
GSMMC 2025 Project Report

Randomized Matrix Sketching and Least Squares Methods for

Classification Problems

Lander Besabe1, Harshit Bhatt2, Kendra Calman3, Jessie Chen2, Nipuni de Silva4, Sucharitha Dodamgodage4,

Mahrokh Najaf5, Rebecca Rodrigues6, Thabo Samakhoana7, Mentor: Henry Boateng8

Abstract

This report explores the use of randomized matrix sketching techniques, specifically Sparse Johnson-

Lindenstrauss Transform (SJLT) and Subsampled Randomized Hadamard Transform (SRHT), as effi-

cient alternatives to Gaussian-based projections in linear least-squares regression and low-rank matrix

approximation for classification problems. Motivated by the scalability challenges of classical methods

like singular value decomposition (SVD) in large-scale settings, the work evaluates the performance, stor-

age efficiency, and computational feasibility of these sketching methods. To approximate the numerical

rank of a data matrix, we apply the Johnson-Lindenstrauss theorem. The proposed sketching meth-

ods are applied to two real-world datasets, Wisconsin Diagnostic Breast Cancer (WDBC) and LC25000

(histopathology images), demonstrating that SJLT and SRHT can provide comparable accuracy to deter-

ministic least-squares while significantly reducing memory and computation requirements. Additionally,

SRHT is extended for non-power-of-two dimensions, making it suitable for scalability. Our findings sug-

gest that randomized sketching is a viable tool for scalable algorithms for high-dimensional biomedical

data.

Keywords— Randomized matrix sketching, Randomized singular value decomposition, Sparse Johnson-Lindenstrauss

Transform, Subsampled Randomized Hadamard Transform, Least-squares, Subspace projection, Johnson-Lindenstrauss

theorem, Classification

1 Introduction

Over the past decades, numerical linear algebra has played a fundamental role in the advancement of science and

engineering [9]. The field is ever evolving, and much of the effort has been devoted to the development of deterministic

methods for matrix computations. Matrix decomposition remains one of the most efficient tools in computational

mathematics [10]. However, for modern large-scale applications, classical approaches, such as singular value decom-

position, become prohibitively expensive.

To address this issue, in recent years, researchers have investigated the role of randomization in designing new methods

for different problems, such as random sketching [15, 8] and least-squares regression [18, 21, 17].

In this work, we aim to explore the performance of randomized singular value decomposition (SVD) [10] for different

choices of the sketching matrix. The classical implementation of randomized SVD [14] uses a Gaussian sketching

matrix Ω ∼ N (0, 1) which we compare with two other possible approaches to sketch a matrix: the sparse Johnson-

Lindenstrauss transform (SJLT) [11, 19] and subsampled randomized Hadamard transform (SRHT) [3]. This work

examines whether the randomized least-squares method works well when we replace the Gaussian matrix with the

SJLT or SRHT sketch operators, and if the randomized subspace projection can be implemented with SRHT for a

matrix Am×n when m is not a power of 2.

.⋆All authors contributed equally to this work. The order of authorship is alphabetical by last name.

.
1University of Houston 2North Carolina State University 3Cal Poly Pomona 4Clarkson University 5Marquette University
6Rochester Institute of Technology 7Johns Hopkins University 8San Francisco State University

The motivation behind exploring these questions is that the SJLT sketching matrix requires extremely low storage

space, whereas the Gaussian sketching matrix is more costly for large-scale problems because of its dense nature,

requiring large storage to handle the problem. We also extend the idea of the original SRHT (where the matrix size

is restricted) to handle large matrices without any restrictions on their dimensions.

For a thorough discussion on randomized numerical linear algebra, including theory and applications, the readers are

referred to [10, 7, 13].

The rest of the report is organized as follows: Sec. 2 introduces the two methods that we examined in this report.

Sec. 3 discusses the nature of the data that we utilize for the numerical tests and how we handle them without forming

the entire matrix. Sec. 4 presents the numerical results for the two datasets considered using the proposed methods.

We draw some conclusions and provide future perspectives in Sec. 5.

2 Theory and Methods

In this section, we discuss the theoretical background of the proposed approaches for the sketching of a matrix. We

begin by introducing the least-squares problems and randomized SVD, and then present the algorithms inspired by

SJLT and SRHT to sketch a matrix.

2.1 Least Squares (LS) Method

Consider a system of linear equations

Ax = b, (1)

where A ∈ Rm×n, x ∈ Rn, and b ∈ Rm.

We use the least squares technique when the exact solution to the problem in (1) does not exist or is not unique,

e.g., overdetermined systems (more equations than unknowns) or noisy data. A least squares solution x̂ gives the

orthogonal projection of vector b onto the column space of the matrix A, minimizing the Euclidean norm of the

residual

∥Ax− b∥2.

The residual vector r = b−Ax̂ satisfies the orthogonality condition

ATr = 0,

which can be solved by using the normal equation

ATAx̂ = ATb.

However, the result can be numerically unstable if the matrix product ATA is ill-conditioned. Therefore, in practice,

one can use methods such as QR decomposition or singular value decomposition (SVD) to solve the normal equation.

2.2 Randomized Singular Value Decomposition

Consider the problem of finding a low-rank approximation of a matrix A ∈ Rm×n. In [6], it is shown that the

truncated SVD is the best low-rank approximation of A. The goal of randomized SVD is to efficiently decompose

A ≈ UΣVT where U ∈ Rm×k and V ∈ Rk×n are orthonormal matrices containing the approximate left and right

singular vectors of A respectively, Σ ∈ Rk×k is the diagonal matrix containing the approximate largest k singular

values of A, and k is the approximate numerical (or target) rank of A.

2

However, we assume that we cannot form the entire matrix A, but we can access each column ai ∈ Rm of A, i.e.,

A = [a1 · · · ai · · · an] ,

one at a time. First, we construct a sketching matrix Ω ∈ Rn×k which allows us to compress the data for efficient

subsequent computations. We assume that Ω has the form:

Ω =


ωT
1

...

ωT
n

 ,

with ω ∈ Rk. We exploit the fact that the matrix multiplication AΩ is a sum of rank-1 matrices from outer products,

i.e.,

Z := AΩ =

n∑
i=1

aiω
T
i ∈ Rm×k. (2)

In [10], it is shown that an oversampling by p columns improves the approximation of the singular vectors, and the

authors suggest that 5 ≤ p ≤ 20 is sufficient. Hence, we consider Ω ∈ Rn×(k+p) instead for p belonging to the

aforementioned region.

To further improve accuracy, we also implement q subspace iterations [7]. This approach is known to help amplify

the influence of the most dominant singular values. In our case, performing subspace iteration means

Z←
n∑

i=1

(aia
T
i)qZ.

Next, we compute an approximate orthonormal basis of the column space of A through the columns of the matrix

Q in QR decomposition of Z: Z = QR where Q ∈ Rm×(k+p) and R ∈ R(k+p)×(k+p) is an upper triangular matrix.

We then project A onto the column space of Q and in this case, perform

B =
[
QTa1 · · · QTai · · · QTan

]
∈ R(k+p)×n.

Since B is substantially smaller than A, we can perform SVD efficiently on B to obtain

B = ŨΣVT .

For the approximation of the left singular vectors of matrix A, we set

U ≈ QŨ.

Lastly, we obtain the approximate low-rank approximation of A to be

A ≈ UkΣkV
T
k ,

where Uk is the matrix containing first k columns of U, Σk is the diagonal matrix containing the largest k singular

values in Σ, and VT
k is the matrix containing the first k columns of V.

Note that if one only has access to the rows of matrix A and wish to pre-multiply Ω to A, a similar process may be

performed. In fact, this is what we do for the least-squares approach concerning the SJLT sketching matrix.

The next subsection discusses an efficient way to select the target rank k through the Johnson-Lindenstrauss Theorem.

2.3 Johnson-Lindenstrauss (JL) Theorem

Theorem 1 (Johnson-Lindenstrauss (JL) Theorem) For any 0 < ϵ < 1 and any integer n, let k be a positive

integer such that

k ≥ 24 ln n

3ϵ2 − 2ϵ3
. (3)

3

Then for any set A of n points in Rm, there is a map such that for all u,v ∈ A,

(1− ϵ)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ϵ)||u− v||2, i.e.,

(1− ϵ) ≤ ||f(u)− f(v)||2

||u− v||2 ≤ (1 + ϵ).

The proof of the JL theorem is available in [5].

JL Theorem for our purposes: Let A ∈ Rm×n, i.e., A has n (columns) vectors ai, i = 1, . . . , n in Rm. Let R be

a Gaussian matrix with R ∈ Rk×m and Rij ∼ N (0, 1) i.i.d. Then, with high probability, f(ai) =
1√
k
Rai is a map

that satisfies the JL Theorem.

(1− ϵ) ≤ ||R(ai − aj)||2

||ai − aj ||2
≤ (1 + ϵ)

In this work, we study the performance of randomized least-squares when the standard Gaussian projection matrix is

replaced by a Sparse Johnson–Lindenstrauss Transform (SJLT) sketch operator (see Section 2.3). We also explore the

feasibility and effectiveness of implementing randomized least-squares using a Subsampled Randomized Hadamard

Transform (SRHT) described in Section 2.4 in the case where the number of rows m of A is not a power of 2.

2.4 Sparser Johnson-Lindenstrauss Transforms (SJLT)

An SJLT [12] matrix is a structured, sparse matrix whose entries have two possible non-zero values. Ω ∈ Rk×n,

where n is the number of columns in A and k is as the smallest integer which satisfies (3). The matrix Ω is an SJLT

matrix with α non-zeros in each row, each nonzero drawn from {1/
√
α,−1/

√
α} with equal probability [20]. Since

the matrices are binary, the nonzero values are always known, so we do not need to store the values at these nonzero

positions. We can avoid performing any matrix multiplications in our algorithm, instead generating the ΩA matrix

and Ωb directly. For each row, we only need to get the random α positions and randomly assign values drawn from

{1/
√
α,−1/

√
α} at those positions. In this study, we assigned the random α positions using two different methods.

In the first method, the positions were selected uniformly at random from all n columns. In the second method, the

interval from 1 to n was divided into α sub-intervals, and one non-zero position was randomly selected from each

sub-interval.

Algorithm Sparser Johnson-Lindenstrauss Transforms (SJLT)

Require: Data matrix A ∈ Rm×n, target vector b ∈ Rm, projection size α, convergence threshold ε, method ∈ {1, 2}
Goal: Approximate solution x

1. Initialize ΩA ∈ Rk×n, Ωb ∈ Rk×1 with zeros

2. for row = 1 to k do

3. if method = 1 then

4. Pick α random indices i1, . . . , iα ∈ {1, . . . ,m}

5. Assign random signs sj ∈ {±1} with equal probability

6. Scale rows Aij by sj/
√
α

7. Set ΩA[row, :] =
∑α

j=1

sj√
α
Aij ,:

8. else if method = 2 then

9. Partition {1, . . . ,m} into α intervals

10. Select one index from each interval uniformly at random

4

11. Proceed as in steps 5–7

12. end if

13. Set Ωb[row] =
∑α

j=1

sj√
α
bij

14. end for

15. Solve ΩA · x = Ωb using SVD

16. Return solution vector x

2.5 Subsampled randomized Hadamard Transform (SRHT)

Another sketching approach [1] is to use a matrix Ω containing subsets of the rows of a random Hadamard matrix. The

interest in this method lies in the highly structured nature of Ω which may be leveraged to reduce the computational

cost of the sketching process.

To understand this structure, we introduce the definition of a normalized Hadamard matrix Hm ∈ Rm and the SRHT

sketching matrix:

Definition 1 Let m = 2p for some p ∈ Z+. A normalized Hadamard matrix Hm of order m is an m ×m matrix

whose entries are either +1 and −1 such that HmHT
m = mIm.

Definition 2 Let k and m = 2p be fixed positive integers with k ≪ m. An SRHT matrix Ω is a k×m matrix of the

form

Ω =

√
m

k
PHmD, (4)

where D ∈ Rm×m is a diagonal matrix with entries independently drawn from {+1,−1} with equal probability,

Hm ∈ Rm×m denote a normalized Hadamard matrix, and P ∈ Rk×m consists of k rows selected uniformly at random

from the identity matrix Im ∈ Rm×m.

One can follow the Sylvester’s construction to build the normalized Hadamard matrix:

H1 =
1√
2

[1]

H2m =
1

2m/2

[
H2m−1 H2m−1

H2m−1 −H2m−1

]
.

Note that the Hadamard matrix Hm only works for m which are some power of 2. This is a bottleneck of this method

as this means that we cannot use the typical SRHT matrix for a matrix with arbitrary size. To address this, we

develop a different construction of the SRHT matrix. First, consider the element-wise definition of Hm:

(Hm)i,j =
1

2m/2
(−1)

∑
l iljl

where il and jl are the bit digits of i and j, respectively, and i = j = 0 for the (1, 1) entry.

This means that instead of constructing the entire Hadamard matrix, we compute only the rows corresponding to

those selected by P, which we do not need to build explicitly. For example, if row 5 has been randomly chosen, we

construct the 5th row of the Hadamard matrix by fixing i = 4 and iterating over 0 ≤ j ≤ m − 1. This gives us the

first m columns PHd, where d is the closest power of 2 that is larger than m. Hence, this approach does not require

m to be a power of 2 and requires less storage. Moreover, this is equivalent to padding zeros to the data matrix A

and multiplying Ω to A so we can extend A to a matrix of size d× d without requiring extra storage.

5

2.6 Subspace Projection

Consider a vector y that is not in the space W = span{u1, . . . ,um}, with {ui}mi=1 mutually orthonormal. Its

projection is given by projWy := UUTy where

U = [u1 · · · um] .

For an example of a geometric rendering of orthogonal projection on a subspace, see Fig. 1.

u1

u2

y

projWy

Figure 1: Projection of a vector y on the space spanned by the orthogonal vectors u1 and u2.

The quality of the projection depends on how low the value of the norm of the difference between y and projWy is,

i.e., how far the vector y is from the subspace W defined by the columns of U .

For our numerical tests, we use the orthonormal matrix U given by the (randomized) SVD of the matrix A and

project the data points y onto the subspace defined by U.

In the WDBC data presented in Sec. 3, we construct two subspaces, one for malignant and one for benign. Meanwhile,

in the LC2500 data also described in Sec. 3, we construct five subspaces: colon adenocarcinomas, benign colonic

tissues, lung adenocarcinomas, lung squamous cell carcinomas, and benign lung tissues using a set of training images.

In the validation stage, we project the set of validation images to the five subspaces and predict that they belong to

the subspace in which they are closest to using the 2-norm:

∥yval −UUTyval∥2.

For more details on other methods regarding randomized projection on subspaces for classification problems, the

readers are referred to [4].

3 Datasets Discussion

3.1 Data Introduction

In this project, we use two datasets:

1. The Wisconsin Diagnostic Breast Cancer (WDBC) dataset is a collection of data used for research and machine

learning applications related to breast cancer diagnosis. It contains 560 samples (patients), each representing

a fine needle aspirate (FNA) of a breast mass. The data includes 30 features derived from the images of cell

nuclei, along with a diagnosis label indicating whether the sample is benign or malignant. Also, the samples

are split into a test set (300 patients) and a validation (260 patients) set [16].

2. LC25000 is an image dataset with 25,000 color images in 5 classes. Each class contains 5,000 images of the

following histologic entities: colon adenocarcinoma, benign colonic tissue, lung adenocarcinoma, lung squamous

cell carcinoma, and benign lung tissue. Additionally, all images are 768 x 768 pixels in size and are in jpeg file

format [2].

6

3.2 Data Preparation for Computation

The WDBC dataset is clean and ready to use for this project’s purposes. However, the LC25000 dataset contains RGB

images of size 768× 768 pixels, so we needed to convert it to numerical data which we can make computations with.

To obtain this, each image is converted to grayscale, shrunk by half, and then converted to a vector in R1×(384×384).

4 Results

In this section, we present several numerical results for the implementation of the two randomized sketching methods,

i.e., SJLT, SRHT, using the classification problems associated to the WDBC and LC25000 datasets 3.1.

4.1 Wisconsin Diagnostic Breast Cancer (WDBC)

For SJLT, the hyperparameters α and ϵ must be selected to optimize the prediction accuracy. Since there is no

closed-form method to determine the optimal α, we use a Monte Carlo simulation to identify the value of α that

produces the highest prediction accuracy, see Fig. 2. We set ϵ = 0.5 as mentioned in the literature.

Figure 2: Among the tested values, α = 4 resulted in the highest accuracy on the WDBC dataset.

The following table shows the accuracy of using deterministic least-squares (LS), SJLT, and SRHT for classifying

malignant or benign samples from the WDBC for both the training data (second row) and validation data (third

row). For all the methods considered, we use 300 training data points and 260 validation data points.

Accuracy (%) LS SJLT SRHT

Training 95.3333 94.6667 95.3333

Vaidation 96.9231 95.7692 96.9231

We note that their accuracies are comparable but SJLT and SRHT performs more efficiently and thus are less

computationally costly.

7

4.2 Histopathology images data (LC25000)

The LC25000 dataset contains data for two types of cancer: colon cancer and lung cancer. See Section 3.1 for the

full description.

To test the randomized least-squares with SJLT and SHRT sketching method, we use the colon cancer subset, which

includes images classified as either benign or malignant (adenocarcinomas), as our next dataset to evaluate the

proposed method.

For the randomized subspace projection, we use all five classes in the LC25000 dataset. This means that we attempt

to classify all images as to which classification in the dataset they belong to: colon adenocarcinoma, benign colonic

tissue, lung adenocarcinoma, lung squamous cell carcinoma, and benign lung tissue.

In Table 1, we present the accuracy of each method in training and validation sets where we use an 80-20 split of the

dataset. The second column presents the deterministic least-squares for classifying benign or malignant.

The SJLT method did not perform well in the LC25000 dataset. We ran the algorithm multiple times and selected

the best-performing result, and the highest accuracy obtained is highlighted in blue. On the other hand, we ran

SRHT in the validation set and it performed slightly better.

Moreover, the randomized subspace projection with SRHT sketching operator did better than the least-squares

method in the training set and had an approximately 35% accuracy in the validation which is slightly better than

guessing, i.e., 20% of guessing that classification of an images among five classes.

Accuracy (%) LS SJLT (10 trials) SRHT SP (SRHT)

Training 88.9875 57.8000 57.3000 59.0500 57.8000 59.3250 - 98.9100

57.6125 58.1000 57.7500 58.6125 58.1375

Validation 54.9000 53.55000 53.7500 55.2000 52.9000 56.3500 64.0000 35.42000

54.3000 52.3500 52.9000 56.2500 54.6000

Table 1: Accuracy of the deterministic least-squares (LS), LS with SJLT and SRHT, and subspace projection

(SP) with SRHT.

We note that the goal of randomized numerical linear algebra is not to perform better than their deterministic

counterparts but to perform as well as the deterministic methods but with increased efficiency.

5 Conclusions and future direction

In this work, we explored switching the Gaussian sketching matrix with two other possible choices: the sparse Johnson-

Lindenstrauss Transform (SJLT) and subsampled randomized Hadamard Transform (SRHT), in the randomized

singular value decomposition (SVD), least-squares, and subspace projection methods.

The sketching matrix provided by SJLT requires significantly lower storage space compared to the dense Gaussian

matrix and does not require any matrix-matrix multiplication to perform the sketching. In each row, it only contains α

non-zero entries which are either 1/
√
α or −1/

√
α. This means that this approach has low time and space complexity

requirements.

On the other hand, the SRHT approach exploits the highly structured nature of the Hadamard matrix which may

result in computational cost reduction in the sketching of the matrix. In this work, we extended this approach to

matrices of arbitrary sizes, i.e., omitting the requirement that the matrix must have m = 2p rows.

For both choices, we assumed that we do not have full access to the entire data set, e.g., we can access the data of

8

one patient at a time instead of the data of all patients at the same time. This allows for scalable implementation of

the algorithms for large-scale problems such as the LC25000 classification problem.

We tested these approaches on two classification problems concerned with determining whether a tumor is malignant

or benign. In the Wisconsin Diagnostic Breast Cancer (WDBC) dataset, we are given 30 features from the images

of the breast tissues from 560 patients. Both approaches performed well in both training and validation and are

comparable to the deterministic linear least-squares method. In the LC25000 dataset, we are given microscopic images

of lung and colonic tissues which are classified into five categories. Neither approach gave accurate classification for

this dataset, especially in the validation stage. However, deterministic linear least-squares method also performed

badly, with accuracy of 89% in the training data and 55% in the validation stage, in which our methods performed

comparably.

The approaches in the classification problem presented in this paper may be improved in several ways. One can use

kernels to transform the LC25000 dataset to be more well-suited to a linear least-squares problem. Secondly, one

may use autoencoder networks to project the data into a low-dimensional latent space and perform least-squares

in the latent space before projecting back to the high-dimensional space. Lastly, one may consider extending these

approaches for randomized tensor decomposition methods in order to keep the structure of the images.

6 Acknowledgments

We would like to thank the organizers of the 2025 Graduate Student Mathematical Modeling Camp and show our

gratitude for the received support from the Society for Industrial and Applied Mathematics (SIAM) to attend the

workshop. We are particularly grateful to Dr. Manuchehr Aminian and Dr. Richard O. Moore for their constant

support at California State Polytechnic University, Pomona, during the entire program.

References

[1] Nir Ailon and Bernard Chazelle. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform.

In Proceedings of the thirty-eighth annual ACM symposium on Theory of Computing, New York, NY, USA, May

2006. ACM.

[2] Andrew A Borkowski, Marilyn M Bui, L Brannon Thomas, Catherine P Wilson, Lauren A DeLand, and

Stephen M Mastorides. Lung and colon cancer histopathological image dataset (lc25000). arXiv preprint

arXiv:1912.12142, 2019.

[3] Christos Boutsidis and Alex Gittens. Improved matrix algorithms via the subsampled randomized hadamard

transform. SIAM Journal on Matrix Analysis and Applications, 34(3):1301–1340, January 2013.

[4] Timothy I Cannings and Richard J Samworth. Random-projection ensemble classification. Journal of the Royal

Statistical Society Series B: Statistical Methodology, 79(4):959–1035, September 2017.

[5] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss. Random

Structures & Algorithms, 22(1):60–65, 2003.

[6] Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. Psychometrika,

1(3):211–218, September 1936.

[7] M. Gu. Subspace Iteration Randomization and Singular Value Problems. SIAM Journal on Scientific Computing,

37:A1139–A1173, 2015.

[8] Stefan Güttel, Daniel Kressner, and Bart Vandereycken. Randomized sketching of nonlinear eigenvalue problems.

SIAM Journal of Scientific Computing, 46(5):A3022–A3043, October 2024.

9

[9] Masoud Hajarian, Jinyun Yuan, and Ivan Kyrchei. Applications of methods of numerical linear algebra in

engineering 2016. Mathematical Problems in Engineering, 2016:1–2, 2016.

[10] N. Halko, P.G. Martinsson, and J.A. Tropp. Finding Structure with Randomness: Probabilistic Algorithms

forConstructing ApproximateMatrix Decompositions. SIAM Review, 53:217–288, 2011.

[11] Daniel M Kane and Jelani Nelson. Sparser Johnson-Lindenstrauss transforms. J. ACM, 61(1):1–23, 2014.

[12] Daniel M Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. Journal of the ACM (JACM),

61(1):1–23, 2014.

[13] Per-Gunnar Martinsson and Joel A Tropp. Randomized numerical linear algebra: Foundations and algorithms.

Acta Numerica, 29:403–572, May 2020.

[14] Riley Murray, James Demmel, Michael W Mahoney, N Benjamin Erichson, Maksim Melnichenko, Osman Asif

Malik, Laura Grigori, Piotr Luszczek, Micha l Dereziński, Miles E Lopes, Tianyu Liang, Hengrui Luo, and Jack

Dongarra. Randomized numerical linear algebra : A perspective on the field with an eye to software. 2023.

[15] Garvesh Raskutti and Michael W Mahoney. A statistical perspective on randomized sketching for ordinary

least-squares. J. Mach. Learn. Res., 17(213):1–31, 2016.

[16] Mangasarian Olvi Street Nick Wolberg, William and W. Street. Breast Cancer Wisconsin (Diagnostic). UCI

Machine Learning Repository, 1993. DOI: https://doi.org/10.24432/C5DW2B.

[17] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert. A fast randomized algorithm for the approx-

imation of matrices. Applied and Computational Harmonic Analysis, 25(3):335–366, November 2008.

[18] Pengpeng Xie, Hua Xiang, and Yimin Wei. Randomized algorithms for total least squares problems. Numerical

Linear Algebra with Applications, 26(1):e2219, January 2019.

[19] Yotam Yaniv, Pieter Ghysels, Osman Asif Malik, Henry A Boateng, and Xiaoye S Li. Construction of hierar-

chically Semi-Separable matrix representation using adaptive Johnson-Lindenstrauss sketching. 2023.

[20] Yotam Yaniv, Pieter Ghysels, Osman Asif Malik, Henry A Boateng, and Xiaoye S Li. Construction of hierar-

chically semiseparable matrix representation using adaptive johnson–lindenstrauss sketching. Communications

in Applied Mathematics and Computational Science, 20(1):67–117, 2025.

[21] Anastasios Zouzias and Nikolaos M Freris. Randomized extended kaczmarz for solving least squares. SIAM

Journal on Matrix Analysis and Applications, 34(2):773–793, January 2013.

10

7 Appendix

7.1 JL

1 %%

2 %%

3 %% Randomized l e a s t −squares with Johnson−Lindenst rauss (JL) Sketch

4 %% An Example :

5 % <https : // a r ch ive . i c s . uc i . edu/ datase t /17/ brea s t+cancer+wiscons in+d i a g n o s t i c

6 % Wisconsin Diagnos t i c Breast Cancer (WDBC)> datase t . 560 p a t i e n t s − s p l i t i n to

7 % t e s t s e t (300 p a t i e n t s) and v a l i d a t i o n (260 p a t i e n t s) s e t

8 %

9 % ∗ F i l e s ∗ :

10 %

11 % ∗ t r a i n . txt ∗ : data f o r 300 p a t i e n t s (Take a l o o k)

12 %

13 % ∗ t r a i n v a l u e s . txt ∗ : I n d i c a t o r f o r malignant specimen (+1) or benign specimen

14 % (−1) (Take a l o o k)

15 %

16 % ∗ v a l i d a t e . txt ∗ : data f o r 260 p a t i e n t s

17 %

18 % ∗ v a l i d a t e v a l u e s . txt ∗ : I n d i c a t o r f o r malignant specimen (+1) or benign specimen

19 % (−1)

20 % Goal : Use l e a s t −squares to l e a rn the t r a i n i n g data and to p r e d i c t the malignancy

o f the c e l l s in the v a l i d a t i o n data .

21 %%

22 % ∗ $A \ in \mathbb{R}ˆ{300 \ t imes 30}$: Each row corresponds to the data f o r

23 % each pat i en t in the t r a i n i n g s e t . Elements in a row correspond to the 30 f e a t u r e s

24 % measured f o r a pa t i en t

25 % ∗ ${\ bf b} \ in \mathbb{R}ˆ{300}$: v ec to r whose domain i s the s e t o f p a t i e n t s

26 % in the t r a i n i n g s e t . $b i = 1$ i f specimen $ i$ i s malignant , o therwi se $b i

27 % = −1$
28 %%

29 % ∗ So lv ing i n c o n s i s t e n t system∗ $Ax = {\ bf b}$∗ us ing l e a s t −squares ∗ :

30

31 % Load in matrix A and vec to r b

32 A = load (’ t r a i n . txt ’) ;

33 b = load (’ t r a i n v a l u e s . txt ’) ;

34

35 % Also load in the v a l i d a t i o n data

36 B = load (’ v a l i d a t e . txt ’) ;

37 z = load (’ v a l i d a t e v a l u e s . txt ’) ;

38 %%

39 % ∗Approach 1∗ : So lve the normal equat ions $AˆTA \hat{x} = AˆT{\ bf b}$ d i r e c t l y

40

41 x1 = A’∗A\A’∗ b ; % x1 i s the l e a s t −squares s o l u t i o n

42 %%

43 % ∗How we l l does x1 model the t r a i n i n g data ?∗
44

11

45 b1 = s ign (A∗x1) ; % Specimen i s malignant (−1) i f p r e d i c t i o n < 0 otherwi se i t s benign

(1)

46 di sp (” Accuracy on t r a i n i n g data from Approach 1 i s ”)

47 di sp (100∗(1− l ength (f i n d (b−b1)) / l ength (b)))

48 %%

49 % ∗How we l l does x1 perform on the v a l i d a t i o n data ?∗
50

51 y1 = s ign (B∗x1) ;

52 di sp (” Accuracy on v a l i d a t i o n data from Approach 1 i s ”)

53 di sp (100∗(1− l ength (f i n d (z−y1)) / l ength (z)))

54 %%

55 % ∗Approach 2∗ : $\hat{x} = Aˆ+{\bf b}$ where $Aˆ+$ i s the pseudo−i n v e r s e o f

56 % A .

57

58 [U, S ,V] = svd (A, ” econ ”) ; % S ingu la r va lue decomposit ion o f A

59 x2 = V∗ inv (S) ∗U’∗ b ; % x2 i s the l e a s t −squares s o l u t i o n and i t ’ s the same as the x1

from Approach 1

60 %%

61 % ∗How we l l does x2 perform on the t r a i n i n g data ?∗
62

63 b2 = s ign (A∗x2) ;

64 di sp (” Accuracy on t r a i n i n g data from Approach 2 i s ”)

65 di sp (100∗(1− l ength (f i n d (b−b2)) / l ength (b)))

66 %%

67 % ∗How we l l does x2 perform on the v a l i d a t i o n data ?∗
68

69 y2 = s ign (B∗x2) ;

70 di sp (” Accuracy on v a l i d a t i o n data from Approach 2 i s ”)

71 di sp (100∗(1− l ength (f i n d (z−y2)) / l ength (z)))

72 %%

73 % ∗Approach 3∗ : LSQR − Solve $AˆTA\hat{x} = AˆT{\ bf b}$ i t e r a t i v e l y

74

75 x3 = l s q r (A, b , 1 e −8 ,150) ; % I t e r a t i v e s o l v e with t o l e r a n c e 1e−8 and maximum of 150

i t e r a t i o n s

76 %%

77 % ∗How we l l does x3 perform on the t r a i n i n g data ?∗
78

79 b3 = s ign (A∗x3) ;

80 di sp (” Accuracy on t r a i n i n g data from Approach 3 i s ”)

81 di sp (100∗(1− l ength (f i n d (b−b3)) / l ength (b)))

82 %%

83 % ∗How we l l does x3 perform on the v a l i d a t i o n data ?∗
84

85 y3 = s ign (B∗x3) ;

86 di sp (” Accuracy on v a l i d a t i o n data from Approach 3 i s ”)

87 di sp (100∗(1− l ength (f i n d (z−y3)) / l ength (z)))

88 %% Randomized l e a s t −squares : So lve the l e a s t −squares problem in a lower−dimens iona l

space

89 % A few r e f e r e n c e s :

12

90 %%

91 % # Avron , H. , Maymounkov , P. , Toledo S . , Blendenpik : Supercharg ing LAPACK’ s

92 % l e a s t −squares s o l v e r . SIAM J . Sc i . Comput . , Vol . 32 , No . 3 , pp . 1217−1236 ,

93 % ∗2010∗
94 % # Drineas , P . , Mahoney , M. W. , Muthukrishnan , S . , Sar los , T. , Faster l e a s t

95 % squares approximation . Numer . Math . , 117 , pp . 219−249 , ∗2011∗
96 % # Epperly , E . N. , Fast and forward s t a b l e randomized a lgor i thms f o r l i n e a r

97 % l e a s t −squares problems , SIAM J . Matrix Anal . Appl . , Vol . 45 , No . 4 , pp .

1782−1804 ,

98 % ∗2024∗
99 %%

100 % ∗Johnson−Lindenst rauss (JL) Theorem ∗ : For any $0 < \ e p s i l o n < 1$ and any i n t e g e r

101 % n , l e t k be the p o s i t i v e i n t e g e r such that

102 %

103 % $k \ge \ f r a c {24 \ ln ˜n}{3\ e p s i l o n ˆ2 − 2\ e p s i l o n ˆ3}$.

104 %

105 % Then f o r any s e t A o f n po in t s in $\mathbb{R}ˆm$, the re i s a map $ f : \mathbb{R
}ˆm

106 % \ r i ghtar row \mathbb{R}ˆ k$such that f o r a l l ${\ bf u} , {\ bf v} \ in A$,

107 %

108 % $(1−\ e p s i l o n) | | { \ bf u} − {\ bf v } | | ˆ 2 \ l e | | f ({\ bf u}) − f ({\ bf v}) | | ˆ 2 \ l e

109 % (1+\ e p s i l o n) | | { \ bf u} − {\ bf v } | | ˆ 2 $, i . e .

110 %

111 % $$(1−\ e p s i l o n) \ l e \ f r a c { | | f ({\ bf u}) − f ({\ bf v}) | | ˆ 2 } { | | { \ bf u} − {\ bf

112 % v } | |ˆ 2} \ l e (1+\ e p s i l o n) $$
113 %

114 %

115 %

116 % There ’ s a proo f i n : Dasgupta , S . , Gupta , A. , An elementary proo f o f a theorem

117 % of Johnson and Lindenstraus . Random St ruc tu r e s and Algorithms , 22(1) , pp .

118 % 60−65 , ∗2003∗
119 %

120 % ∗JL Theorem f o r our purposes ∗ : Let $A \ in \mathbb{R}ˆ{m\ t imes n}$, i . e . Ahas

121 % n ve c t o r s (columns) ${\ bf a} i$, $ i =1,\ l dot s , n$ in $\mathbb{R}ˆm$. Let R
122 % be a Gaussian matrix with $R \ in \mathbb{R}ˆ{k \ t imes m}$ and $R { i j } \ sim

123 % \mathcal{N} (0 , 1) $, i . i . d . Then $ f ({\ bf a} i) = \ f r a c {1}{\ s q r t {k}}R{\ bf a} i $
124 % i s a map that s a t i s f i e s the JL Theorem .

125 %

126 % $$(1−\ e p s i l o n) \ l e \ f r a c { | | R({\ bf a} i − {\ bf a} j) | | ˆ 2 } { | | { \ bf a} i − {\ bf

127 % a} j | | ˆ 2 } \ l e (1+\ e p s i l o n) $$
128 %%

129 % ∗An example o f JL Theorem in ac t i on ∗ : $\ e p s i l o n = 0 .5 $, $n=30$
130

131 e p s l =0.5 ; %

132 k=c e i l (24∗ l og (30) /(3∗ e p s l ˆ2−2∗ e p s l ˆ3)) ;

133 di sp (” Lower−dimens iona l space k = ”)

134 di sp (k)

135

136 [m, n]= s i z e (A) ;

13

137 R=randn (k ,m) ; % Gaussian matrix

138 rk = 1/k ;

139 %The matrix o f the l i n e a r t rans fo rmat ion i s $R/ s q r t (k) $
140

141 nn1 = (n−1)∗n /2 ;

142 d a i j=ze ro s (nn1 , 1) ; d r a i j=ze ro s (nn1 , 1) ;

143 l =0;

144 f o r i =1:n−1

145 a i=A(: , i) ;

146 f o r j=i +1:n

147 l=l +1;

148 a i j=ai−A(: , j) ; % a i − a j

149 d a i j (l)=norm(a i j) ˆ2 ; % | | a i − a j | | ˆ 2

150 d r a i j (l)=rk∗norm(R∗ a i j) ˆ2 ; % | |R(a i − a j) / s q r t (k) | | ˆ 2

151 end

152 end

153 s c a l e = d r a i j . / d a i j ;

154 ulim = (1+ e p s l) ∗ ones (nn1 , 1) ; l l i m =(1− e p s l) ∗ ones (nn1 , 1) ;

155

156 p lo t (1 : nn1 , l l im , ’b− ’ , 1 : nn1 , ulim , ’k− ’ , 1 : nn1 , s ca l e , ’ r .−− ’ , MarkerSize =4,LineWidth=2)

157 l egend (’ $1−\e p s i l o n$ ’ , ’ $1+\e p s i l o n$ ’ , ’ $\ f r a c { | | R({\ bf a} i − {\ bf a} j) | | ˆ 2 } { | | { \ bf

a} i − {\ bf a} j | | ˆ 2 } $ ’ , . . .

158 ’ i n t e r p r e t e r ’ , ’ l a t e x ’)

159 %% I . Randomized l e a s t −squares : Normal Equations in k−Dimensional Space

160

161 xr1=ones (n , 1) ; r e r r=norm(A∗xr1−b) /norm(b) ;

162 nruns =10;

163 f o r i =1: nruns % Run nruns t imes and choose the s o l u t i o n that g i v e s the best r e l a t i v e

e r r o r

164 % JL sketch o f the row−space o f A

165 R = randn (k ,m) / s q r t (k) ;

166 RA = R∗A;

167 % Sketch the r ight −hand s i d e

168 Rb = R∗b ;

169 % Now s o l v e the lower−dimens iona l normal equat ions

170 xh = RA’∗RA\RA’∗Rb;

171 c e r r = norm(A∗xh−b) /norm(b) ;

172 i f c e r r < r e r r

173 xr1=xh ; r e r r=c e r r ;

174 end

175 end

176 %%

177 % I f $k << m$, we save time .

178 %

179 % |Note that in s t ead o f s o l v i n g the normal equat ions d i r e c t l y , we can use LSQR

180 % (Blendenpik) |
181 %

182 % ∗How we l l does xr1 perform on the t r a i n i n g data ?∗
183

14

184 br1 = s ign (A∗xr1) ;

185 di sp (” Accuracy on t r a i n i n g data from randomized l e a s t −squares Approach I i s ”)

186 di sp (100∗(1− l ength (f i n d (b−br1)) / l ength (b)))

187 %%

188 % ∗How we l l does xr1 perform on the v a l i d a t i o n data ?∗
189

190 yr1 = s i gn (B∗xr1) ;

191 di sp (” Accuracy on v a l i d a t i o n data from randomized l e a s t −squares Approach I i s ”)

192 di sp (100∗(1− l ength (f i n d (z−yr1)) / l ength (z)))

193 %% I I . Randomized l e a s t −squares : Randomized−SVD to compute the pseudo−i n v e r s e $Aˆ+$
194 % SVD on a sketch o f the row−space o f A
195

196 % Find the pseudo−i n v e r s e us ing randomized SVD

197 [Ur , Sr , Vr] = rsvd (A’ , k , 1 , 5) ; % We can go over t h i s l a t e r

198 xr2 = Ur∗ inv (Sr) ∗Vr ’∗ b ;

199 %%

200 % ∗How we l l does xr2 perform on the t r a i n i n g data ?∗
201

202 br2 = s ign (A∗xr2) ;

203 di sp (” Accuracy on t r a i n i n g data from randomized l e a s t −squares Approach I I i s ”)

204 di sp (100∗(1− l ength (f i n d (b−br2)) / l ength (b)))

205 %%

206 % ∗How we l l does xr2 perform on the v a l i d a t i o n data ?∗
207

208 yr2 = s i gn (B∗xr2) ;

209 di sp (” Accuracy on v a l i d a t i o n data from randomized l e a s t −squares Approach I I i s ”)

210 di sp (100∗(1− l ength (f i n d (z−yr2)) / l ength (z)))

7.2 SJLT

1 alpha = 8 ;

2 e p s l = 0 . 5 ;

3 N tra in = 4000 ;

4 N test = 1000 ;

5 m = 2∗ N tra in ;

6 n = 384ˆ2 ;

7 method = 2 ;

8

9 num tr i a l s = 10 ;

10 a c c u t r a i n = ze ro s (num tr ia l s , 1) ;

11 a c c u t e s t = ze ro s (num tr ia l s , 1) ;

12 use svd = 1 ;

13 f o r i =1: num tr i a l s

14 [RA, Rb] = R matrix (alpha , eps l , m, n , method) ;

15 x s j l t = solveSystem (RA, Rb, use svd) ;

16 a c c u t r a i n (i) = getAccuracy (N train , N train , 1 , x s j l t) ;

17 a c c u t e s t (i) = getAccuracy (N test , N train , 0 , x s j l t) ;

18 end

19 %% Least Squares So lu t i on

15

20

21 % get A tra in

22 A tra in = ze ro s (m, n) ;

23 b t r a i n = ze ro s (m, 1) ;

24 f o r i =1: N tra in

25 b t r a i n (i) = 1 ;

26 b t r a i n (N tra in + 1) = −1;

27 fname aca = s t r c a t (” . . / Data/ l u n g c o l o n i m a g e s e t / c o l o n i m a g e s e t s / co l on aca /

co lonca ” , num2str (i) , ” . jpeg ”) ;

28 fname n = s t r c a t (” . . / Data/ l u n g c o l o n i m a g e s e t / c o l o n i m a g e s e t s / co lon n / colonn ” ,

num2str (i) , ” . jpeg ”) ;

29 A tra in (i , :) = load data (fname aca) ;

30 A tra in (N tra in+i , :) = load data (fname n) ;

31 end

32

33 % s o l v e the system

34 use svd = 1 ;

35 r = c e i l (24∗ l og (n) /(3∗ e p s l ˆ2−2∗ e p s l ˆ3)) ;

36 x l s = solveSystem (A train , b t ra in , use svd) ;

37

38

39 %% Test / Va l idat i on Data

40

41 % get accuracy

42 t r a i n = 1 ;

43 l s a c c u t r a i n = getAccuracy (N train , N train , t ra in , x l s) ;

44

45 % get v a l i d a t i o n accuracy

46 N test = 1000 ;

47 t r a i n = 0 ;

48 l s a c c u t e s t = getAccuracy (N test , N train , t ra in , x l s) ;

49 %%

50

51

52 %%

53 f unc t i on x = solveSystem (A, b , use svd)

54 i f use svd == 0

55 s o l = A \ b ;

56 e l s e

57 [U, S , V] = svd (A, ” econ ”) ;%rsvd (lhs ’ , r , 1 , 5) ;

58 rank S = rank (S) ;

59 s o l = V(: , 1 : rank S) ∗ (S (1 : rank S , 1 : rank S) \ U(: , 1 : rank S) ’∗b) ;

60 end

61 x = s o l ;

62 end

63 %%

64 %

65

66 f unc t i on accu = getAccuracy (M test , M train , t ra in , x)

16

67 l a b e l s = ze ro s (2∗ M test , 1) ; % p r e a l l o c a t e f o r l a b e l s

68 preds = ze ro s (2∗ M test , 1) ; % p r e a l l o c a t e f o r p r e d i c t i o n s

69 f o r i =1: M test

70 i f t r a i n == 0

71 fname aca = s t r c a t (” . . / Data/ l u n g c o l o n i m a g e s e t / c o l o n i m a g e s e t s /

co lon aca / co lonca ” , num2str (M train+i) , ” . jpeg ”) ;

72 fname n = s t r c a t (” . . / Data/ l u n g c o l o n i m a g e s e t / c o l o n i m a g e s e t s / co lon n /

colonn ” , num2str (M train+i) , ” . jpeg ”) ;

73 e l s e

74 fname aca = s t r c a t (” . . / Data/ l u n g c o l o n i m a g e s e t / c o l o n i m a g e s e t s /

co lon aca / co lonca ” , num2str (i) , ” . jpeg ”) ;

75 fname n = s t r c a t (” . . / Data/ l u n g c o l o n i m a g e s e t / c o l o n i m a g e s e t s / co lon n /

colonn ” , num2str (i) , ” . jpeg ”) ;

76 end

77 data aca = load data (fname aca) ;

78 data n = load data (fname n) ;

79 preds (i) = pos neg (data aca ∗x) ;

80 preds (M test+i) = pos neg (data n ∗x) ;

81 l a b e l s (i) = 1 ;

82 l a b e l s (M test+i) = −1;

83 end

84 accu = 100∗(1− l ength (f i n d (l a b e l s −preds)) / l ength (l a b e l s)) ;

85 end

86 %%

87 %

88

89 f unc t i on v = pos neg (r)

90 v = 1 ;

91 i f r <= 0

92 v = −1;

93 end

94 end

95 f unc t i on dta = load data (fname)

96 img = imread (fname) ;

97 img = double (i m r e s i z e (rgb2gray (img) , 0 . 5)) ;

98 sz = s i z e (img) ;

99 dta = reshape (img , [1 , sz (1) ∗ sz (2)]) ;

100 end

101

102 f unc t i on [RA, Rb] = R matrix (alpha , eps l , m, n , method)

103 % Inputs : alpha (s c a l a r) − number o f nonzero e n t r i e s

104 % e p s l (s c a l a r) − t o l e r a n c e s e t to 0 .5

105 % m (s c a l a r) − number o f rows

106 % n (s c a l a r) − number o f columns

107 % method (s c a l a r) − type o f c o n s t r uc t i n g operator

108 % Outputs : RA (kxn) − LHS o f l i n e a r system

109 % Rb (kx1) − RHS of l i n e a r system

110

111 k = c e i l (24∗ l og (n) /(3∗ e p s l ˆ2−2∗ e p s l ˆ3)) ;

17

112

113 RA = ze ro s (k , n) ; % p r e a l l o c a t i n g matrix f o r RA

114 Rb = ze ro s (k , 1) ; % p r e a l l o c a t i n g matrix f o r Rb

115 num data = round (m/2) ;

116 f o r row = 1 : k

117 % load the r i g h t rows

118 run sum RA = ze ro s (1 , n) ; % i n i t i a l i z e the row−th row o f RA

119 run sum Rb = 0 ; % i n i t i a l i z i n g running sum f o r RB

120 sgn = (2∗ randi ([0 , 1] , 1 , alpha) − 1) / s q r t (alpha) ;

121 j = randperm (m, alpha) ;

122 i f method == 2

123 i n t e r v a l i n d e x e s = f i x (l i n s p a c e (1 , m, alpha+1)) ;

124 j = ze ro s (1 , alpha) ;

125 f o r t = 1 : alpha

126 a = i n t e r v a l i n d e x e s (t) ;

127 b = i n t e r v a l i n d e x e s (t+1) ; % bound

128

129 j (1 , t)=randi ([a , b]) ;

130 end

131 end

132 f o r l =1: alpha

133 r l = j (l) ;%j (row , l) ;

134 i f r l <= num data

135 malig = 1 ;

136 fname = s t r c a t (” . . / Data/ l u n g c o l o n i m a g e s e t / c o l o n i m a g e s e t s /

co lon aca / co lonca ” , num2str (r l) , ” . jpeg ”) ;

137 e l s e

138 malig = −1;

139 fname = s t r c a t (” . . / Data/ l u n g c o l o n i m a g e s e t / c o l o n i m a g e s e t s /

co lon n / colonn ” , num2str (r l −num data) , ” . jpeg ”) ;

140 end

141

142 row l = sgn (l) ∗ l oad data (fname) ;%reshape (img , [1 , sz (1) ∗ sz (2) ∗ sz (3)]) ;

143 run sum RA = run sum RA + row l ;

144 run sum Rb = run sum Rb + sgn (l) ∗malig ;

145 end

146 RA(row , :) = run sum RA ;

147 Rb(row , :) = run sum Rb ;

148 end

149 end

7.3 SRHT

1 f unc t i on R = srht (m, k)

2

3 p = randsample (m, k) −1;

4

5 %% PHD

6

18

7 p = (dec2bin (p)− ’ 0 ’) ’ ; % get binary number o f s e l e c t e d rows (permutation matrix)

8 d = s ign (randn (m, 1)) ’ ; % matrix D as a vec to r

9

10 c o l s = dec2bin (0 :m−1)− ’ 0 ’ ; % i n d i c e s o f columns o f hadamard matrix

11 powers = (c o l s ∗p) ’ ; % powers o f e lementwise P∗H step without norma l i za t i on

12 rows = (−1) . ˆ powers ; % r a i s e power o f P∗H step without norma l i za t i on

13

14 n = c e i l (l og2 (m)) ; % to s c a l e to the next s m a l l e s t power o f 2

15 % t h i s e s s e n t i a l l y truncated the concatenated hadamard matrix with z e ro s

16 % without s t o r i n g z e ro s

17 R = s q r t (m/k) ∗(2ˆ(−n/2) ∗ rows) .∗ d ; % (PH) ∗D step

18 end

7.4 Subspace Projection

The code below is for the implementation of randomized SVD as described in Sec. 2.2:

1 f unc t i on U = rsvdLargeSca le (f i l e p a t h , s ca l e , eps l , p , q , vararg in)

2

3 temp = c e l l s t r (f i l e p a t h) ;

4 index = f i n d (temp{1} == ’ / ’ , 1 , ’ l a s t ’) ;

5 f i l e p a t h t e m p = ext ra c tBe f o r e (temp{1} , index) ;

6 num images = numel (d i r (f u l l f i l e (f i l e pa th t emp , ’ ∗ . jpeg ’))) ∗ 0 . 8 ;

7

8

9 t ra in image = imread (s t r c a t (f i l e p a t h , num2str (1) , ’ . jpeg ’)) ;

10 t ra in image = i m r e s i z e (t ra in image , s c a l e) ;

11

12 t ra in image = rgb2gray (t ra in image) ;

13

14 [x , y] = s i z e (t ra in image) ;

15

16 %% Computation o f k

17

18 m = num images ; % number o f p a t i e n t s i study

19 n = x∗y ;

20 e p s l = 0 . 5 ;

21 k=c e i l (24∗ l og (n) /(3∗ e p s l ˆ2−2∗ e p s l ˆ3)) ;

22

23 %% apply rSVD to each image

24 Z = ze ro s (n , k+p) ;

25

26 i f isempty (vararg in)

27 di sp (’ Using Gaussian Sketching ’)

28 R = randn (m, k+p) ;

29 f o r i = 1 : num images

30 t ra in image = imread (s t r c a t (f i l e p a t h , num2str (i) , ’ . jpeg ’)) ;

31

32 t ra in image = i m r e s i z e (t ra in image , s c a l e) ;

33 t ra in image = rgb2gray (t ra in image) ;

19

34 t ra in image = reshape (double (t ra in image) , [] , n) ’ ;

35

36 tempAR = tra in image ∗R(i , :) ;

37 Z = Z + tempAR ;

38 end

39

40 Z temp = ze ro s (s i z e (Z)) ;

41 f o r j = 1 : q

42 f o r i = 1 : num images

43 t ra in image = imread (s t r c a t (f i l e p a t h , num2str (i) , ’ . jpeg ’)) ;

44

45 t ra in image = i m r e s i z e (t ra in image , s c a l e) ;

46 t ra in image = rgb2gray (t ra in image) ;

47 t ra in image = reshape (double (t ra in image) , [] , n) ’ ;

48

49 Z i = tra in image ’∗Z ; % (X’∗Z) step f o r each image

50 Z temp = tra in image ∗ Z i + Z temp ; % X∗(X’∗Z) f o r each image

51

52 end

53 end

54 Z = Z temp ;

55

56 [Q, ˜] = qr (Z , 0) ; % QR f a c t o r i z a t i o n to get orthogona l vec to r Q

57

58 % Step 2 : Compute SVD on pro j e c t ed Y=Q’∗X;

59 temp Y = [] ;

60 f o r i = 1 : num images

61 t ra in image = imread (s t r c a t (f i l e p a t h , num2str (i) , ’ . jpeg ’)) ;

62

63 t ra in image = i m r e s i z e (t ra in image , s c a l e) ;

64 t ra in image = rgb2gray (t ra in image) ;

65 t ra in image = reshape (double (t ra in image) , [] , n) ’ ;

66

67 temp Y = [temp Y Q’∗ t ra in image] ;

68

69

70 end

71 Y = temp Y ;

72

73 [UY, S ,VT] = svd (Y, ’ econ ’) ;

74 U = Q∗UY;

75

76 e l s e

77 di sp (’ Using SRHT Sketching ’)

78 R = srht (m, k+p) ’ ;

79 f o r i = 1 : num images

80 t ra in image = imread (s t r c a t (f i l e p a t h , num2str (i) , ’ . jpeg ’)) ;

81

82 t ra in image = i m r e s i z e (t ra in image , s c a l e) ;

20

83 t ra in image = rgb2gray (t ra in image) ;

84 t ra in image = reshape (double (t ra in image) , [] , n) ’ ;

85

86 tempAR = tra in image ∗R(i , :) ;

87 Z = Z + tempAR ;

88 end

89

90 Z temp = ze ro s (s i z e (Z)) ;

91 f o r j = 1 : q

92 f o r i = 1 : num images

93 t ra in image = imread (s t r c a t (f i l e p a t h , num2str (i) , ’ . jpeg ’)) ;

94

95 t ra in image = i m r e s i z e (t ra in image , s c a l e) ;

96 t ra in image = rgb2gray (t ra in image) ;

97 t ra in image = reshape (double (t ra in image) , [] , n) ’ ;

98

99 Z i = tra in image ’∗Z ; % (X’∗Z) step f o r each image

100 Z temp = tra in image ∗ Z i + Z temp ; % X∗(X’∗Z) f o r each image

101

102 end

103 end

104 Z = Z temp ;

105

106 [Q, ˜] = qr (Z , 0) ; % QR f a c t o r i z a t i o n to get orthogona l vec to r Q

107

108 % Step 2 : Compute SVD on pro j e c t ed Y=Q’∗X;

109 temp Y = [] ;

110 f o r i = 1 : num images

111 t ra in image = imread (s t r c a t (f i l e p a t h , num2str (i) , ’ . jpeg ’)) ;

112

113 t ra in image = i m r e s i z e (t ra in image , s c a l e) ;

114 t ra in image = rgb2gray (t ra in image) ;

115 t ra in image = reshape (double (t ra in image) , [] , n) ’ ;

116

117 temp Y = [temp Y Q’∗ t ra in image] ;

118

119

120 end

121 Y = temp Y ;

122

123 [UY, S ,VT] = svd (Y, ’ econ ’) ;

124 U = Q∗UY;

125

126 end

127

128

129 end

21

	Introduction
	Theory and Methods
	Least Squares (LS) Method
	Randomized Singular Value Decomposition
	Johnson-Lindenstrauss (JL) Theorem
	Sparser Johnson-Lindenstrauss Transforms (SJLT)
	Subsampled randomized Hadamard Transform (SRHT)
	Subspace Projection

	Datasets Discussion
	Data Introduction
	Data Preparation for Computation

	Results
	Wisconsin Diagnostic Breast Cancer (WDBC)
	Histopathology images data (LC25000)

	Conclusions and future direction
	Acknowledgments
	Appendix
	JL
	SJLT
	SRHT
	Subspace Projection

