” I[EEE Trans. Signal Proc., vol. 43, pp. 1200-16, May 1995.

3. P.Chevalier, L. Albera, A. Ferreol, and P. Comon, “On the virtual array concept for higher
order array processing,” IEEE Trans Signal Processing, vol. 53, pp. 1254-1271, Apr. 2005.

4. P.Chevalier and A. Ferreol, “On the virtual array concept for the fourth-order direction
finding problem,” IEEE Trans. Signal Processing, vol. 47, pp. 2592-2595, Sep. 1999.

From the description, itis not immediately clear where the need for ML (i.e., nonlinear) tools is necessary
if we are estimating a subspace or a linear operator. Focusing on the bullet points, it should be clarified
why traditional linear algebraic theory (e.g., analyzing the spectrum, singular values, invariant subspaces,
etc.) is insufficient for achieving the objectives.

- The non-linear inference provided by model-based Al/ML allows us to estimate a surrogate matrix

that appears to exceed the inherent capabilities of surrogate matrices derived through traditional
linear algebraic methods.

- Preliminary work that we did seem to indicate that CosNET may provide the capability to resolve
more sources than allowed with conventional algorithms which employ traditional linear algebraic
theory. However, note that we did not explicitly leverage the virtual sensors Inherent to cumulant
matrices, which may be why we were only able to show a vestigial capability to resolve more
sources than allowed with conventional algorithms.
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Additional information about the data that we plan to share with SIAM

- Given that we don’t expect all participants to have access to the Deep Learning Framework used to train
and test the neural network, we will be providing an extensive dataset for analysis. Each entry in the
dataset will contain:

e the sample covariance matrix provided to the network as input,

e the surrogate matrix estimated by the network and

e the truth information of the noise sources/signals modelled when forming the input data (that is,
the Source Number, Directions- of-Arrival (DOAs), SNR).

- The dataset will be representative of the noise source/signal parameter distributions used during
network training. Data will be stored in MATLAB *.mat files.

- Additional scripts will be provided to easily read in the provided data and to apply the MUSIC algorithm
to the various matrices.



