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Abstract. Gravitational Wave (GW) data is contaminated by many instrumental and environmental artifacts
which adversely affect the search sensitivity for astrophysical signals. For the artifacts that cannot
be eliminated in hardware, data processing must instead be used to identify and filter them out.
Once such artifact is the Wandering Line (WL), a chirp with unpredictable frequency evolution
that varies smoothly across a wide frequency band over a sustained period. Due to their large and
unpredictable frequency range, WLs are difficult to filter using traditional line removal techniques
without risking the removal of astrophysical signals. We propose a novel approach in which the WL
is split into smaller segments and Particle Swarm Optimization (PSO) is used to fit a quadratic
chirp model that is then subtracted from the data. We test this methodology on simulated WLs
generated using random cubic spline frequency functions and added i.i.d. Gaussian white noise. Our
results demonstrate that this approach successfully filters simulated WL artifacts with noise that
has a standard deviation (s.d.) up to 5 times the WL amplitude. This is more than the noise s.d. to
amplitude ratio of 4 we estimate from LIGO data, showing promise for suppressing such artifacts in
real GW observations.

1. Introduction. Detection of Gravitational Waves (GWs) by the Laser Interferometer
Gravitation Wave Observatory (LIGO) has allowed for a completely new set of tools with
which to investigate astrophysical events. To detect GWs, LIGO measures changes in length
with an extreme precision of 107¥m over 4 km, making data collection prone to a variety of
undesirable artifacts [1, 13]. The mitigation of these artifacts in turn allows for more accurate
study of GWs. If a particular artifact cannot be prevented with engineering, it must instead
be identified and eliminated from the output signal. These artifacts are only one part of this
noisy composite output signal, but must be accurately modeled despite this. Any inaccuracy
can instead alter the other desired signal components when subtracting out the model, thus
harming the clarity of GW observations.

This paper will focus on the modeling, and subsequent removal, of one such artifact type
known as a Wandering Line (WL) (Fig. 1). WLs are characterized by a continuously varying
frequency across a potentially wide band, making them difficult to model with traditional line
removal techniques. For example, Median Based Line Tracker is a line filtration method which
does not rely on any evolution models and is designed to minimize impact on transients [7].
However, it requires a fixed frequency range that is not feasible for WLs. Coherent Line
Removal on the other hand has proven successful at removing unwanted interference in the
GW spectrum, even for variable frequency [11]. However, the artifact must be present in
several harmonics, which may not be the case in general.

In this paper, we propose a novel approach in which the WL is split into smaller segments
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Figure 1. Bottom half: Spectrogram of a WL artifact from LIGO Hanford strain data H1-1126309928 from
GWOSC.org [2]. HI indicates the 1st Hanford Observatory detector followed by the GPS start time. Top half:
Reference sin wave of amplitude 0.25 and constant frequency 1340Hz (See Section V). For the Short-time Fast
Fourier Transform (STFT), Af is the width of frequency bins, At is the spacing the STFTs, and ot is the
standard deviation of the Gaussian weighting used for each window. The strength of each frequency bin at a
certain time is shown by the color mapping.

that are then fit as individual quadratic chirp models using a Particle Swarm Optimization
(PSO) algorithm. PSO uses iteratively updated 'particles’ that explore the parameter space
based on the best individual and group fits [5]. As such, this PSO Optimized Piecewise Chirps
model (POPC) allows for a flexible process that can be adapted to the widely varied shapes
and frequency ranges seen in WLs. Accuracy for this modeling is tested against increasing
levels of artificially added noise to mimic the difficulties of filtering the WL from a noisy
composite signal.

All investigations were conducted on simulated artifacts in a Python environment for
this preliminary study. Using simulated data allows us to isolate the WL artifact for better
performance characterization of the proposed method. Application to real data requires many
pre-processing steps that will be pursued in future work due to limitations of our code and
computing resources.

The paper is organized as follows. Section 2 covers the creation of the simulated WLs;
Section 3 discusses the approximations used with the Least Squares Fit evaluation; Section 4
discusses the PSO algorithm used for fit minimization; Finally, Section 5 discusses the filtration
performance with a conclusion following in Section 6.

2. Artifact Generation. To create simulated WL artifacts, we model the randomly vary-
ing frequency evolution by a smooth parametric function

(2.1) z(t; Q) = a(t) cos(o(t; 2)),

where ¢ is the time variable, Q) is the set of random-valued parameters, a(t) is the amplitude,
and ¢(t; Q) is the phase. We chose to model the instantaneous frequency, f(¢;Q2) = %d)(t; Q),
10
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as a cubic spline. For this, we use B-spline functions [3] that generate a 2nd derivative
continuous piecewise cubic polynomial function that interpolates N number of 2-dimensional
coordinates () called breakpoints, which act as our model’s parameters. Specifically, 2 =
{(tx, = kD, fx)}, where k = 0,1,...,N — 1 and D is a constant. For this investigation, we
used breakpoints with frequency values drawn randomly from a uniform distribution over a
user-decided range with mean fy and set D = % (Fig. 2). f(t;€Q) can then be converted
to phase using a numerical integrator, after which independent and identically distributed
(ii.d.) Gaussian noise with standard deviation o is added to every data point of z(t) to
mimic experimental noise. Although the amplitude also varies in time for WLs, a(t) will be
fixed to a constant value for this initial study.
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Figure 2. Top: Example of a simulated WL’s frequency domain generated with a quadratic B-Spline function
(red dotted line) using randomly generated breakpoints (red dots). Here fo = 20Hz and D = 0.25s. Middle:
The simulated WL artifact generated using the frequency function above. Bottom: The final WL artifact with
added i.i.d. Gaussian noise of standard deviation 0.5 times the amplitude.

3. Fit Evaluation. While the simulated WL is generated using the model given in (2.1),
the POPC model we use to fit to the WL is different. This is done to reduce computational
costs and the complexity of the optimization problem involved in fitting. First, we assume
that if the WL data, z, is broken up into small segments, then the phase for each can be
approximated as a degree 3 polynomial. This results in the model

(3.1) S(t;0) = acos(do + wot + wit? + wat?).

where 6 = {a, ¢g,wo,w1,ws} is our set of parameters. A cubic degree was chosen as a com-
promise between computational cost and accuracy for this initial study.
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We will be using the ordinary Least Squares Function (LSF) to evaluate the fitness of

this model. Finding the best fit for each segment then becomes a problem of minimizing the
function

(3.2) Z(%‘ — S(t;;0))?

over the 5 parameters of §. However, the best fit values ¢y and a can be minimized analytically

given wy, w1, and wy (Appendix A). As such, we only need to vary those 3 coefficients, greatly
reducing computational cost.
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Figure 3. LSF versus the number of independent PSO runs as averaged over 50 separately fit WL segments.
A fized low i.i.d. Gaussian Noise was used with standard deviation é times the amplitude.

4. Minimization Using PSO. Since the parameters wg, w1, and wy appear non-linearly,
the behavior of the LSF parameter space is extremely difficult to pr edict. Thus, many com-
mon minimization algorithms, like Gradient Descent [10], are prone to getting trapped by
local minima. Instead, we require an approach that works for a general multi-modal func-
tion. We used a type of Swarm Intelligence algorithm well suited for this known as Particle
Swam Optimization (PSO) [6]. PSO uses a number of test particles that begin with random
coordinates and velocities within the parameter space and move in discrete iterations. Each
iteration, a particle’s velocity is weighted towards both their previous personal best fit and
the entire group’s best fit. T his o ften r esults in a gradual c oncentration o f p articles about
a good solution after one particle discovers it, leading to higher resolution in that area and
the potential for better solutions [12, 8]. After a preset number of maximum iterations, the
parameters that produced the best fit are returned and one “run” is ¢ ompleted. T hen, since
each run has random starting conditions, better fits can be produced by performing multiple

12



FILTERING LINE ARTIFACTS IN GRAVITATIONAL WAVES USING PSO OPTIMIZED PIECEWISE
CHIRPS
runs and selecting the best solution from all of them. The mixture of random chance and
group behavior is less fine tuned than other minimization methods, but does well at finding
the global minimum for a generic search space at low computational cost.

Additionally, we constrained the particles to a limited domain designed to contain the
desired minimum. Using Fourier analysis, we can determine the frequency range for each
segment, giving wg € [27 fimin, 27 fmaz). Next, note that for the cubic phase case, the fre-
quency behaves quadratically. Assuming the segment lengths are sufficiently short to justify
the quadratic approximation, each segment should contain at most one extremum. Conse-
quently, for a segment duration of At, the parameter bounds can be reasonably estimated
as wy € [—ﬂfm“IA_tf’”i",me“””A_tfmm] and wo € [—%ﬂfmaz_tgﬁ"i", %Wf’"“z_tzfm"”]. While the global
minimum may lie outside of this domain, we observed that increasing the search space often
led to segment models that failed to transition smoothly between adjacent segments. This
is because for POPC an entire WL is modeled as a series of independently fit segments,
meaning there is an inherent discontinuity between each. By restricting the domains for all
segments, we decrease the likelihood that adjacent segments have substantially different mod-
els at the discontinuity, better reflecting the continuous underlying WL behavior in the final
reconstructed artifact.

For this investigation we used the scikit-opt, an open source Swarm Intelligence package
for Python [4]. The number of particles, particle inertia, and the weighting towards group and
personal best fits were all chosen from standard values [8]. In order to determine the number
of runs to use, we measured the POPC model’s best LSF (3.2) for 50 different segments of a
simulated WL as a function of runs completed. As the number of runs increases, the chance
of finding an even better LSF than in previous runs drops sharply (Fig. 3). This suggests that
a run maximum of 10 should produce a good fit without incurring unnecessary computational
cost.

Lastly, one additional modification was made to increase fit consistency. We found that
occasionally, some segments were difficult to fit accurately when the PSO particles would
repeatedly settle on the same poor local minima over many different runs. To remedy this, we
split the segment if the model has not achieved an LSF below some predetermined threshold
after 10 runs. Each of these half segments are then modeled using the same PSO process.
The new half models are only kept if the sum of their LSFs is better than the original model’s
LSF, otherwise the original model is used. The specific threshold value for this study was
chosen heuristically by increasing it until statistically significant outlier LSF segment values
dropped to a rate below 5% for a given WL.

5. Results. Within this simulated environment, this POPC methodology showed phe-
nomenally strong filtration results. Three individual examples with increasing noise levels
top to bottom can be seen in Fig. 4. At an already high relative i.i.d. Gaussian noise of 2.5
standard deviations per amplitude (%), POPC is able to consistently and accurately match
the underlying frequency function of the simulated WL. After subtraction of this POPC fit,
the Power Spectral Density (PSD) peak due to the WL is entirely absent from the residual.
As the noise levels increase to 2 = 5.0, the spectrogram begins revealing less continuous and
occasionally inaccurate models from the POPC fit. For the majority of segments, t hese issues
have a negligible impact on the quality of the model. As a result, the filtration is still largely
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Figure 4. PSO filtration results of simulated WLs for & different noise levels (¢ = 2.5,5.0,7.5 from top to
bottom). The left column shows the Power Spectral Densities before and after the PSO model is subtracted from
the WL. The right column shows spectrograms of the PSO models themselves as compared to the underlying
frequency function of the WL (red). See Fig. 1 for the spectrogram settings description.

successful, even if a few segment models have notably poor fits. This decreased performance
is not reflected in the PSD as clearly, in part due to the frequency domain restrictions detailed
in Section 4. Once the noise begins approaching extremely high levels near ¢ = 7.5, the model
is ineffective, only occasionally matching the underlying artifact’s frequency. In the PSD, we
can see how the subtraction of this poor fit affects the residual signal outside the frequency
range of the original peak.

To compare this performance to a LIGO environment, we can estimate both the standard
deviation of background noise and the WL amplitude from strain data H1-1126309928. For
WL amplitude, we add a sin wave of constant 1340Hz frequency to the LIGO signal and vary
the amplitude until it has a similar spectrogram color mapping to the WL (Fig. 1). This
process gives us an estimate of 0.25 for the WL amplitude. For background noise standard
deviation, we take a Discrete Fourier Transform (DFT),

N-1
k
(5.1) Xk:an-exp{—Qﬂ'i%} k=0,....n—1
n=0
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Figure 5. Discrete Fourier Transform of LIGO Hanford strain data H1-1126309928 from GWOSC.org [2]
(See Fig. 1). The selected frequency domain with only background noise is shown in red.

to convert data in the time domain, x,, to the frequency domain, X (Fig. 5). Now consider
Parseval’s formula [9],

N-1 1 N-1
(5.2) No? ~ in:NZXk-X_k,
n=0 k=0

which relates the variance for a function in the frequency and time domains, where o2 is

average variance of each point in the time domain. Next, we can assume the broadband
background noise is uniformly distributed across the frequency range since this LIGO data
has already been whitened. If we then isolate a segment in the frequency domain with only
background noise (1400-1900Hz), we can use Parseval’s formula and correct for the segment’s
shorter domain with

N 1& -
2 o
k=i
1 1 & .
2 o
(5.4) o ~i2_i1NZXk-Xk-
k=11

In doing so, we find a standard deviation of nearly 1 for each point in the time domain, meaning
a relative noise standard deviation of approximately 4 for real LIGO data. By comparison,
15
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Figure 6. Mean Squared Error of the PSO model (red) versus the added standard deviation of the i.i.d.
Gaussian noise relative to amplitude. An ideal model that leaves only the i.i.d. Gaussian noise is shown in blue.

the previous qualitative analysis of POPC’s performance in the simulated environment showed
strong to moderate performance below levels of 5 standard deviations per WL amplitude. This
suggests that POPC in its current form could successfully filter LIGO WL artifacts given only
this broadband background noise.

The performance can also be evaluated more quantitatively by comparing the Mean
Squared Error (MSE) of the POPC model to an ideal model that completely matches the
underlying WL. The MSE is given by

k
1
(5.5) MSE =~ Z(m — S(ti;6))2.
=0
If the model is ideal, all that will be left in the residual is the added i.i.d. Gaussian noise. As
such,

k
1
(5.6) MSBigear = 7 > N(u=0,0%)?
i=0
2 k 2
g g
5.7 =—> 7~ —xi

where N (u,0?) is a normal distribution, Z is the standard normal, and Xi is the Chi-Squared
distribution. The mean of xi is simply k, leading to the mean of an ideal model’s MSE being
just o2
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The POPC model was then tested on 10 independent WLs with the MSE averaged across
them. This was repeated for a range of fixed noise levels and compared to the ideal model
(Fig. 6). POPC still scales approximately with o2, but produces MSEs slightly below the
ideal case. Thus, the PSO model must be overfitting to the i.i.d. Gaussian noise. For low
values of o, this difference is very small and suggests the model operates near the ideal. As o
increases, this discrepancy gradually widens, indicating that this overfitting worsens at high
noise. These results align with the qualitative picture from Fig. 4, strongly suggesting that
POPC does negligible damage to the surrounding signal below these extremely high levels of
noise.

6. Conclusions. We have outlined a new methodology for removing a type of artifact in
LIGO data known as Wandering Lines (WLs). Simulated WLs were created using cubic B-
Splines and random breakpoints to mimic their unpredictable frequency variation over time.
i.i.d. Gaussian noise is added at the end for better comparison with an experimental setting.
The filtration of this artifact then uses a second model, instead approximating small segments
of the WL as quadratic chirps. Taking amplitude to be constant, the Least Squares Function
(LSF) for each chirp model is shown to be minimized over only 3 parameters, thus reducing
complexity. Particle Swarm Optimization (PSO) is then used to minimize the LSF over the
non-linear parameter space and produce the model.

This PSO Optimized Piecewise Chirps (POPC) methodology proves to be extremely effec-
tive at removing the WL, even up to very noisy artifacts with Gaussian standard deviations
of 5 per amplitude. We estimated the actual LIGO broadband background noise standard
deviation to be a lower value of 4 times the WL amplitude, supporting the case for POPC’s
use in real data. Additionally, negligible damage to the surrounding signal is seen at and
below these levels of noise in the simulated environment. As the standard deviation of the
noise increases further, this POPC model begins substantially overfitting, resulting in worse
fit quality and some extraneous d amage t o t he surrounding signal.

One primary limitation of this study is the assumption of constant amplitude in both
the POPC model and simulated WLs, which is not the case for real WLs. This limitation
is relaxed slightly for the POPC model, since the amplitude is only assumed to be constant
over small segments. If the amplitude of a real WL changes slowly enough over time, constant
amplitude can be a decent approximation for each individual segment. Another limitation of
the model comes from a different approximation made in the parameter r eduction. T here we
treated the sum over time of the chirp model squared as constant with respect to the search
parameters. This was observed to cause an underestimation of the PSO model’s amplitude
resulting in worse quality fits, specifically for WLs with a very slow change in fr equency. Due
to time constraints this issue was not investigated further, but it may be important to consider
for further applications. One final limitation comes from t he simplified, simulated data that
includes only one white noise source and the WL. In LIGO data the composite signals will
have many different c omponents t o o bfuscate W L fi ltration. Th is me thodology sh ould be
further tested on LIGO data by first bandpassing the WL frequency range to reduce the effect
of these other components before fitting.

Overall, POPC works exceedingly well on a wide range of simulated WL data, even for
high levels of noise. While limited by simplifying assumptions and synthetic data, the con-
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sistent performance of the methodology at levels of noise comparable to LIGO is promising.
Future studies may find it beneficial to investigate POPC with different polynomial chirp
approximations for potentially stronger results. Going forward, this low cost approach should
be explored more extensively to build towards eventual applications to real LIGO data.

Appendix A. Least Squares Fit Parameter Reduction. Let our model be given by
S(t;0) == a cos(\(t;w))+do) and A(t; w) = wot-+wit?+...w, 11", where § = {a, ¢o,wo, W1, -y W1}
and w = {wp, w1, ...wp—1}. For some dataset x = {zg,x1, ..., 25} and t = {tg, t1,...,tx} we can
attempt to find the best fit values of 8 through minimization of the least squares function,

(A.1) mlnz — S(ti;6)

If we assume ¢ and a to be dependent on w, then we can expand and solve the minimizations
sequentially with

k
(A.2) min min r%%)n ;(:rz — S(t;;0))*.
Beginning with ¢y,
(A.3)
k k
min Y (z; — S(t;0))? =min Y (z; — a cos(A(t;w) + ¢p))>
o) =0 (o) =0
k
(A.4) = r%in (z; — [a cos(A(t;;w)) cos(dg) — a sin(A(t;w)) sin(¢p)])?.
¢ =0

For simplification, let cos(A(t;;w)) = ¢, sin(A(t;;w)) = s;, X = cos(¢y), and Y = sin(¢y). If
we now minimize over X and Y, an additional constraint must be added to retain the single
dimension of ¢, namely X? +Y? = 1. We can then substitute and simplify:

k
(A.5) = I)I(I{}Z x; —|—a202X2 —|—a232Y2 —2axz;ic; X +2ax;8Y — 2a2cisiXY)
=0
k
A6 = N -2 AX + BY].
(A-6) ZO ita amax[AX + BY]
Here we substituted A = Zf:o zic; and B = — Z?:o x; 8; and made a few simplifying approx-

imations. First, that Zf:o cos(A(t;)) sin(A(t;)) = Z?:o 3 sin(2A(t;)) = 0 since the negative
and positive values largely cancel out. Second, that Zf:o c? ~ Ef:o s7, since the 7 phase
difference makes a negligible difference to the sum. This is only a good approximation for a
large number of oscillations over the time series, rendering the phase discrepancy a negligible
portion of either sum. As such, we make the substitutions Zf:o ¢? = N and Zf:o s? = N.
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From X2 +Y? =1, we know the maximum occurs when

(A7) X = cos(¢p) = é
) B
(A.8) Y =sin(¢p) = -

where r = /A2 + B2. Thus, we can define the best fit ¢¢ in terms of the w parameters,

(A.9) tan(¢g) = % = ¢ = tan_l(g).

Plugging (A.7) and (A.8) back into (A.6) we find that

k

(A.10) min Y (z; — a cos(A(t;;w)) + ¢o)> Z z; +a’> N — 2ar,
% 130

and can now move onto minimization over a. The three terms form a quadratic, meaning
the argmin is a = §. Thus, we find that the minimization over 6 is solely dependent on

minimization over w, namely

(A.11) mmz ;— S(t;;0))? —HllIl [sz ] .

Lastly, we can make the approximation that IV is constant over different w values for sampling
rates much greater than the maximum frequency given by A. The final minimization becomes

(A.12) mlnz S(ti;0)) Zfﬁz Ty mex ]
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