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Abstract. The phenomenon of convection is found in a wide variety of settings on different scales– from ap-
plications in the cooling technology of laptops to heating water on a stove, and from the movement
of ocean currents to describing astrophysical events with the convective zones of stars. Given its
importance in these diverse areas, the process of convection has been the focus of many research
studies over the past two centuries. However, much less research has been conducted on how the
presence of an obstruction in the flow can impact convection. In this work, we find that the pres-
ence of an obstruction can greatly affect convection. We note occurrences where the presence of
an obstruction yields similar behavior to flow without an obstruction. Additionally, we find cases
with markedly different features in comparison to their counterpart without an obstruction– notably,
exhibiting long-term periodic behavior instead of achieving a constant steady-state, or the formation
of convection cells versus an absence of them.

1. Introduction. Convection is the process of moving thermal energy in a fluid as a result
of a temperature difference, with natural convection defined as fluid movement due to changing
densities in the fluid, or a buoyancy force. These kinds of convection arise from properties
innate to the fluid– like density– in contrast to forced convection where some external source,
like a fan, is responsible for fluid movement. With many cases of natural convection, a
layer of fluid is heated from below and a temperature difference is established. The fluid at
the bottom becomes less dense than the fluid at the top, which gives rises to a top-heavy
arrangement that is potentially unstable, as shown with the schematic in Figure 1. Due
to this instability, the fluid will tend to redistribute itself to remedy the weakness in its
arrangement, resulting in circular movement of the fluid, [7]. This convection, now known as
Rayleigh-Bénard convection, has been the focus of much research in various fields due to its
importance. For a more thorough overview of Rayleigh-Bénard convection, we recommend
the following references: [7, 10, 17, 18].

The first experimental studies to investigate thermal instability of fluids were done by
Henri Bénard around 1900 where he noticed the formation of hexagonal cells in a thin layer
of fluid heated from below, [2, 3, 4, 5, 6]. Years later in the seminal work [31], Lord Rayleigh
showed that convection occurs only when a nondimensional quantity,

gαβ

kν
h4

(now known as the Rayleigh number) is above a threshold value, where g is the acceleration due
to gravity, α is the coefficient of volume expansion, β = |dT/dz| is the uniform temperature
gradient maintained between the top and bottom plates, with h, k and ν as the height of the
fluid, coefficient of thermometric conductivity, and kinematic viscosity, respectively. Later, in
[30], Pellew and Southwell returned to the experimental observations and theoretical results

†Trinity College, Hartford, CT.
‡Department of Mathematics, Trinity College, Hartford, CT.

Copyright © SIAM
 Unauthorized reproduction of this article is prohibited 45



H. MHINA, S. SOULEY HASSANE

warmer

cooler
g

Figure 1: Schematic of a Rayleigh-Bénard convection cell.

to create a more generalized argument for determining when convection would occur and 
calculated the critical Rayleigh number of Ra∗ ≈ 1707.8 for an infinite layer of fluid– a value 
confirmed by Reid and Harris in [32] by a complementary approach to the problem. For 
an enclosure of finite width (in comparison to the theoretical investigations of fluid in an 
infinitely-wide layer), Mizushima and Adachi determined the critical Rayleigh numbers for 
various aspect ratios, different combinations of boundary conditions, and settings with other 
physical considerations, like a box on a slant, [1, 24, 25, 26].

The Rayleigh-Bénard convection problem has multiple applications in industrial engineer-
ing such as the cooling of buildings [27] and electronic devices [34] as well as in turbulent 
heat transfer such as in geophysics and astrophysics [35]. Furthermore, Rayleigh-Bénard con-
vection can be used to investigate nonlinear systems as well as chaotic dynamics. Numerical 
investigations into Rayleigh-Bénard convection of simple two-dimensional domains are fre-
quent in published literature. However, there is much less research exploring convection with 
obstructions in the flow.

The consideration of obstructions in a flow is important in a variety of settings: in geophys-
ical settings with rivers flowing around large rocks, in aircraft design when trying to minimize 
resistance from the surrounding air when in flight, or even in determining the placement of 
wires in laptop hardware to enhance circulation and prevent overheating. These examples as-
sume the object in the flow to be impermeable, and therefore, the fluid must react to navigate 
around the obstruction. The fluid’s reaction often results in different behavior than flows in 
settings without an obstruction.

The purpose of this note is to numerically investigate the effect of an obstruction on the 
convection of an incompressible fluid inside a square enclosure that is heated from below 
and cooled from above. We first consider convection inside a square domain without an 
obstruction. This allows us to use previous literature to validate our numerical methods. 
Previous work of Ouertatani et al. [28] on Rayleigh-Bénard convection in a square enclosure 
provides the main quantitative benchmarks for comparison. Their study uses a finite volume 
formulation to conduct simulations, while our numerical simulations are computed with a 
finite element method (FEM) to approximate solutions to the weak form of the system of 
partial differential equations (PDEs).

After we establish that our numerical methods work as expected, we address how con-
vection is affected by an obstruction in the flow. For this end, we look at two quantitative 
benchmarks: the Nusselt number that evaluates vertical flux due to convection, and a math-
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ematical energy that describes how much the system has deviated from the original state.
We find that the presence of an obstruction can drastically affect flow profiles. We note oc-
currences where the presence of an obstruction yields similar behavior to flow without an
obstruction. However, we also find cases with extremely different features in comparison
to flows without an obstruction– notably, exhibiting long-term periodic behavior instead of
achieving a constant steady-state, or the formation of convection cells versus an absence of
them.

2. Problem formulation. The Navier-Stokes-Boussinesq equations express conservation
of momentum and mass, as well as how temperature affects the body force term. We pair
this with the customary incompressibility condition and the advection-diffusion equation to
describe how heat and the fluid interact and impact each other. These three equations make
up our system, and are presented below as a system of nondimensionalized partial differential
equations. We use the same nondimensional scalings from [28], allowing us to use their results
as benchmark for our solutions. The scalings– also noted in [20, 23, 36], among others– have
nondimensional quantities denoted by a tilde:

x = x̃H, u = ũu0, t = t̃
H

u0
, and p = p̃ ρ0 u

2
0 ,

where u0 = [gβ(TH − TC)H]1/2 is the reference velocity, ρ0 is the reference density, β is
the coefficient of thermal expansion, g is the gravitational acceleration, TH and TC are the
temperatures of the hot and cold plates, respectively, and H is the reference length, taken to
be the width of the domain for our simulations. After dropping the tildes, our system is then:

∂u
∂t + (u · ∇)u = −∇p+

(
Pr
Ra

) 1
2 ∇2u + θk,

∇ · u = 0,

∂θ
∂t + u · ∇θ = 1

(RaPr)
1
2
∇2θ,

(2.1)

where the velocity u =
[
u
v

]
, pressure p, and temperature θ are variables. The vector k =

[
0
1

]
is the unit normal vector which points in the opposite as the gravitational force and helps
detail the effect of buoyancy in the system. The Prandtl number Pr is a dimensionless ratio of
momentum diffusivity to thermal diffusivity and the Rayleigh number Ra is a nondimensional
constant describing the heat difference between the top and bottom surfaces of the domain.
The Rayleigh number characterizes heat transfer in natural convection. When Ra is below
its critical value (determined to be Ra∗ = 2585.02 by Mizushima [24] for the same boundary
conditions we consider), convection does not occur and heat is transferred through conduction
only. When the Rayleigh number is above its critical value though, heat is transferred through
convection and fluid motion begins to occur. The Prandlt number and Rayleigh number are
defined respectively as:

Pr =
ν

α
, Ra =

gβ(TH − TC)H3

αν
,

where ν is the kinematic viscosity and α is the thermal diffusivity.
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The domain we consider is a square of unit area, with x ∈ [−.5, .5] and z ∈ [0, 1]. While
we use H = 1 (where the depth and width of the enclosure are the same) throughout this
work, Mizushima considers convection in finite two-dimensional boxes with different aspect
ratios, [24].

To make sure the system is well-posed, each variable in the system has a condition it
satisfies at each boundary of the domain. The temperature of the top and bottom plates are
held constant at θ = −1

2 and θ = 1
2 , respectively. At the left and right sides of the domain,

we have no-flux conditions, or insulating boundaries, with ∇θ · n = 0 where n is the outward
pointing unit normal vector. For the velocity, we impose the no-slip condition, u = 0 along
each side of the domain; i.e., the velocity is zero at each boundary.

The initial conditions for our simulations come from the conductive state– a velocity of
zero, u = 0 and a linear temperature profile of θ(x, z) = 0.5 − z, which also satisfies our
boundary conditions. The conductive profile is a stable steady-state for Ra below a critical
value and unstable for Ra above its critical value. Therefore, when we perturb this steady-
state at the beginning of the simulations for Rayleigh numbers above the critical value, hotter
fluid from the bottom will rise due to the buoyancy force, while the cooler fluid from the top
will sink. This fluid movement forms the convection cells and helps define the preferred stable
state (for non-turbulent parameter regimes).

When we consider an obstruction in the flow, we assume the obstruction is imperme-
able and insulated, so we impose no-slip and no-flux boundary conditions for velocity and
temperature along the boundary of the obstruction. Physically, this could be representing
the placement of insulated wires in an empty air channel in laptop hardware, investigated
to determine optimal wire placement to enhance circulation and prevent overheating. We
run simulations with different placements of the obstruction, with two placements shown in
Figure 2 with a schematic of mesh discretizations. Other works focused on convection with
obstructions often consider rectangular obstructions (usually where the obstruction generates
a heat source) [23, 29, 36]. Investigations which consider circular obstructions (or cylindrical
in three dimensional studies) where the obstruction is providing heat [11, 20] or in enclosures
with isothermal boundary conditions along all borders and the obstruction [16, 19]. Although
these each consider similar ideas of convection with an obstruction, an exact comparison of
results is not possible since we consider different boundary conditions and do not allow the
obstruction to conduct heat.

Next, we define three quantitative measures of convection. The first is the Nusselt number,
the physically-relevant measure of the ratio of convective to conductive heat transfer,

(2.2) Nu(t) = 1 +

∫
Ω
θ u · k dΩ ,

as defined in [8, 9, 14, 15]. Second, we define a mathematical energy,

2E(t) =
1

Pr

∫
Ω
|u|2dΩ +

∫
Ω

(θ − θi)dΩ ,

where θ is the temperature, θi is the initial temperature profile, u is the velocity, and Pr is 
the Prandtl number. This is a measure of the deviation between the flow and the conductive
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Figure 2: Schematic of meshes for domains with no obstruction, middle obstruction, and side
obstruction, respectively.

state, and is used in analytical arguments to determine the critical Rayleigh number needed
for the transition from dE

dt < 0 to dE
dt > 0, which notes a transition to convection. One recent

example of this kind of analysis studied convection in a superposed fluid-porous medium, [22].
Lastly, we define the local Nusselt number along the lower boundary with

NuL(x) = −∂θ
∂z

∣∣∣
z=0

.

The two definitions of the Nusselt numbers are equivalent with some mathematical manipulation–
by applying the divergence theorem and boundary conditions– as noted in some of the pio-
neering works on analysis of Rayleigh-Bénard problem, [14, 15].

To compare our results to the work done by Ouertatani et al., we consider three Rayleigh
numbers Ra = 104, 105, 106 in our simulations. We begin our investigation at Ra = 104

since no convection is observed at Ra = 103, as it is below the critical Rayleigh number
of Ra∗ ≈ 2585. As Ra increases, the physical heat difference between the top and bottom
of the domain increases and fluid motion within the domain becomes more vigorous. As a
result, we expect the velocity of the fluid to increase and the temperature field to reflect this
increase by forming more defined convection cells. Moreover, with our quantitative measures
of convection, we expect the Nusselt number and energy to increase as the Rayleigh number
increases since more heat is being pumped into the system.

3. Numerical methods. Since exact analytical solutions are, in general, impossible to
find, we use a Finite Element Method (FEM) to approximate solutions to our system. The
unit square domain is discretized and divided into a finite number of small triangular elements
for all three different domains. Figure 2 below shows the schematic of the meshes for the do-
mains. Our simulations are run on a more refined grid to allow for more accurate solutions to
be computed; we use a length scale of 128, in comparison to the length scale of 32 shown in
the schematic.
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The weak form of the system of PDEs is evaluated and satisfied on all elements of the
domain. We obtain the weak forms by multiplying the Navier-Stokes-Boussinesq equation by
a test function v and by integrating over the domain Ω. We also add in the incompressibility
condition multiplied by the scalar test function for pressure, q:

∫
Ω

∂u

∂t
· v dΩ +

∫
Ω

(u · ∇)u · v dΩ +

∫
Ω
∇p · v dΩ−

∫
Ω

(
Pr

Ra

) 1
2

∇2u · v dΩ−
∫

Ω
θ k · v dΩ

+

∫
Ω
q∇ · u dΩ = 0 .

The same procedure is applied to get the weak form of the advection-diffusion equation
for heat, where we multiply the equation by a test function ψ and integrate over the domain
Ω to get: ∫

Ω

∂θ

∂t
ψ dΩ +

∫
Ω
u · ∇θ ψ dΩ−

∫
Ω

1

(RaPr)
1
2

∇2θ ψ dΩ = 0 .

To approximate solutions to the weak forms, we use the method outlined in [21] and we
introduce the following finite element (FE) spaces:

• V = {v ∈
[
H1 (Ω)

]2
: v = 0 along the boundaries of Ω},

• Q = {q ∈ L2 (Ω) :
∫

Ω q dx = 0} = L2
0 (Ω),

• Ψ = {ψ ∈ H1 (Ω) : ψ = 1 on bottom, ψ = 0 on top}.

We take the initial condition to the be the conductive state, which we perturb to begin the
simulations. The perturbation is a seeded random perturbation field, εmag := εmag(x), with
magnitude of 10−8. The εmag term and its effects are discussed in more depth in the following
section. So, the simulations begin with(

u(0), θ(0)
)

= (0, 0.5− z) + εmag .(3.1)

Given
(
u(n), θ(n)

)
∈ V ×Ψ, we find

(
u(n+1), p(n+1), θ(n+1)

)
∈ V ×Q×Ψ such that

∫
Ω

∂u(n+1)

∂t
· v dx +

∫
Ω

(
u(n) · ∇

)
u(n+1) · v dx + 2

(
Pr

Ra

) 1
2
∫

Ω
D
(
u(n+1)

)
: D (v) dx

−
∫

Ω

(
∇ · u(n+1)

)
· q dx−

∫
Ω

(∇ · v) · p(n+1) dx−
∫

Ω
θ(n)k · v dx = 0(3.2)

for all test functions v ∈ V and q ∈ Q, where we have the tensor D(u) = 1
2 (∇u +∇u ᵀ), and
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∫
Ω

∂θ(n+1)

∂t
ψ dx +

∫
Ω
u(n+1) · ∇θ(n+1) ψ dx +

∫
Ω
∇θ(n+1) · ∇ψ dx = 0(3.3)

for all test functions ψ ∈ Ψ. Although the Navier-Stokes-Boussinesq is nonlinear, we are
solving a linear problem in (3.2) since we use the previous velocity u(n) in the convective term
to help find u(n+1). Additionally, the introduction of the D(u) tensors result in a symmetric
problem. Since the problem is then linear and symmetric, we can use more computationally
efficient solvers to approximate solutions. We also time-lag the nonlinear term of the ADE
(since u(n+1) will already be known), and thus, we have a decoupled system to solve numer-
ically. For efficiently handling the convective terms in our system, we use a Characteristic
Galerkin method (see [12]) implemented with FreeFem [13].

Additionally, we can calculate the stream function φ, by solving∫
Ω

[
∇φ(n+1) · ∇ϕ− ϕ

(
∇× u(n+1)

)]
dx = 0(3.4)

for all test functions ϕ ∈ Φ, with the FE space:
• Φ = {ϕ ∈ H1 (Ω) : ϕ = 0 along the boundaries of Ω}.

To determine when the flow has achieved a steady-state, we calculate the difference be-
tween successive velocities and temperatures, where the superscript denotes the time-step of
the solution approximations, and require it be less than a specified tolerance of 10−6. That
is, we require

(3.5)

√∑
i,j

|u(n+1)
i,j − u

(n)
i,j |2 +

∑
i,j

|θ(n+1)
i,j − θ(n)

i,j |2 < 10−6 ,

where n is the iteration number and (i, j) are the spatial coordinates. For a given Rayleigh 
number, once the system achieves a steady-state, the local Nusselt numbers along the z = 0 
boundary are evaluated. All of our simulations are run to a steady-state, or have a final time 
specified at the beginning of each run. With all of the simulations, the Prandtl number is 
kept constant at Pr = 0.71, and three different Rayleigh numbers (Ra = 104, 105, 106) are 
used to carry out our computations.

Our algorithm is detailed in Algorithm 3.1. All the time derivatives are discretized with 
Forward Euler, although a higher-order time integrator could be substituted if desired.

4. Code validation. The validity of our numerical method is tested using a square domain 
without an obstruction, and we compare our results to the benchmark solutions from [28]. 
Figure 3 details the local Nusselt numbers for our simulations, and we note a good agreement, 
visually at least, between our work and [28]. Both graphs present the same trends: the maxima 
of the local Nusselt numbers increase as the Rayleigh number increases with a shift toward 
the right of the domain.
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Algorithm 3.1 Solving the Navier-Stokes-Boussinesq equations coupled with the ADE

Use initial conditions:
(
u(0), θ(0)

)
= (0, .5− z) + εmag .

for n = 0; n < N ;n+ + do
With u(n), θ(n), solve (3.2) for u(n+1), p(n+1).
With u(n+1), θ(n), solve (3.3) for θ(n+1).
With u(n+1), solve (3.4) for φ(n+1).
Check steady-state condition (3.5). BREAK if satisfied.

end for
return u(N), p(N), θ(N), φ(N) .

Figure 3: Local Nusselt number on the z = 0 boundary.

References 104 104 104

Location of max NuL
Present work x̃ = 0.72 x̃ = 0.7 x̃ = 0.64

Ouertatani et al., [28] x = 0.7183 x = 0.6993 x = 0.6448

Value of max NuL
Present work 3.014 6.015 11.50

Ouertatani et al., [28] 3.023 6.065 11.69

Table 1: The location and value of the maxima of the local Nusselt numbers for validation. 
In the present work, we note the x−location with the spatial offset of x̃ = x + 0.5 to align our 
data with [28].

Table 1 presents the location and values of of the maximum local Nusselt numbers from 
the present study and the work of [28]. In comparing the location of the maxima between
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our work and [28], we note that since our domain is from −0.5 ≤ x ≤ 0.5 and the domain 
considered by Ouertatani et al. is 0 ≤ x ≤ 1, we offset our data points by x̃ = x + 0.5 to align 
the data points. Once again, we observe good agreement with small deviations in our results, 
likely due to the selection of mesh points.

The perturbation εmag of (3.1) is what allows the unstable conductive state to evolve 
into the stable convective state. So that we are able to compare our results to [28], we used 
a seeded random perturbation that allowed us to recover the same direction of flow as the 
benchmarks by Ouertatani et al.. The same perturbation was used in remaining simulations 
of this work as well. If the perturbation broke symmetry in a way where the flow circulated 
in the opposite direction, the local Nusselt values of Figure 3 would appear symmetric about 
x = 0.

In addition to quantitative features of the flows like the local Nusselt values, we also 
compare qualitative features: streamline contours, temperature profiles, and velocity fields. 
Streamlines are curves that are tangent to the flow’s velocity vector and depict the path that 
the fluid takes at any given time. The top row of graphs in Figure 4 shows the streamline 
contours for three different Rayleigh numbers considered. The negative value associated with 
the contours notes that the fluid is moving in the clockwise direction with the magnitude 
noting the speed of circulation. The first two cases with Ra = 104 and Ra = 105 show 
uniform clockwise movement, while the last case with Ra = 106 exhibits a small amount of 
counter-clockwise rotation in the upper left and bottom right corners of the domain, as noted 
by the slightly positive values of the streamline function there.

The second row of Figure 4 presents the temperature profiles of the same simulations, 
and we observe clockwise circular motion in agreement with the streamline contours in the 
top row. We see the cooler fluid from the top surface sinking along the right of the domain 
while the hotter fluid from the bottom surface rises up along left boundary. As the Rayleigh 
number increases and the convection cells circulate faster, the temperature deviations from 
the linear conductive state become more pronounced as well.

In the last row of Figure 4, we show the velocity and temperature fields. The length 
of the arrows is proportional to the magnitude of the velocity and the direction depicts the 
direction in which the fluid moves. Once again, the clockwise movement observed agrees with 
the streamline and temperature profiles.

With the similar profiles found by Ouertatani et al. [28], we are confident that our 
numerical methods are working as they should in approximating solutions. Next, we move 
on to simulations with an obstruction present in the flow, although we will still use the 
three qualitative features (streamlines, temperature, velocity fields) to help us categorize and 
measure convection. Additionally, we will use three quantitative markers: the local Nusselt 
number (for comparison to [28]), and the Nusselt number and mathematical energy.

5. Results and discussions. To answer our research question on whether an obstruction 
in an enclosure affects the convection in the fluid, there are several factors to be considered. 
These factors include the size of the obstruction, its shape, its location within the enclosure, 
and the number of obstructions, as well as their relative positions to each other within the 
fluid. These factors should all be evaluated to fully answer the question. For this paper we 
investigate how the location of a circular obstruction affect convection. However, for future
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Figure 4: Top row: streamline contours, middle row: temperature profile contours, bottom 
row: velocity field and temperature fields. Each column represents a different Rayleigh num-

ber, with Ra = 104, Ra = 105, and Ra = 106 as the three columns, respectively.

works we will investigate other aspects that affect convection such as size of the obstruction 
or an optimal location to hinder, or enhance, convection.

When the obstruction is placed in the center of the domain, we observe that the nature
of convection in the fluid is not greatly affected. As shown in the first graph of Figure 5, the
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Figure 5: Comparing local Nusselt number for the cases with no obstruction (solid lines) 
and the middle obstruction and side obstruction (dashed lines) for the first and second panels, 
respectively. The local Nusselt values are calculated at steady-states, so no profile is calculated 
for the side obstruction at Ra = 106 since it does not achieve a steady-state.

curves for the local Nusselt numbers along the lower boundary for the cases with the middle 
obstruction behave in a similar way to those with no obstruction. Thus, we conclude that the 
presence of an obstruction in a flow does not always result in significant differences in flow 
behavior.

However, when the same obstruction is placed towards the side of the domain (shown in 
the third schematic of Figure 2), we observe that the effect on the nature of convection differs 
depending on the temperature difference, which is correlated to the nondimensional constant 
Ra. We notice that convection for Ra = 104 with the side obstruction is qualitatively different 
from the case without an obstruction. This difference is noted by the variation in the shape 
of the curves for Ra = 104 as seen in the second plot of Figure 5, where the no-obstruction 
case has a maximum around NuL ≈ 3 and the local Nusselt number hovers around 1 for the 
side-obstruction case. The profile of NuL ≈ 1 signifies that there is little convective heat 
transfer at the lower boundary, and likely no convection cells forming in the system for this 
parameter regime and obstruction location.

For the cases with Ra = 105, convection in the fluid is not affected as much since the 
no-obstruction and side-obstruction NuL curves behave similarly. For a higher temperature 
difference of Ra = 106, we find the system does not reach a steady-state. Since no steady-
state is reached, the local Nusselt values are not calculated and there is no curve for this case 
presented. Therefore, we turn to the mathematical energy and Nusselt numbers as a function 
of time to help describe this flow.

The graphs in Figure 6 compare the energies and Nusselt numbers for each of our cases, 
with each row comparing simulations of the same Rayleigh number. For Ra = 104 (seen in the 
top row), the energy trend for the cases without an obstruction and the middle obstruction 
cases are similar. However for the side obstruction case, there is barely any mathematical 
energy in the system and the Nusselt number is Nu(t) = 1 for the duration of the simula-
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tion. While the temperature field deviates slightly from the linear conductive state (since 
it must satisfy the Neumann conditions around the boundary of the obstruction), there is 
little fluid velocity. The temperature and vertical fluid velocity are both symmetric about 
z = .5(evidenced by the patterns of the temperature profiles and streamlines for this case in 
Figure 7), and this symmetry allows the Nusselt number calculated by Equation (2.2) to be 
close to 1, signifying there is no convective heat transfer. Therefore, the location of the side 
obstruction hinders convection almost entirely, which agrees with the results from the local 
Nusselt profiles shown in Figure 5.

For Ra = 105, as seen in the second row of Figure 6, the trends in the mathematical energies 
and Nusselt numbers are relatively similar for all three cases in that they first oscillate and 
then settle down to a steady-state.

With Ra = 106 in the last row of Figure 6, we find the side obstruction case exhibits 
qualitatively different flow behavior than the other two cases. We see the energy for the no-
obstruction and middle obstruction cases level out in time as the systems reach their steady 
states. However, the side obstruction case does not achieve a steady-state for this Rayleigh 
number; it exhibits periodic, oscillatory behavior. This unsteady, periodic flow for Ra = 106 is 
reminiscent of the Von Kármán vortex shedding in the case of considering flow past a cylinder; 
for flows with a Reynolds number Re < 47, flow past the cylinder is steady, but for flows with 
Re > 47, unsteady, periodic eddies begin to form in the wake of the cylinder, as explained in 
[33]. In the Appendix, we show the temperature and streamline profiles at different intervals 
of one period of the unsteady behavior.

One interesting takeaway from our investigation deals with the similarities in the energy 
of the system and the Nusselt profiles shown in Figure 6. Traditionally, the Nusselt number 
is used to convey how much convective heat transfer is present in a system. However, we 
see that the mathematical energy mimics the behavior of the physically-motivated Nusselt 
number, and can also be used in linear and nonlinear stability analyses to determine the 
critical Rayleigh number for flows in various settings. Therefore, the mathematical energy of 
the system could be a more flexible marker of convection than the Nusselt number. A future 
direction of this project could try to show that E(t) and Nu(t) are equivalent in some sense, 
likely obtained with some scaling argument.

6. Conclusion, and future work. In this work, we used a finite element method to in-
vestigate how the location of an obstruction affect convection in a fluid enclosed in a square 
domain. To begin our numerical investigation and validate the accuracy of our code, we first 
considered natural convection inside a square without an obstruction and compared our re-
sults those from [28]. After establishing that our numerical methods worked as expected, we 
investigated how the location of an obstruction affected flow profiles. To answer this question, 
we ran simulations for a flows without an obstruction and compared them to two cases with 
an obstruction– one with an obstruction at the center of the domain, and another with the 
obstruction’s placement towards the side (as seen in Figure 2).

We compared results from our simulation for the different three cases of no obstruction, 
middle obstruction and side obstruction. From a quantitative view, we plotted graphs of local 
Nusselt numbers on the lower boundary for the Rayleigh numbers Ra = 104, Ra = 105, and 
Ra = 106 respectively, comparing the curves for middle obstruction and side obstruction to
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Figure 6: Energy profiles and Nusselt numbers for Ra = 104 in first row, Ra = 105 in the 
second row, and Ra = 106 in the third row.

the no-obstruction case as shown in Figure 5. We also compared mathematical energy profiles 
and Nusselt numbers in Figure 6 to analyze flow behavior as it evolved in time.

With the results of these quantitative markers, we find that placing an obstruction at 
the center of the square domain does not greatly affect convection. However, when the same 
obstruction was moved to the side of the domain, the effect on convection depended on the 
temperature difference in the system. Notable examples showed that the side obstruction
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could prohibit the onset of convection for Ra = 104 and resulted in periodic, unsteady flow
for Ra = 106– both of which were drastically different than their corresponding simulations
with no obstruction or the middle-obstruction cases.

Future work will investigate how the size and location of a circular obstruction affects the
convection in the fluid enclosed in a square domain. Additionally, this study can further be
expanded to researching nature of natural convection in a fluid with an obstruction for 3D
cases, or studied with different boundary conditions on the obstruction or along the borders
of the enclosure.

In the Appendix, we present different results with streamlines, temperature profiles, and
velocity fields for the various cases as benchmarks for possible comparison in future research.
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[4] H. Bénard, Tourbillons céllularies dans une nappe liquide: Pt. I, Description génèrale des phénomènes;
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7. Appendix. Other results from our simulations. Figure 7 shows the middle and side
obstruction cases which reached their steady-states.

Figure 7: Top two rows: temperature profiles for a middle obstruction with Ra = 104, 105, 106 

at their steady-states, and the side obstruction cases with Ra = 104 and Ra = 105 only. 
Bottom two rows: streamline contours for the same simulations.
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Figure 8 shows results from the side obstruction case with Ra = 106, which exhibited
periodic oscillatory behavior.

Figure 8: Top two rows: temperatures for side obstruction case with Ra = 106 at intervals
of one-period in the behavior. Bottom two rows: streamlines for side obstruction case with
Ra = 106 at the same time steps.
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