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Abstract. As complex computer networks have become integral to our life, it has become
important to create effective and efficient defenses against computer viruses. To model these
viruses and networks, a computer network can be treated as a graph of nodes and edges.
For small graphs, we can use centrality measures to identify which nodes to immunize first.
We examine an existing immunization scheme based on the computation of a bound for the
decay of a virus and compare it to some proposed schemes on random graphs. We observe
that an immunization scheme based on the organization of a graph can outperform a greedy
scheme. We also observe that the computation of the virus decay bound does not correlate
in the expected way with the ability of the virus to infect an entire network.

1. Introduction

Many techniques exist to model the spread of infectious diseases in the populace, each
customizable to the disease in question, as seen in [9]. Almost all such techniques approximate
the unknowable and random nature of the contact patterns between individuals. In contrast,
this almost impossible problem of determining effective contact between individuals does not
exist in the computing world. Hence, it becomes possible to regard computers as discrete
objects with well known connections to each other, enabling modeling using graph theory,
as seen in [10]. In infectious disease modeling, it is understood that some organisms or
communities are more important than others in the spread of disease [9]. The graph theory
analog of this is centrality.

Literature, such as [2], has proposed the usage of PageRank and other centrality mea-
sures to stop the spread of viruses by identifying important nodes. In contrast, Preciado et
al., in [7], suggest that no simple correspondence between graph organization and optimal
immunization schemes exists. Instead, the use of a viral decay parameter ε is proposed.
In [10], it is shown that the spread of a virus is similar to a random walk, suggesting that
graph organization does influence the effectiveness of a virus. Our work seeks to determine
the effectiveness of centrality and graph organization as predictors of optimal immunization
schemes, as well as the efficacy of ε in predicting the success or failure of a virus. As far
as the authors know, current literature does not address the correlations between ε and the
characteristics of a graph or virus, instead addressing the usage of it as a way to produce an
effective immunization scheme. This usage bypasses the organization of a graph usually, so
herein we seek to relate ε to its context within the graph as a whole. We hope that this work
will demonstrate the successes and failures of ε and its related immunization schemes.
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B. FAGAN

This paper focuses on how to measure a graph’s organization and how to convert this
measurement into useful information, such as ε, in order to accurately predict how a virus will
spread in a graph. First we discuss infectious disease modeling and graph theory in Section
2, with emphasis on properties of small graphs. In Section 3, we discuss ε and immunization
schemes for small graphs. In Section 4 we discuss the implications of, and conclude, our work
before finally discussing possible extensions in Section 5.

2. Theory

2.1. Infectious Modeling. A number of models exist for infectious disease modeling; here,
we use a simple Susceptible-Infectious-Susceptible model (SIS model). This model consists
of a node beginning as susceptible. When said node comes into effective contact with
the virus — when there is sufficient contact to transfer infection between an infected node
and this susceptible node — it can become infected. Such an infected node then has the
possibility of recovery without resistance, becoming susceptible again (see [9]). This process
is demonstrated in Figure 1. We assume that the viruses we are studying are ones for which
a proper virus removal tool has not been created, implying that the only way to get rid of
a virus is the removal of all infected parts of the computer. We note that our immunization
is a proactive, preventative measure, representing anything from employee training to better
firewalls and anti-virus software. This makes it harder for a virus to infect a computer.

Figure 1. The standard SIS model is governed by infection and recovery
likelihoods.

Next, we present some properties of both the virus and a hypothetical immunization.

• The strength of the virus β̄ is the likelihood that the virus will successfully infect an
unprotected node that it attacks.
• The Fan of the virus is its reproductive strategy. For example, the virus might be

programmed to attack all possible nodes (Fan = all), or it may reproduce some num-
ber of times and let the network carry the virus’s duplicates to the node’s neighbors
(that is, there exists some natural number n such that Fan = n).
• The recovery rate δ is the likelihood that the virus will be removed from a node in a

given time step.
• The strength of the immunization is the amount that the immunization reduces β̄.

We designate as β the virus’s reduced likelihood of successfully infecting this node.
Furthermore, we assume the application of the immunization to be binary; either a
node is immunized, or it is not.

2.2. Graphs. A graph is an ordered pair G = (V , E) consisting of the sets V = {v1, v2, . . . , vn}
of vertices (or nodes) and E = {(vi, vj) : vi, vj ∈ V} of edges. Any graph can be represented
by its adjacency matrix A ∈ Rn×n, where aij ∈ A is given by 1 if (vi, vj) ∈ E , and 0
otherwise. Graphs’ edges have two additional properties, weight and direction. A graph is
weighted if the graph is of the form G = (V , E ,W), where W = {w(vi,vj) : (vi, vj) ∈ E} and
entries {w(vi,vj)} correspond to weights of the edges in E . In this case, the adjacency matrix
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is represented by A ∈ Rn×n, where aij ∈ A is the corresponding weight in W . If a graph
is unweighted, then its edges’ weights are considered to be 1. A graph is undirected if for
all edges (vi, vj) ∈ E , (vj, vi) ∈ E . A directed graph lacks this property. Finally, a graph
is connected if there exists a path from any node to any other node. We assume that our
graphs are weighted, connected, and undirected.

Graphs also have additional properties that can be computationally expensive to de-
termine; therefore, they can only be performed on a graph that is small enough for these
computations to be done quickly. In effect, ‘small’ is based on how much time the user
has available to compute these properties. We will focus on centrality measures, which
measure how central or important a given node or cluster of nodes is to the overall structure
of the graph. A large number of such measures exists, each with a differing definition of
importance. The two of particular importance to the methodology in Section 3 are degree
centrality and eigenvector centrality.

Definition 2.1 (Degree Centrality). For a node vi in an undirected graph, its degree is
defined as the number of edges that originate from it. For a directed graph, we also define its
outdegree and its indegree. The outdegree is simply the degree as just defined. The indegree
is the number of edges that arrive at a given node. Note that for an undirected graph, degree,
outdegree, and indegree are all equal for any given node.

Definition 2.2 (Eigenvector Centrality). For a graph, the largest eigenvalue of the adjacency
matrix is guaranteed to correspond to an eigenvector with all positive entries. For a node vi,
its eigenvector centrality is the ith entry in this all positive eigenvector (see [5]).

3. Immunization of Small Graphs

3.1. Methodology. As discussed in Section 1, it has been claimed and debated that the
overall structure of a graph is strongly predictive of the order in which nodes should be
immunized. Specifically, despite the relative success from the usage of some centrality mea-
sures, it is demonstrable that for some cases, these measures fail significantly. In examining
the literature, several questions became apparent, such as the accuracy of ε as a predictor
of a virus spreading across a graph and any dependencies of ε on the virus’s strength, the
system’s ability to recover, and the immunization’s strength, as established in [7]. Therefore,
this section begins by establishing a simulation upon which to work in Section 3.1.1. Then,
in Section 3.1.2, we turn our focus towards calculating ε and its applications towards a brute
force scheme, to which we can compare. Next, in Section 3.1.3, we examine ε’s relationship
to immunization strength, viral strength, and recovery rate, before checking the accuracy of
ε as a predictor of viral performance in 3.1.4. To do this, we analyze the relationship between
ε and the number of times the virus wins by using various regressions for the overall data
and for data drawn from specific immunization set sizes. We then create and discuss three
immunization schemes in Section 3.1.5 before concluding by discussing the results of these
schemes in Section 3.2.

3.1.1. Simulation. Our small scale simulation model is constructed using the following as-
sumptions.

(1) The virus follows a simple SIS model as discussed in Section 2.1.
(2) The virus spreads too quickly for reactionary immunization. Hence, our emphasis is on

a predictive defense, rather than a reactive defense. This corresponds to immunization
before the flu season for people, rather than a cure for those already exposed.
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(3) Since we are modeling a computer system, we assume that the worst case scenario
of wipe and reload is the only real recovery method for an infected computer until
anti-virus software catches up technologically to the virus. Hence, there is no increase
in resistance for recovered nodes.

(4) Finally, as a simplifying assumption, we assume that we do not need to worry about
the virus coming in from an outside source once the infection process has started.

Our simulation thus proceeds according to the following steps after all setup (e.g. immu-
nizations) has been performed. Let β be the probability that an infection is successful, and
let δ be the probability that recovery is successful. Let Pβ and Pδ be the standard uniform
random variables corresponding to likelihood of infection and recovery, respectively.

(1) Begin with a random single node infected.
(2) Identify all infected nodes.
(3) If Fan = all, then for a given infected node:

(a) Find all neighbors of this node.
(b) Generate Pβ for all such neighbors.
(c) If a neighbor’s Pβ < β, then we update the neighbor as infected.

(4) If Fan ∈ N, then for a given infected node:
(a) Generate a series of Pβi for i = 1, 2, . . . , Fan.
(b) Randomly determine which neighbors the Pβi < β correspond to, discarding the

others.
(c) Update these neighbors to be infected.

(5) Then for all infected nodes, generate a Pδ. If Pδ < δ, then the infected node recovers.
(6) Collect data for a given round and repeat from step 2 until the virus is completely

successful, completely removed, or a user chosen number of rounds have passed.

In order to remove bias, it is recommended that the infected nodes be traversed in a random
order. Values of interest include order of infection, number of times infected, number of
rounds, if the virus wins by infecting all non-immune nodes, and number of nodes a given
node is responsible for infecting.

3.1.2. Calculations of ε and a Brute Force Scheme. Let A be the adjacency matrix, and let
B = diag(βi) and D = diag(δi), for i corresponding to the nodes in the graph. Additionally,
let λ1 be the function that returns the largest eigenvalue of a matrix. As described in [7],
when

λ1(BA−D) ≤ −ε < 0,

ε can be used to establish a bound on the exponential decay of a virus in a graph. Henceforth,
when we refer to ε, we are actually referring to this bounding equation. This bound was used
to comparatively establish the effectiveness of the immunization schemes for small networks.
Note that there is a weakness in the calculation of ε; the calculation relies on an in-depth
knowledge of the virus’s (B) and recovery mechanism’s (D) effects on individual nodes. In
predictive immunization, it is not necessarily guaranteed that this knowledge is available.

Using ε, a brute force immunization scheme can be created. Let t be the number of
nodes to immunize. Then:

Scheme 3.1 (Brute Force).

(1) Create a list of all combinations of t nodes of the graph.
(2) For each combination, treat the nodes as immunized and calculate ε.
(3) Pick the combination with the least ε value.
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As with any brute force scheme, this is computationally expensive. Note that a combi-
nation with the best ε at a step t may be unrelated to a best combination at t+ 1. The best
combination, for example, on t = 3 may be {1, 5, 10}, but on t = 4, it may be {3, 4, 7, 8}.
As such, it is frequently found that for a sequential algorithm, it is impossible to match the
brute force recommendation, as each calculation of the next choice is dependent upon the
nodes already immunized. In such a case, at t = 3, the sequential algorithm may match
the brute force with {1, 5, 10}, but proceed to {1, 5, 7, 10} on t = 4, with a substantial loss
of relative effectiveness. Note also that if an algorithm does a node by node immunization,
with a brute force decision made on each step, then that algorithm is a greedy immunization
scheme, as proposed in [7].

3.1.3. Dependencies of ε. Recall from Section 3.1.2 that the ε bound is determined by

λ1 (BA−D) .

First, we assume that all nodes have the same initial infection probabilities before im-
munization and that all nodes gain the same level of resistance due to immunization. Let β
stand for the infection probability of an immunized node (when the infection likelihood is at
its lowest). Then it follows that β̄ stands for the infection probability of an un-immunized
node (when the infection likelihood is at its highest). Together, these form the βs in Section
3.1.1. Finally, let δ stand for the likelihood of recovery, as in Section 3.1.1.

The question that we wish to answer is what happens to ε when we modify these val-
ues. As an example, we take the Experimentation Matrix from Appendix A. This matrix
is described in Section 3.1.4. The graphs in Figure 2 were generated with default values
of β = 0.001, β̄ = 1, and δ = 1

3
. Each graph takes two of these values to be constant and

modulates the other from 0.001 to 1 in steps of 0.001. These graphs use the arbitrarily chosen
immunization set {1, 2, 4, 5, 7, 8, 9, 11}.

Figure 2. Effects of varying the parameters β, β̄, and δ on ε.

Figure 2 shows that for a given set combination, the relationship for any parameter is
roughly or exactly linear, with goodness-of-fit values R2 of R2

β = 0.9896, R2
β̄

= 1, R2
δ = 1.

Next, we will examine the change in the “best” sets when these parameters are varied.
We now specify a size of 8 and choose the set for the smallest values of ε. These sets are
represented by the differently colored segments of the curves in Figure 3.

First we note that the last image in Figure 3 uses a single set for the entire line. We
conjecture that, if recovery could be modified on a node by node basis with δ̄ and δ values,
it would result in a similar situation as with the β values. Hence, it appears likely that ε
depends on both β and δ in similar ways. Variation of β has the most noticeable effect on
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Figure 3. Effects of varying the parameters β, β̄, and δ on the immunization
set corresponding to the lowest ε.

which choices result in the smallest ε. Variation of β̄ only has strong effects on the optimal
choices near 0.001. We conjecture that this is due to proximity with β.

Figure 3 also helps demonstrate the possible changes in best choices. It is likely that
there exist graphs whose best choices change much more and much less frequently than this
example graph’s do, increasing the difficulty of accurate decision making. This additionally
highlights the usefulness of the greedy immunization scheme used in [7].

As a final point of contrast, three brute force immunizations are presented in Tables
1-3. Included are the parameters for these immunizations, the best set for a given step
sorted by the size of the immunization set, and the corresponding ε value. Note that there
are many other possible solutions and that some solutions may be identical to solutions for
other parameter combinations. Recall that when the ε value is negative, we are guaranteed
exponential decay of the virus.

β β̄ δ Size 1 Size 2 Size 3 Size 4 Size 5 Size 6 Size 7

0.001 1 1
3

{15} {8, 15} {2,8,9} {1,2,8,9} {1,2,5,8,9} {1,2,4,8,9,15} {2,4,5,7,8,9,11}
6.05382 5.26975 4.43918 3.70066 3.01748 2.45853 1.77683

0.5 1 1
3

{15} {8, 15} {2,8,15} {2,8,9,15} {2,7,8,9,15} {2,6,7,8,9,15} {2,5,6,7,8,9,15}
6.46485 6.07987 5.75349 5.42941 5.16656 4.91523 4.64014

0.001 0.5 1
3

{15} {8, 15} {2,8,9} {1,2,8,9} {1,2,5,8,9} {1,2,4,8,9,15} {2,4,5,7,8,9,11}
2.86066 2.46904 2.05450 1.68593 1.34554 1.06614 0.72631

Table 1. This table shows the immunization sets resulting from different
parameter values and the lowest ε values for sets of sizes 1-7.

Finally, Tables 1-3 demonstrate the impact of the changes in β and β̄. Changing β̄
changes only the corresponding ε value for a given choice. On the other hand, changing the
effectiveness of the immunization, β, changes a number of the nodes chosen to be immunized.

These two trends hold for most values. The value of β̄ begins to affect nodes chosen when
it approaches the value of β. Note that many choices remain the same despite the change in
parameters.

This section has shown the strength of obtaining information about the virus and the
problem of relying on just the graph’s organization. In contrast to this, it is important to
note that much of the information used is not necessarily available. In a situation where a
virus has not been well studied, the relevant parameters may be unknown and impossible to
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β β̄ δ Size 8 Size 9 Size 10 Size 11

0.001 1 1
3
{1,2,4,5,7,8,9,11} {2,5,6,7,8,9,11,14,15} {2,4,5,6,7,8,9,11,14,15} {1,2,4,5,6,7,8,9,10,11,15}

1.08861 0.67669 -0.18942 -0.22152

0.5 1 1
3
{2,5,6,7,8,9,11,15} {2,4,5,6,7,8,9,11,15} {1,2,5,6,7,8,9,10,11,15} {1,2,4,5,6,7,8,9,10,11,15}

4.41304 4.17786 3.97542 3.76926

0.001 0.5 1
3
{1,2,4,5,7,8,9,11} {2,5,6,7,8,9,11,14,15} {2,4,5,6,7,8,9,11,14,15} {1,2,4,5,6,7,8,9,10,11,15}

0.38164 0.17672 -0.23099 -0.25371

Table 2. This table shows the immunization sets resulting from different
parameter values and the lowest ε values for sets of sizes 8-11.

β β̄ δ Size 12 Size 13 Size 14

0.001 1 1
3
{1,2,4,5,6,7,8,9,10,11,13,15} {1,2,4,5,6,7,8,9,10,11,12,13,15} {1,2,3,4,5,6,7,8,9,10,11,12,13,15}

-0.24149 -0.26116 -0.26900

0.5 1 1
3
{1,2,4,5,6,7,8,9,10,11,13,15} {1,2,3,4,5,6,7,8,9,10,11,13,15} {1,2,3,4,5,6,7,8,9,10,11,12,13,15}

3.59728 3.46860 3.3347

0.001 0.5 1
3
{1,2,4,5,6,7,8,9,10,11,13,15} {1,2,4,5,6,7,8,9,10,11,12,13,15} {1,2,3,4,5,6,7,8,9,10,11,12,13,15}

-0.26784 -0.28176 -0.28749

Table 3. This table shows the immunization sets resulting from different
parameter values and the lowest ε values for sets of sizes 12-14.

estimate. While a greedy approach is strong in well studied cases, an approach based on a
graph’s organization would provide a broader application.

3.1.4. Experimentation on ε. In order to validate the applicability of the ε parameter, we
compare ε against both weighted and unweighted graphs and the effects of a virus. The
conditions for this experiment were as follows:

• A graph of size 15, with an average number of approximately 7 edges per node, was
randomly generated. The graph’s weighted adjacency matrix can be seen in Appendix
A. We use a single matrix here and in Section 3.1.3 in order to make controlled
changes. This varies from our approach in Section 3.2.
• Using this graph, every possible combination of nodes for immunization was generated

and assigned an ε value, using the parameters of β̄ = 1, β = 0.001, and δ = 1
3
.

• Then the simulation was performed 250 times for each combination, as detailed in
Section 3.1.1, with Fan = all.
• The following test cases were used to demonstrate the importance of weighting on a

graph:
Case 1: The graph was tested as unweighted, while the ε calculation used the

unweighted adjacency matrix.
Case 2: The graph was tested as weighted, while the ε calculation used the un-

weighted adjacency matrix.
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Case 3: The graph was tested as weighted, while the ε calculation used the weighted
adjacency matrix.

Recall from 3.1.2 that ε is bounded by λ1 (BA−D), where A is specified as the adjacency
matrix. In [7], this A was the unweighted adjacency matrix, which is determined by whether
contact occurs between two nodes or not. In contrast, a computer network can more precisely
determine the amount of contact that occurs between two computers. This information could
be used to assign weights to the graph of the computer network.

As noted in Section 3.1.1, one parameter of interest is the number of times the virus
wins, or how many times it infects every non-immune node in the graph. We note that no
node is immune under the circumstances of our test. This value was then compared to ε
using [8]. The general results for the unweighted-unweighted case are shown in Figure 4.

Figure 4. This plot of ε and the number of times the virus wins uses data
drawn from Case 1: Unweighted-Unweighted. Note that points of the same
color are drawn from immunization sets of the same size.

We seek to determine the nature of the relationship between the value of ε and the
number of times the virus wins. To do this, we use R, a statistical computation software (see
[8]). Three different regressions were used to fit a model to the data, as described in [4]:

• linear regression,
• Poisson regression, and
• zero-inflated Poisson regression.

A linear regression seeks to test whether a linear relationship exists between the value of ε
and the number of times the virus wins. The Poisson regression instead tests whether the
relationship is better fit by a Poisson model. Finally, the zero-inflated Poisson regression
tests using two models by assuming that some of the zeros can be modeled separately from
“true” zeros, with all remaining values modeled by a Poisson model. We present the models
and their probability values. In each model, we test against the null hypothesis that the
parameter has no statistically significant impact. The tables in Figure 5 show the results.

Notably, each cases’ models are extremely similar to one another. As such, we consider
the unweighted-unweighted case primarily. Between the Poisson and zero-inflated Poisson
models, we can apply Vuong’s test, as demonstrated in R in [4], to determine if either model
is superior. As seen in Table 4, the zero-inflated Poisson model is superior for all cases. Next,
we examine the linear and zero-inflated models in Figure 6. This figure was generated by
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Case 1: Unweighted-Unweighted

Model: Linear Poisson Zero-Inflated (Poisson, Zero-Inflated)

Intercept −6.47 −5.53 −3.88, 3.68

Intercept p-value 0.00 0.00 0.00, 0.00

ε 2.67 1.56 1.26, −1.11

ε p-value 0.00 0.00 0.00, 0.00

Case 2: Weighted-Unweighted

Model: Linear Poisson Zero-Inflated (Poisson, Zero-Inflated)

Intercept −6.54 −5.55 −3.90, 3.67

Intercept p-value 0.00 0.00 0.00, 0.00

ε 2.70 1.57 1.27, −1.11

ε p-value 0.00 0.00 0.00, 0.00

Case 3: Weighted-Weighted

Model: Linear Poisson Zero-Inflated (Poisson, Zero-Inflated)

Intercept −6.48 −5.54 −3.89, 3.65

Intercept p-value 0.00 0.00 0.00, 0.00

ε 2.68 1.57 1.26, −1.10

ε p-value 0.00 0.00 0.00, 0.00

Figure 5. These tables present the results of regressions applied to the three
cases of weighted and unweighted graphs and weighted and unweighted ε cal-
culations.

using the predict function in R. It is readily observed that the zero-inflated Poisson regression
line provides a more accurate fit. Returning to Figure 4, we note that the immunization sets,
when compared by size, appear to have negative linear relationships. To investigate this, we
next consider the ε values corresponding to immunization sets of a specific size.

Poisson v. Zero-Inflated: Raw AIC-Corrected BIC-Corrected

Unweighted-Unweighted <, 0.00 <, 0.00 <, 0.00

Weighted-Unweighted <, 0.00 <, 0.00 <, 0.00

Weighted-Weighted <, 0.00 <, 0.00 <, 0.00

Table 4. This table shows the results of Vuong’s test, which can be used to
compare the effectiveness of the Poisson and zero-inflated Poisson models. In
all cases, the zero-inflated Poisson model is more effective.

We use data from immunization sets of sizes 5-9 drawn from Case 1: Unweighted-
Unweighted. The distributions of ε for sizes 5-9 are shown in Figure 7. It is clear that as the
size increases, the distribution of ε shifts left and the number of times the virus wins decreases
on average. It is also evident that the distributions are likely to be more poorly modeled by
the regressions used earlier. Modeling the number of wins of the virus as dependent on the
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Figure 6. The predictions from linear and zero-inflated Poisson models are
superimposed on a plot of ε and the number of times the virus wins. It is
obvious that the zero-inflated Poisson model has a more accurate fit.

Figure 7. These graphs show the distribution of ε and the corresponding
number of wins of the virus for immunization sets of sizes 5-9.

value of ε using the previous regressions, we do indeed observe that the models’ parameters
become less statistically significant as the size increases. The results are compiled in Table
5. These models also do not entirely resemble the overall models in that the signs of the
values are opposite for any given parameter, except for the Poisson and zero-inflated Poisson
models for immunization sets of size 9. Given that the immunization sets of size 9 resulted
in the most binary distribution of virus wins in Figure 7, this comes as no surprise.

As the size of the immunization set increases, the models notably become less effective.
All results are statistically significant with p < 0.001 except for immunization sets of size 8
(intercept) and size 9 (ε significant at the 0.1 level). This is due to the increasingly binary
nature of the ability of the virus to win, which severely challenges the effectiveness of linear
and Poisson regressions. Furthermore, the magnitude of the effect of ε decreases as the size
increases. This implies that the effect of ε for later choices becomes less important than for
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Size 5: Linear Poisson Zero-Inflated (Poisson, Zero-Inflated)

Intercept 17.85 4.22 3.99, −8.90

Intercept p-value 0.00 0.00 0.00, 0.00

ε −2.96 −0.61 −0.54, 1.35

ε p-value 0.00 0.00 0.00, 0.00

Size 6: Linear Poisson Zero-Inflated (Poisson, Zero-Inflated)

Intercept 6.13 2.97 2.76, −4.14

Intercept p-value 0.00 0.00 0.00, 0.00

ε −1.12 −0.62 −0.52, 0.64

ε p-value 0.00 0.00 0.00, 0.00

Size 7: Linear Poisson Zero-Inflated (Poisson, Zero-Inflated)

Intercept 1.85 1.51 1.80, −1.05

Intercept p-value 0.00 0.00 0.00, 0.095

ε −0.37 −0.60 −0.61, −0.029

ε p-value 0.00 0.00 0.00, 0.882

Size 8: Linear Poisson Zero-Inflated (Poisson, Zero-Inflated)

Intercept 0.53 0.14 0.33, −1.33

Intercept p-value 0.00 0.433 0.339, 0.169

ε −0.12 −0.65 −0.58, 0.21

ε p-value 0.00 0.00 0.00, 0.553

Size 9: Linear Poisson Zero-Inflated (Poisson, Zero-Inflated)

Intercept 0.079 −2.38 −0.89, 1.94

Intercept p-value 0.00 0.00 0.33, 0.266

ε −0.014 −0.30 −0.70, −1.00

ε p-value 0.0325 0.0298 0.037, 0.227

Table 5. This table has the three regression models applied to ε values cor-
responding to immunization sets of sizes 5-9.

earlier choices. Indeed, comparing the number of times the virus wins as a function of ε
corroborates this, as seen in Figure 4. This is also evident from the change of the intercept’s
values in all models in Table 5. It is readily apparent from Figure 4 and Table 5 that as
ε decreases, both the number of times the virus wins and the rate of change of this value
decrease. Contrary to one’s expectations however, and as reflected by the statistical models
(see the sign of the ε values in Table 5), if the size of the immunization set is fixed, it appears
that as ε increases, the virus wins less often. As such, minimizing the ε value may actually
help the virus to succeed.

We examine one additional regression in order to corroborate this result and generalize
it to the whole data set. Consider the ordinal probit regression, again using R, in which
whether the virus wins at all for a given immunization set is predicted by the value of ε and
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the size of the immunization set. Then we obtain the values seen in Table 6. All values are
statistically significant with p < 0.001, with proportionally small standard errors. Examining
the estimates of the coefficients, we can see that the probability of the virus’s winning is less
when more nodes have been immunized or when the value of ε is high. This is consistent
with our results seen in Table 5.

Estimate Std. Error p-value

Intercept 8.35 0.16 0.00

ε Value −0.42 0.02 0.00

Immunization Set Size −1.02 0.01 0.00

Table 6. This table contains the coefficient’s values, standard errors, and
p-values for a probit regression.

3.1.5. Centrality Experimentation. In this section, we will discuss the creation of some im-
munization schemes based on the usage of centrality measures. The effectiveness of these
schemes will be discussed in Section 3.2. A variety of centrality measures were examined
in order to determine if there was a correlation between the measurements and the “best
choices.” Here, we define the best choices as the number of times a strict brute force scheme
would choose a node to be in an immunization set of some size across all sizes. Recall that
such a scheme seeks to minimize ε, as in [7]. Given the lengthy computation time, graphs of
sizes 10, 15, and 20 were chosen for the initial sample with simplifying assumptions of β̄ = 1,
β = 0.001, and δ = 0 for all nodes. It was determined very quickly that both the literature
scheme in [7] and the brute force scheme correspond relatively well with the degree for the
first few choices. Of those nodes with high degree, it was often, but not always the case,
that they had high eigenvector centrality. Other centrality measures were examined, but
in subsequent testing, these failed to provide strong results. Thus, degree and eigenvector
centralities were used as the basis for the initial immunization scheme.

As the number of nodes immunized increases, degree centrality corresponds less to the
best choices. It was conjectured that, from the virus’s point of view, the graph’s immu-
nized nodes would appear to be disconnected from the graph. Hence, the next iteration of
the immunization scheme examined what happened when nodes that were immunized were
removed from the graph. The following scheme forms the basis for our first set of results
in Section 3.2. Note that a “sufficient number” reflects reaching the user’s desired number
of immunizations. Recall from Section 3.1.2 that, as described in [7], we have bounding of
exponential decay only when λ1(BA−D) ≤ −ε < 0.

Scheme 3.2.

(1) Begin with no nodes immunized.
(2) Let A be the initial adjacency matrix of the graph.
(3) Let At = A.
(4) Take D = {v ∈ A : Degree(v) = max(Degree(At))} and order D by Eigenvector(At)

in descending order.
(5) Immunize the node vt = d1 ∈ D, where d1 is the first node in D.
(6) Assign At+1 = At\{vt}.
(7) Repeat (4) through (6) until a sufficient number of nodes are immunized or

max(Degree(At+1)) = 0.
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(8) Immunize the remaining nodes in descending order of Eigenvector(A) until a suffi-
cient number of nodes are immunized.

As seen in Section 3.2, the results for this initial scheme were strong. The failures of
this initial scheme appeared most commonly in the last few choices. In order to improve this
scheme, Step 8 was examined. A brute force scheme was used to replace Step 8. It became
readily apparent that, in order to improve the last choices, it was necessary to improve the
prior choices, as the brute force scheme showed little to no improvement.

In order to determine when to begin Step 8, Scheme 3.2 was run with a variety of other
computable values, found in [1]. Of these, the clustering coefficient, defined as the number
of cycles of length three divided by the number of connected triples, was noted to have
a precipitous decline before the general results of Scheme 3.2 fell off. We use this as the
replacement for the condition in Step (7), forming Scheme 3.3.

Scheme 3.3.

(1) Begin with no nodes immunized.
(2) Let A be the initial adjacency matrix of the graph.
(3) Let At = A.
(4) Take D = {v ∈ A : Degree(v) = max(Degree(At))} and order D by Eigenvector(At)

in descending order.
(5) Immunize the node vt = d1 ∈ D, where d1 is the first node in D.
(6) Assign At+1 = At\{vt}.
(7) Repeat (4) through (6) until a sufficient number of nodes are immunized or

ClusteringCoefficient(At) 6∈ R+ \ {0}
(8) Immunize the remaining nodes in descending order of Eigenvector(A) until a suffi-

cient number of nodes are immunized.

Additionally, one other scheme on small organizations was attempted. In contrast to
the preceding schemes, this scheme focuses on a divide and conquer approach.

Scheme 3.4.

(1) Begin with no nodes immunized.
(2) Let A be the initial adjacency matrix of the graph.
(3) Let At = A.
(4) Take D = {v ∈ A : Degree(v) = max(Degree(At))} and order D by Eigenvector(At)

in descending order.
(5) Immunize the node vt = d1 ∈ D, where d1 is the first node in D.
(6) Determine if At\{vt} is connected. If it is not, break it into its connected subgraphs.
(7) Of all connected subgraphs, let At+1 be the graph with the most nodes.
(8) Repeat steps (4) through (7) until a sufficient number of nodes are immunized.

The idea behind Scheme 3.4 was to modify Scheme 3.2 such that it no longer needed a
failure condition and could be applied on subgraphs. The comparison of the results between
all three schemes is discussed in Section 3.2.

3.2. Results. For the performance analysis using ε, we created 5000 randomly generated
connected graphs of size 50, with 25 as the average degree of the nodes. We adopted this
approach in order to reduce the possibility of the comparisons being done on biased graphs,
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as some test trials indicated a much stronger performance for one scheme over another on a
specific graph. Additionally, we used β̄ = 1, β = 0.001, and δ = 0. This represents a virus
for which the population has no natural resistance and no means of recovery. In order to
compare the schemes proposed, we compared each to the “reverse greedy” scheme proposed
in [7] twice, the first awarding equality in favor of the literature’s scheme. The comparison
proceeds by allowing each scheme to choose one node to immunize, and then calculating ε
for the entire graph, as in accordance with the previous literature. Dividing the number of
times the proposed schemes ε is less than, in the first comparison, or less than or equal to, in
the second, the literature schemes ε by the total number of runs gives that trials proportion
of success, giving that trial’s proportion of success. This can be seen in Figures 8, 10, and 12
for the case when the comparison is strictly less than, and in Figures 9, 11, and 13 for the
case when the comparison is less than or equal to. Note that these figures and results do not
measure relative success; how far apart the two ε values were did not influence the result.

minimum 0.0400

1st quartile 0.4600

median 0.5800

3rd quartile 0.7000

maximum 0.9200

mean 0.5677

std. dev. 0.1690

results < .15 0.0064

results > .5 0.6554

results > .9 0.0002

Figure 8. This figure shows the results of a strictly better performance anal-
ysis with quartile analysis using Scheme 3.2.

minimum 0.1400

1st quartile 0.5800

median 0.7000

3rd quartile 0.8000

maximum 0.9800

mean 0.6811

std. dev. 0.1518

results < .15 0.0006

results > .5 0.8518

results > .9 0.0230

Figure 9. This figure shows the results of a better or equal performance
analysis with quartile analysis using Scheme 3.2.
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minimum 0.0400

1st quartile 0.4400

median 0.5600

3rd quartile 0.6600

maximum 0.9000

mean 0.5396

std. dev. 0.1568

results < .15 0.0076

results > .5 0.6078

results > .9 0.0000

Figure 10. This figure shows the results of a strictly better performance
analysis with quartile analysis using Scheme 3.3.

minimum 0.0800

1st quartile 0.5200

median 0.6400

3rd quartile 0.7400

maximum 0.9200

mean 0.6219

std. dev. 0.1454

results < .15 0.0016

results > .5 0.7782

results > .9 0.0006

Figure 11. This figure shows the results of a better or equal performance
analysis with quartile analysis using Scheme 3.3.

minimum 0.0400

1st quartile 0.4200

median 0.5400

3rd quartile 0.6600

maximum 0.8800

mean 0.5322

std. dev. 0.1624

results < .15 0.0104

results > .5 0.5860

results > .9 0

Figure 12. This figure shows the results of a strictly better performance
analysis with quartile analysis using Scheme 3.4.
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minimum 0.1200

1st quartile 0.5600

median 0.6600

3rd quartile 0.7600

maximum 0.9800

mean 0.6462

std. dev. 0.1457

results < .15 0.0010

results > .5 0.8136

results > .9 0.0024

Figure 13. This figure shows the results of a better or equal performance
analysis with quartile analysis using Scheme 3.4.

To determine which scheme is superior, we apply a two-sample t-test for unequal vari-
ances (see [11] for details) to Scheme 3.2 and Schemes 3.4 and 3.3. This test assumes that
the samples are drawn from populations with unequal variance and tests for the difference
of the samples’ respective means. We choose this test due to the fact that the results from
Scheme 3.2 have unequal variance to the results from Schemes 3.3 and 3.4 using the variance
test in R: in the strictly less than cases p = 0.00 and p = 0.01717 and in the less than or
equal to cases p = 0.002515 and p = 0.003596.

Between Schemes 3.2 and 3.4, for the strictly less than case, the 95% confidence interval
is [0.0291, 0.0420]. For the less than or equal to case, the 95% confidence interval is [0.0291,
0.0408]. Since both confidence intervals do not include 0 and are positive, we reject the null
hypothesis that the difference of the population means is 0; that is, we reject the hypothesis
that the two schemes are equally effective. Additionally, this test demonstrates that Scheme
3.2 is a stronger scheme. The authors conjecture that this is due to the effect of considering
all possible next selections. For comparison, in Scheme 3.4, only the nodes that remain in the
largest subgraph are under consideration. As such, it is likely that it is possible to improve
Scheme 3.4 by examining the graph in a more holistic way, as Scheme 3.2 does.

Next, we apply a two-sample t-test for unequal variances on Scheme 3.2 and Scheme
3.3. We see that for the strictly less than case that the confidence interval is [0.0217, 0.0345],
and for the less than or equal to case it is [0.0534, 0.0650]. From both of these intervals, a
similar analysis shows that Scheme 3.2 is the stronger scheme. The authors conjecture that
this result is due to an unknown weakness within the eigenvector centrality used in Step 8.
This conjecture stems from the fact that in our trials, it was observed that Scheme 3.3 ended
earlier than Scheme 3.2, making the former more reliant on eigenvector centrality than the
latter.

Lastly, we consider the likelihood that our results are statistically significant compared
to the greedy scheme suggested in [7]. We perform a one-sample t-test on the strictly less than
case in R and obtain the 95% confidence interval [0.5631, 0.5724]. Here, the null hypothesis
is that the population mean would otherwise be 0.5, representing a 50% success rate and
equivalency between the two schemes. Hence, we reject this null hypothesis and conclude
that our scheme is not equivalent to the one in [7]. Since the 95% confidence interval’s
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lower bound is greater than 0.5, we have made statistically significant improvements on the
literature’s suggested scheme of minimizing ε.

4. Conclusion

In this paper, we have introduced a simulation for a virus in a network. Using the
simulation described in Section 3.1.1, we demonstrated the impact of a virus’s parameters
on the value of ε, showing that ε increases as a virus becomes more effective in spreading,
as immunization becomes less effective, and as recovery becomes less likely across an entire
graph. In contrast, for a given graph and immunization set size, as in Figure 4, we observe
that as ε increases, the number of times the virus wins decreases. Indeed, increasing ε predicts
a reduced probability of a viral win, as shown in Table 6 for the general case and Table 5 for
specific immunization set sizes. This confounding effect implies that ε should be maximized,
rather than minimized, contradicting the recommendation in [7], which followed from what
one would expect given the effects of a virus’s parameters on ε. As such, as a predictor
ε should be used carefully. Finally, three alternative schemes were proposed as methods
of minimizing ε, in accordance with established literature. Of these schemes, Scheme 3.2
was shown to be able to outperform the other two schemes as well as the reverse greedy
immunization scheme proposed in [7]. Hence, we conclude that graph organization can be
used as a strong predictor of ε in order to produce more effective immunization schemes,
especially for viruses for which there is no existing knowledge nor recovery mechanism. This
is with the caveat that ε may perform the opposite role as that cited in the literature.

5. Future Work

Areas that are of future interest include:

• refinement of the zero-inflated Poisson model in Figure 6 so as to better fit the data,
• use of real graphs and data sets to refine and validate results,
• addition and examination of recovery sets, as opposed to a general blanket recovery,
• improved brute force time requirement (if possible), and
• additional understanding of the usage of ε as a means of prediction.

Regarding the first item, ideally, we should be able to construct a model that can
accurately predict the effectiveness of certain choices in immunizations. For this, the second
item may be necessary in order to gather a large amount of realistic testing data. This would
allow for verification of the existing models seen in Section 3.1.4, and, ideally, a refinement
and combination of the models. We suspect it is possible to gather such data using low
cost computers that are currently available on the market. Through clever networking and
programming, it is extremely likely that a set of such computers would be able to report the
growth of such an infection to some central computer in a modular way, allowing for a variety
of tests to be conducted. This would also, conveniently, aid us in addressing the third item.

With respect to the fourth item, it need only be said that asymptotic analysis of algo-
rithms has gifted us with many fine algorithms. If a quality brute force algorithm exists and
is known for immunizing graphs, it would be of great use in the construction and comparison
of immunization schemes.

Of special note is the last item. Our results show that there is a distinct danger in using
the ε value as a predictor of the decay of the virus. Indeed, some of the results of this paper
are counter-intuitive; the ε parameter scales as expected with viral parameters, but does not
predict the success of the virus as expected. If there is an ideal parameter that could be
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used to predict immunization effectiveness, many other solutions could be used. Suppose
such a parameter ω exists and consider the following variation of the optimal immunization
problem.

Let I be the Immunization Set Graph; that is, the graph representing all possible im-
munization sets. This graph I = (VI , EI) is a graph whose vertices represent immunization
sets of a graph G, and whose edges represent subset and superset functions, depending on
direction. Each I is thus dependent on a specific G. Consider Figure 14. On the left, there
is a graph which we call G. Its Immunization Set Graph I is to the right of it. Each vertex
in I represents immunizing a specific combination of nodes.

Figure 14. This figure shows a graph and its respective immunization set graph.

In order to begin using this for immunization schemes, we now consider a Weighted
Immunization Set Graph. In addition to the above characteristics, I now hasWI , composed
of weights equal to the ω value of immunizing that specific set of nodes. These weights can be
assigned either to EI , in which the weight is assigned to the edges entering a vertex, or to VI ,
in which the weight is assigned to the node itself. Then, an optimal immunization scheme is
one in which the lowest value path is taken, similar to a shortest path problem. In this light,
the greedy algorithm proposed by Preciado et al. in [7] could be seen as a greedy shortest
path algorithm. The complication to this is the calculation of the weights. Immunization
schemes could be viewed as methods of estimating these weights. Furthermore, a field of
algorithms already exists for shortest path problems; for example, apply Dijkstra’s algorithm
from [3] after a calculation of all weights. As such, estimations as seen earlier may provide
ways to approximate the best path, which, when combined with work already done on graphs
and shortest paths, may in the future yield more efficient and robust algorithms than have
been proposed.
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Appendix A. Small Networks: Matrices



0 0 0 0 0.16 0.47 0.03 0.28 0 0 0.74 0 0 0.48 0.28

0 0 0.20 0 0.56 0.90 0.71 0 0 0.86 0.76 0 0.14 0 0.55

0 0.20 0 0 0 0 0.25 0 0.45 0 0.70 0 0 0 0.86

0 0 0 0 0.58 0.85 0 0.54 0.63 0.57 0 0 0 0.23 0.75

0.16 0.56 0 0.58 0 0 0 0 0 0.93 0 0.30 0 0.01 0.55

0.47 0.90 0 0.85 0 0 0 0.35 0.52 0 0.95 0 0.15 0 0

0.03 0.71 0.25 0 0 0 0 0.17 0.16 0.53 0 0 0.93 0 0.93

0.28 0 0 0.54 0 0.35 0.17 0 0 0.48 0.70 0.62 0.20 0 0.97

0 0 0.45 0.63 0 0.52 0.16 0 0 0.78 0 0.80 0.11 0 0.64

0 0.86 0 0.57 0.93 0 0.53 0.48 0.78 0 0 0 0 0.23 0

0.74 0.76 0.70 0 0 0.95 0 0.70 0 0 0 0.97 0.26 0 0

0 0 0 0 0.30 0 0 0.62 0.80 0 0.97 0 0 0 0.46

0 0.14 0 0 0 0.15 0.93 0.20 0.11 0 0.25 0 0 0 0

0.48 0 0 0.23 0.01 0 0 0 0 0.23 0 0 0 0 0

0.28 0.55 0.86 0.75 0.55 0 0.93 0.97 0.64 0 0 0.46 0 0 0


(1)

Experimentation Matrix
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