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In-Silico Medicine: Multiscale 
Modeling of Hematological Disorders
By Xuejin Li and George Em 
Karniadakis

Human red blood cells (RBCs) have 
remarkable deformability, squeezing 

through narrow capillaries as small as three 
microns in diameter without any damage. 
Several pathological conditions, including 
malaria, sickle cell disease (SCD), and dia-
betes can alter the shape and deformability 
of circulating RBCs. Recent work demon-
strates how new computational and ana-
lytical models can reveal the ways in which 
tiny inter-endothelial slits in the spleen pre-
vent old or diseased RBCs from re-entering 
the systemic circulation. A general com-
putational multiscale framework for RBC 
modeling is essential in quantifying the 
altered morphological and biomechanical 
properties of RBCs in the aforementioned 
diseases. One can apply this computational 
framework to other blood pathologies, e.g., 
in patients with cancer or HIV.

Why Computational Models?
Blood is a non-Newtonian fluid. The 

movement of RBCs through and with plas-
ma, which is closely associated with RBC 
deformability, determines blood’s rheologi-
cal properties. Advances in experimental 
techniques have enabled accurate measure-
ments of RBC deformability. However, 
while most of these techniques are suitable 
for RBC populations, i.e., measuring prop-
erties averaged over all RBCs in a blood 
sample, they do not account for the hetero-
geneity in shape or size differences within 
the RBC population. A major challenge for 
single-cell techniques is the need to obtain a 
realistic geometry, as experiments on small 
blood vessels require an especially careful 
vessel preparation, and in certain condi-
tions the precise determination of RBC 
membrane properties is difficult to achieve, 
in part due to resolution limitations. Hence, 
computational models, such as continuum-

based and particle-based RBC models, pro-
vide a promising means for tackling a broad 
range of dynamical and rheological blood-
related problems [3].

Continuum-based RBC models treat the 
RBC membrane and intracellular fluids as 
homogeneous materials, and describe the 
modeling system using locally-averaged vari-
ables, such as velocity, density, and stress, 
with ordinary and partial differential equa-
tions often governing kinematics and dynam-
ics. While continuum-based RBC models 
enable simulations of large-scale blood flow, 
they do not provide the detailed dynam-
ics of local subcellular structures. RBC 
models based on particle methods, where 
mesoscopic particle-collision models are 
employed, fill this gap. Mesoscopic particle-
based methods are coarse-grained analogs 
of the molecular dynamics method, and can 
be rigorously derived through the Mori-
Zwanzig formalism [4]. Such RBC models 
are increasingly popular as a 
promising tool for modeling 
the structural, mechanical, and 
rheological properties of RBCs. 
Examples include dynamic 
deformability for various stages 
of Plasmodium falciparum-
infected RBCs (Pf-RBCs), and 
membrane flickering of human 
RBCs. These studies lead to bet-
ter understanding of the micro-
vascular transport of RBCs in 
healthy and diseased states.

Why Two-component 
RBC models?

A normal RBC is a nucleus-
free cell; it adopts a distinctive 
biconcave shape of about 8.0 µm 
in diameter and 2.0 µm in thick-
ness. The membrane of an RBC 
consists of a lipid bilayer sup-
ported by an attached spectrin 
network (cytoskeleton); they 

are connected by transmembrane proteins, 
such as band-3. Most RBC models depict 
the membrane as a single shell with effec-
tive properties that represent the combined 
effects of lipid bilayer and spectrin network, 
and are referred to as one-component RBC 
models. Under normal conditions, the cyto-
skeleton is attached to the lipid bilayer from 
the cytoplasmic side. However, under certain 
pathological conditions, such as SCD and 
other hereditary disorders, the cytoskeleton 
may dissociate from the lipid bilayer. The 
biomechanical properties associated with 
the bilayer-cytoskeleton interactions strongly 
influence cell function and progression of 
RBC diseases. One-component RBC models 
cannot facilitate detailed whole-cell explora-
tion of diverse biophysical and biomechani-
cal problems involved in such cases. There 
is, hence, a compelling need to develop a 
more realistic RBC representation, e.g., to 

Figure 1. Two-step multiscale framework for red blood cell 
(RBC) modeling. Image adapted from [1].

See In-Silico Medicine on page 3

Explaining the East/West 
Asymmetry of Jet Lag
Dimension Reduction Methods for 
Analyzing Networks of Circadian Oscillators
By Thomas M. Antonsen, Michelle 
Girvan, Zhixin Lu, and Edward Ott

Jet lag is a common experience for air-
plane travelers crossing multiple time 

zones. Typical symptoms include drowsi-
ness, discomfort, reduced functionality 
during the local daytime, and difficulty 
sleeping during the local nighttime. Simply 
explained, the human body follows a circa-
dian rhythm that synchronizes with the local 
24-hour day/night cycle of external natural 
conditions (particularly the rising and set-
ting of the sun) and social conditions. Upon 
rapid crossing of several time zones, the 
body’s circadian oscillation needs time to 
resynchronize to the local oscillation phase 
of the external conditions; this resynchroni-
zation phase manifests as jet lag symptoms 
in travelers. Since resynchronization of an 
oscillator is a dynamical process, this phe-
nomenon lends itself to mathematical mod-
eling from a dynamical systems perspective.

While the body produces many signals 
that help determine its circadian rhythm, 

one bodily region seems particularly impor-
tant in this process: the suprachiasmatic 
nucleus (SCN), a tiny region of the brain’s 
hippocampus. Physiological studies show 
that the SCN contains of the order of 104 

neural oscillators, and that it is reasonable 
to assume that, in isolation, the periods of 
individual oscillators are distributed with 
a small dispersion around a mean slight-
ly longer than 24 hours. When coupled 
together within the SCN, these oscillators 
are thought to undergo collective synchro-
nization with each other as well as with 
external stimuli experienced by the indi-
vidual, e.g., the rising and setting of the 
sun. This information provides the basis for 
our model’s construction, as well as others 
that have preceded it. The modeling that 
we employ [4], however, is different from 
previous attempts in that we start at the 
microscopic level of the individual coupled 
SCN oscillators, but then reduce the high-
dimensional microscopic description to a 
low-dimensional macroscopic description. 

See Jet Lag on page 4

Dynamical Systems
 Special Issue

Check out articles related to dynamical systems in this special 
issue, which offers a preview of what to expect at the upcoming SIAM 

Conference on Applications of Dynamical Systems.

Vegetation patterns evolve through gaps ®labyrinths ®spots as ecosystem 
aridity increases in a vegetation model. Image credit: Karna Gowda.

In the article “Modeling Vegetation Patterns in Vulnerable Ecosystems” on 
page 6, Lakshmi Chandrasekaran describes work by Mary Silber and her 
group to mathematically understand repetitive patterns of vegetation in dry 
and arid regions, such as the Horn of Africa. Silber will present this research at 
the 2017 SIAM Conference on Applications of Dynamical Systems, to be held 
in Snowbird, Utah, from May 21-25. 
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7	 Analyzing Multiple Time 
Scales in Two-Dimensional 
Fluids Using Dynamical 
Systems

	 The time scales over which 
fluids evolve have a critical 
impact on the physical systems 
in which they arise. Margaret 
Beck and C. Eugene Wayne 
describe recent investigations—
from a dynamical systems point 
of view—that are beginning 
to shed light on the origin of 
these time scales in the case of 
two-dimensional fluid flows.
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 	 Increasing Our Under-

standing of the Celestial
	 James Case reviews Calculating 

the Cosmos: How Mathematics 
Unveils the Universe, in which 
author Ian Stewart details note-
worthy conjectures regarding the 
nature and extent of the cosmos, 
from the earliest hypotheses to 
current scientific consensus.

9	 SIAGA: A New Window for 
Algebra and Geometry

	 Bernd Sturmfels, editor-in-
chief of the SIAM Journal on 
Applied Algebra and Geometry 
(SIAGA), offers a glimpse into 
SIAM’s newest journal. SIAGA, 
which focuses on algebraic, 
geometric, and topological 
methods with strong ties to 
applications, launched last 
month with its first nine articles.

12	 A New Twisting 
Somersault

	 The Olympic sport of spring-
board and platform diving 
involves eye-pleasing aerial 
acrobatics. Mathematical study 
of this aerial motion has led 
to the discovery of “513XD,” 
a tricky new dive with five 
full twists. Holger Dullin 
describes the dynamics behind 
513XD; while it has not yet 
been performed, Dullin and 
his research team believe its 
execution is humanly possible.
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and Announcements
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Telling a Good Story at Conferences
With peak conference season not far 

away, many of us will soon turn 
our attention to writing talks. In doing so, 
we need to know our audience and put 
ourselves in the place of a typical listener. 
I’m sure I am not alone in having two 
particular wishes when attending a talk. 
First, I want to hear a good story. We all 
like to learn why the speaker is working 
on a given problem, what difficulties were 
faced, and how they were overcome. And 
the more personal the story—unique to the 
speaker—the better. Second, I want to take 
away a good idea, one that I can perhaps 
utilize in my own work.

All too often, though, the story and the 
ideas are obscured by a surfeit of low-
level detail and a profusion of equations. 
Equations are useful only if they can be 
read and understood, so given the lim-
ited time that a slide is displayed and the 
inadequate legibility caused by imperfect 
projectors and lighting, the old adage “less 
is more” applies. And slide text should be 
as large as possible, for the benefit of those 
of us with less than perfect eyesight.

It is not necessary to tell the whole story. 
The narrative needs to be pared down 
in order to communicate the key ideas 
and conclusions in the lim-
ited time available. Every 
unnecessary word and 
symbol should be excised 
from the slides.

I recently spent some 
time looking through back 
issues of SIAM News held at the SIAM 
office in Philadelphia, PA. An article in 
the October 1996 issue reports on a mini-
symposium on oral communication held at 
that summer’s Annual Meeting in Kansas 
City, MO. Margaret Wright, then-president 
of SIAM and a panelist at the minisym-
posium, advised, “In planning any talk, 
ask yourself, ‘What do I want to convey? 

What should the 
audience remember 
– later today, next 
week, next year?’” 
The article is full 
of excellent advice. 
Indeed, the SIAM 
News archive is a 
real treasure trove, 
with many arti-
cles still pertinent 
today—years after 
publication—and 
others of histori-
cal interest. I am 
hoping that SIAM 
will be able to digi-
tize the complete 
archive and make 
it available online.

My first official 
duty as SIAM pres-
ident was to intro-
duce the SIAM 
Invited Address by Irene Gamba at the 
Joint Mathematics Meetings (JMM) in 
Atlanta, GA, in early January. This was 
the largest meeting I’ve ever attended, with 
over 6,000 delegates. I took the opportu-

nity to attend some sessions 
on the history of mathemat-
ics. These talks have a natu-
ral story, but still need to be 
presented well – and they 
were. Some speakers read 
from a script, as is com-

mon in history talks. A useful tip for less-
experienced presenters is to write down 
what you want to say for the introduction 
and conclusion of the talk. Ideally, learn 
the words and speak them naturally, but if 
nerves take over or your memory fails, you 
can always read them out.

An interesting fact I learned from one of 
these talks is that applied mathematician 

FROM  THE  SIAM 
PRESIDENT

By Nicholas Higham

Scott Bagwell of Swansea University (left) won first prize in the student poster competition at 
the Annual Meeting of the UK and Republic of Ireland Section of SIAM, held January 12, 2017 
at the University of Strathclyde. Professor Des Higham, president of the SIAM UKIE Section, 
presents Bagwell with his prize. The poster can be viewed online at http://maths.manchester.
ac.uk/siam-ukie/annual2017. Image credit: Nicholas Higham.

Richard Bellman, statistician Jon Tukey, 
and computer scientist John McCarthy all 
had the same Ph.D. advisor. Can you guess 
who? The answer is in the footnote.1 

While at JMM, I picked up a couple of 
other tips about giving talks. One is that it 
is beneficial to provide a shortened URL 
on the first or second slide from which the 
audience can download the talk and fol-
low along or investigate links. The other 
tip is to 3D-print some aspect of the talk’s 
mathematics and pass it around the audi-
ence. Finding something suitable to print, 
however, may not be easy!

It’s good to see posters growing in 
popularity at SIAM conferences. There 
were 22 posters and six talks at the Annual 
Meeting of the UK and Republic of Ireland 
Section of SIAM this January, allowing a 
wide variety of mathematics to be pre-
sented in one day.

A recent innovation at the SIAM 
Conference on Computational Science 
and Engineering and the SIAM Annual 
Meeting has been minisymposteria: mini-
symposia for posters. A minisymposte-
rium organizer collects poster submissions 
on a particular topic, which are colo-
cated in the display area. I co-organized a 
minisymposterium with Françoise Tisseur 
at the 2016 Annual Meeting (AN16) in 
Boston, MA, and we managed to attract 22 
posters without too much effort. This is a 
great way to feature a research topic with-
out constraints on the number of present-
ers and competition from parallel sessions 
that affect minisymposia.

The option nowadays to print on fabric 
has made giving poster presentations more 
attractive. These posters can be carried 
folded, within a suitcase, without the need 
for a cardboard tube. Our experience in 
Manchester with fabric posters, which cost 
a little more than paper ones, has been 
very positive, and we have had no problem 
with creasing. Just don’t forget to collect 
your poster by the after-session deadline, 
as “abandoned” posters usually get thrown 
away when poster boards are removed.

At AN16, SIAM experimented with 
e-posters: large electronic displays that allow 
interactive material to be displayed from a 
laptop. E-posters were also featured at the 
2017 SIAM Conference on Computational 
Science and Engineering in Atlanta, GA, in 
late February. If you attended this meeting, 
be sure to provide feedback on e-posters 
(and other aspects) to meetings@siam.org, 
as this will help us decide whether to con-
tinue offering this option.

Nicholas Higham is the Richardson 
Professor of Applied Mathematics at the 
University of Manchester. He is the current 
president of SIAM.

1  Pure mathematician Solomon Lefschetz

Mathematician John de Pillis regularly contributed cartoons to SIAM 
News from the 1980s onwards. Imbued with de Pillis’s unique sense 
of humor, these cartoons are as relevant today as when they were first 
published. SIAM News will reprint selected cartoons in future issues, and 
SIAM hopes to make the complete set available online in due course.
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endow the spectrin-based RBC models with 
more accurate structure, thus considering the 
lipid bilayer and cytoskeleton separately but 
also including the transmembrane proteins. 

More recent efforts have focused on 
this approach, leading to a two-component 
composite model of the RBC membrane 
with explicit descriptions of lipid bilayer, 
cytoskeleton, and transmembrane proteins 
using coarse-grained molecular dynam-
ics (CGMD) [2]. This CGMD membrane 
model has been successfully used to study 
membrane-related problems in RBCs, 
such as the multiple stiffening effects of 
nanoscale knobs on Pf-RBCs [8]. Recently, 
a two-component whole-cell model was also 
developed and implemented using dissipat-
ed particle dynamics (DPD) [5]. The DPD-
based RBC model also separately accounts 
for the lipid bilayer and cytoskeleton but 
implicitly includes transmembrane proteins; 
thus, it is computationally more efficient 
than the CGMD model for RBC modeling at 
the whole-cell level, which has been applied 
to investigate RBC response and dynamics 
in various blood flow conditions.

Why a Two-step Multiscale 
Framework for RBC Modeling?

Computational RBC modeling can pre-
dict properties beyond available experi-
mental measurements [5, 8]. Modeling a 
small piece of cell membrane with the two-
component composite model can sometimes 
evaluate modifications of RBC membrane 
biomechanics, including bending rigid-
ity and shear modulus. However, model-
ing only a portion of the RBC membrane 
does not efficiently depict the whole-cell 
characteristics strongly related to RBC bio-
mechanics and biorheology. On the other 
hand, the lack of molecular details in the 
two-component whole-cell model may limit 
its predictive capacity in identifying key 
factors that cause the reorganization of the 
RBC membrane. Incorporating the neces-
sary molecular information from a molec-
ular-detailed composite membrane model 
into a more coarse-grained whole-cell 
model effectively addresses this problem. 
We have recently developed and validated 
a two-step multiscale framework for RBC 
modeling by interfacing the two-component 
CGMD and DPD models (see Figure 1, 
on page 1). The only experimental input 
required is information about the struc-
tural characteristics of the RBC membrane. 
Then, we perform CGMD simulations to 
compute the shear modulus, bending stiff-
ness, and network parameters of a small 
RBC patch, which we use as input to DPD 
simulations to predict the stress field and 
morphology of defective RBCs.

In-silico Predictions
The human spleen acts primarily as a 

blood filter. By using the simpler one-com-
ponent whole-cell model based on DPD, we 

present a recent mesoscopic computational 
study of physiological and pathological 
RBCs passing through the spleen that quan-
tifies biophysical limits for splenic slit clear-
ance. A range of possible shapes and sizes 
allow RBCs to move through the splenic 
slits (see Figure 2). These closely match the 
normal ranges observed in healthy human 
RBCs, with surface areas ranging from 80 
to 180 µm2 and volumes ranging from 60 to 
160 µm3. However, diseases such as malaria 
can significantly impact the size and shape 
of affected RBCs, causing them to be fil-
tered by the spleen.

Using the two-step multiscale frame-
work for RBC modeling, we studied the 
biomechanical characteristics of healthy 
RBCs (H-RBCs) and Pf-RBCs under tensile 
forcing, and examined the RBC stretch-
ing response to large deformation [1]. Our 
results showed that both the axial and 
transverse diameters were in agreement 
with previous experimental measurements 
(see Figure 3, left). We also investigated the 
influence of knob density on RBC deform-
ability and found a decrease in elonga-
tion index (EI) for Pf-RBCs at trophozoite 
(T-RBC) and schizont (S-RBC) stages of 
the plasmodium parasite (see Figure 3, 
right); the increase of knob density indicates 
that the rigid nanoscale knobs contribute to 
cell membrane stiffness.

Outlook
Our aforementioned simulation high-

lights demonstrate that stochastic multi-
scale modeling, based on particle methods 
to simulate RBCs at the protein level, can 
facilitate the effective study of longstanding 
biophysical questions not possible by other 
computational methods or experimental 
techniques. One can further extend the two-
step computational framework to inves-
tigate the following problems related to 
pathological blood flow: (i) Development of 
hybrid models, which encompass all scales 
by combining continuum description for 
blood plasma with particle description for 
RBCs, for cost-effective simulations. Such 
simulations could shed light on the coupling 
of biology, chemistry, and mechanics (the 
“triple-point”). (ii) Development of pre-

dictive patient-specific models to describe 
heterogeneity-related issues in hematologi-
cal disorders such as malaria, diabetes, or 
SCD. Perhaps the most important extension 
is to connect such multiscale models to all 
the “omics” technologies (genomics, pro-
teomics, metabolomics, etc.) to implement 
the vision of precision medicine advocated 
both in the U.S. and around the world.

Acknowledgments: This work was sup-
ported by NIH grants U01HL114476 and 
U01HL116323.
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In-Silico Medicine
Continued from page 1

Figure 2. Predicted volume-area relationship of RBC population for splenic slit clearance, com-
pared with experiments. Healthy RBCs with volumes and areas to the left of the curves would 
cross the splenic slits, whereas RBCs located to the right of the curves would be filtered out. 
Image adapted from [6].

Figure 3. Shape deformation of RBCs under tensile forcing. Left. Stretching response of RBCs compared with experiments from [7]. Right.
Effect of knob density on cell deformability of T-RBCs and S-RBCs, stages of the malaria parasite. Image adapted from [1].
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Our model’s primary purpose is to address 
the empirical observation that jet lag is 
more severe (i.e., requires a longer recovery 
time) for eastward travel than for westward 
travel across the same number of time 
zones. Specifically, we explore to what 
extent this east/west jet lag asymmetry may 
be explained by the small amount by which 
the average SCN period exceeds 24 hours.

Since we wish to understand the interplay 
between global travel and resynchronization 
in a large collection of N neuronal oscillators, 
we use a very simplified model for the neu-
ronal oscillators, perhaps at some expense 
of realism. As in the well-known Kuramoto 
model [1], the complicated dynamics of 
each oscillator are reduced to a time evolu-
tion equation for a phase q

i
t( ),  represent-

ing the state of the ith  oscillator where 
i N= 1 2, ,..., .  The phases of the oscillators 
advance in time, according to the model

 
d

dt
K
N

sini
i

i

N

j i

θ
ω θ θ= + −

=
∑
1

( )  
(1)        

+ − +Fsin t p
i

( ).σ θ
	

Here, w
i
 is the natural frequency for each 

oscillator which, in our model, is drawn 
from a  distribution g

i
( )w  that peaks at a 

value of w,  corresponding to a period just 
over 24 hours. The second term on the right 
describes the cells’ tendency to synchronize 
with each other, and has coupling strength 
K. The third term represents interaction 
with the outside world, particularly the 
effect of sunlight. It attracts, with strength 
F, each cell to a phase st p+ ,  where 
σ π= −2 24 1/ hrs  is the daily frequency 
and p is a phase that depends on time 
zone. If t is Greenwich Mean Time, posi-
tive p, 0 < <p p,  corresponds to east of 
Greenwich and negative p, 0 > >−p p,  
to west of Greenwich.

As simple as this model is, it still requires 
solving a large number, N~104, of coupled 
equations. We address this requirement with 
two further simplifications. First, we pass 
to the continuum limit, N →∞,  where 
the state of the SCN is characterized by 
a time-dependent distribution of oscillator 
phases and frequencies, f t( , , ).θ ω  This 
N →∞  limit should be a good approxi-
mation for N 1.  Second, we use the so-
called Ott-Antonsen ansatz [5], which repre-
sents an exact solution for the distribution f. 
This ansatz postulates a particular form for 
f t( , , ),θ ω  which yields a reduced system 
when substituted into the continuum system. 
Furthermore, [6] shows that under weak 
conditions and at large time, f converges in 
probability to the solution of the reduced 
description. Thus, we capture all attractors 
and bifurcations. In the case of a Lorenzian 
distribution of natural oscillator frequen-
cies, g( ) ( / )[( ) ] ,ω π ω ω= − + −

 

0
2 2 1  

the macroscopic state of the SCN is 
described by a single complex variable 

z N i t p
j

j
= − −− ∑1 exp[ ( )],θ σ  

which 

evolves according to the equation

dz t
dt

Kz F Kz F z
( )

[( ) ( ) ]*= + − +
1
2

2

				     
				     (2)

            

− + −( )( ) , i zω σ
0

where the polar angle of the complex 
variable z represents the collective global 
oscillation phase of the SCN. Thus, the 
ansatz reduces an N-dimensional system 
to this single, first-order, complex ordi-
nary differential equation, enabling rapid 
scanning in parameter space and enhanced 
understanding of the dynamics. 

Although the ansatz owes its discovery 
to an investigation [2] into the macroscopic 
behavior of solutions of (1), it turns out that 
this dimension reduction result applies, not 
only to (1) [3] but to a very large class of 
interesting situations. These include, for 
example, a model of pedestrian-induced 
wobbling of London’s Millennium Bridge, 

Josephson junction circuits, a model of 
birdsong, and networks of pulse-coupled 
neurons. One can also generalize it to 
include additional dynamical features, like 
time delays in the effect of one oscillator 
upon another, the effects of different types 
of network topology, spatial coupling, and 
feedback control.

The model (2) has three parameter regimes 
with qualitatively different dynamics, as 
depicted in Figure 1. We expect a healthy 
person’s circadian rhythm to entrain with the 
external 24-hour period, which corresponds 
to a stable fixed point in the z-phase-space 
(the black dot in Figure 1a and 1b). An 
individual whose circadian rhythm is not 
synched with the external 24-hour period 
corresponds to a z-phase-portrait, as shown 
in Figure 1c, where the individual’s cir-
cadian phase relative to the phase of the 
external drive continually drifts around a 
closed curve, a periodic orbit in z. There is a 
difference between dynamics corresponding 
to Figure 1a and 1b; through a saddle-node 
bifurcation, Figure 1b has—besides the sta-
ble fixed point—two other fixed points, one 
unstable (shown as an open circle) and one 
a saddle (shown as a cross). The unstable 
manifold of the saddle forms a loop, along 
which z can approach the stable fixed point 
(black dot) from two opposite directions.

To analyze recovery of a healthy indi-
vidual from jet lag, we assume that the 
traveler is entrained to his/her pre-travel 
time zone (z at the stable fixed point) before 
the trip. For simplicity, we also assume 
that the traveler’s cross-time-zone travel 
is very fast, and model it as a discontinu-
ous change of p in (1). Thus, immediately 
after travel, the state variable z is suddenly 
displaced by a rotation (| | )z fixed  by the 
angle [ ( ) ( )].p initial p final-  Depending 
on where the trip ends, z moves back to 
the stable fixed point either by advancing 
or delaying its phase. We are particularly 
interested in the east-west asymmetry in the 
direction of recovery and the time it takes 
for the recovery to occur. We use a ‘typical’ 
set of parameters representative of a typical 
healthy individual. This set of parameters 
yields the dynamics shown in Figure 1a, 
where only one fixed point is stable. The 

mean oscillation period of SCN cells when 
external drive is absent is taken to be 24.5 
hours, consistent with experimental obser-
vations. This computation surprisingly indi-
cates that the small amount (~30 minutes) 
by which the natural SCN period exceeds 
24 hours in a typical human is sufficient 
to explain the rather noticeable east-west 
asymmetry of jet lag.

Edward Ott will present the Jürgen Moser 
Lecture, “Emergent Behavior in Large 
Systems of Many Coupled Oscillators,” at 
the SIAM Conference on Applications of 
Dynamical Systems (DS17), to be held in 
Snowbird, UT, this May. He will also orga-
nize and give a talk at a minisymposium on 
“Using reservoir computers to learn dynam-
ical systems,” while Michelle Girvan will 
speak at a minisymposium titled “Symmetry, 
Asymmetry, and Network Synchronization.” 
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Obituaries
By Xing Cai, Jan S. Hesthaven, 
Martin Peters, Marie E. Rognes, 
and Aslak Tveito

Professor Hans Petter Langtangen, a bril-
liant and beloved scientist and educator, 

passed away last October after an 18-month 
fight with cancer. Hans Petter’s research 
revolved around numerical methods and 
scientific software tools for continuum 
mechanical problems. His approach was 
truly interdisciplinary, combining mathe-
matics, statistics, and computer science to 
address problems in physics, geoscience, 
physiology, and medicine. Hans Petter was 
an unusually inspirational and visionary 
man, always motivating colleagues and stu-
dents with his enthusiasm, encouragement, 
inspiration, and insight. He will be deeply 
missed by all those who knew him.

Hans Petter was born on January 3, 
1962, in Vinderen, a neighborhood in Oslo, 
Norway. He received his M.Sc. and Ph.D. 
degrees in mechanics from the Department 
of Mathematics at the University of Oslo in 
1985 and 1989, respectively. Hans Petter’s 
research interests at the time encompassed 
computational methods for fluid flow, mul-
tiphase flows in porous media, and stochas-
tic mechanics, topics that would follow him 
throughout his career.

Hans Petter started his career at 
Stiftelsen for industriell og teknisk for-
skning (SINTEF) in 1990, before becom-
ing an assistant professor at the University 
of Oslo in 1991. Around that time, he 
began his groundbreaking work in applying 
C++ to implement partial differential equa-
tion solvers, which led to the renowned 
Diffpack library. Hans Petter was promoted 
to full professor of mechanics in 1998; he 
became a professor of scientific computing 
in the Department of Informatics in 1999.

In 2001, Hans Petter helped found Simula 
Research Laboratory, and remained a cor-
nerstone of the research and educational 
environment there for several years. In 2007, 
he established the Center for Biomedical 
Computing (CBC), a Norwegian Centre 
of Excellence dedicated to the develop-

ment and application of novel simulation 
technologies to better understand complex 
physiological processes affecting human 
health. At the CBC, Hans Petter contin-
ued his pivotal roles as a visionary driver 
and advocate for Python-based numerical 
software, in particular through the FEniCS 
Project, an open-source platform for auto-
mated scientific computing. In addition, 
he spearheaded the use of mathematical 
modelling and numerical simulation in new 
application areas associated with cardio-
vascular and neurological disorders, such 
as stroke and dementia.

Hans Petter was a singularly-talented, 
passionate, and much-beloved educator for 
over three decades. Since the early 2000s, 
he played a central role in the Computing 
in Science Education initiative at the 
University of Oslo. This project, which had 
wide international impact, revolutionized 
the integration of programming and simula-
tion in mathematics and basic science educa-
tion at the university. In 2016, Hans Petter 
received the Olav Thon Foundation Prize for 
Excellence in Teaching for his pioneering 
role and innovative methods in the teaching 
of programming and several other fields.

Hans Petter was a brilliant and pro-
lific writer. He wrote a number of well-
recognized books to accompany his 
courses, including A Primer on Scientific 
Programming with Python, which intro-
duces programming via the Python lan-
guage, and Computational Partial 
Differential Equations: Numerical Methods 
and Diffpack Programming, which teach-
es finite element methods to generations 
of students. His courses, ranging from 
introductory to graduate level, became the 
most popular courses in the Department 
of Informatics at the University of Oslo. 
Hans Petter supervised nearly 100 M.Sc./
Ph.D. students, and was exceptionally dedi-
cated to mentoring and advancing young 
researchers and scientists. He was an out-
standing lecturer.

In addition to those that served as teach-
ing material for his courses, Hans Petter 
authored several other books (he com-

pleted four during his last year), published 
upwards of 60 papers in international jour-
nals and over 60 peer-reviewed book chap-
ters and conference papers, and gave more 
than 130 scientific presentations. He served 
as editor-in-chief of the SIAM Journal on 
Scientific Computing from 2011 to 2015, 
and was on the editorial boards of six other 
international journals. Hans Petter was also 
a member of the Norwegian Academy 
of Science and Letters and the European 
Academy of Science.

A conference on computational science 
and engineering in memory of Hans Petter 
is planned for October 23-25, 2017, in Oslo. 
In the meantime, condolences and tributes 
from friends and colleagues are welcome at 
his memorial page.1 As evidenced by these 
remembrances, Hans Petter and his warmth, 
enthusiasm, sense of humour, and drive 
left a mark on everyone he interacted with. 
Colleagues looked forward to even routine 
meetings with him; a serendipitous discus-
sion with Hans Petter tended to brighten 

1  hpl-memorial.simula.no

anyone’s day, and an email from him was 
a source of encouragement and inspiration. 
We will miss him deeply.

Xing Cai is a chief research scientist at 
Simula Research Laboratory in Norway 
and a professor of scientific computing 
at the University of Oslo. He is a for-
mer student of Hans Petter Langtangen 
at both the masters and doctoral lev-
els. Jan S. Hesthaven is a professor of 
mathematics and Dean of Basic Sciences 
at the École Polytechnique Fédérale de 
Lausanne (EPFL) and currently serves 
as editor-in-cheif of the SIAM Journal 
on Scientific Computing, succeeding Hans 
Petter. Martin Peters is executive edi-
tor of mathematics and computational 
science and engineering at Springer in 
Heidelberg, Germany. Marie E. Rognes 
is a chief research scientist at Simula 
Research Laboratory and a former stu-
dent of Hans Petter at both masters and 
doctoral levels. Aslak Tveito is managing 
director of Simula Research Laboratory 
and a professor of scientific computing at 
the University of Oslo.

Hans Petter Langtangen, 1962-2016. Photo credit: Simula/Sverre Jarild.

A Bike and a Catenary
There is a surprising connection between 

the catenary (the shape of the hang-
ing chain, given by the hyperbolic cosine) 
on the one hand, and the pursuit curve, 
also known as the tractrix (as illustrated 
in Figure 1) on the other. The tractrix is 
defined by the property that every tangent 
segment RF to a given line MN has fixed 
length; it is the track of the bike’s rear wheel 
R when its front wheel F follows a straight 
line. Our bike is just a moving segment RF 
of fixed length, which we take to be 1, with 
the velocity of R constrained to the line RF.

Figure 2 summarizes the connection: all 
normals to the tractrix are tangent to the cat-
enary (so that the tractrix is the involute of 
the catenary). Equivalently, if we let a string 
ATR

0
 hug the catenary and—keeping the 

end A fixed—unwind the end R while hold-
ing the string taut, R will sweep a tractrix.

Yet another way to put it: as the bike in 
Figure 1 moves as shown, the line of its 
rear axle remains tangent to the catenary. 
And the tangency point T is the center of 
curvature of the bike’s rear track.

To prove this connec-
tion, consider an arbitrary 
position of the “bike” RF 
in Figure 2, and let T be 
the point of intersection 
of the normal through R 
and the normal to MN at 
F. The point T is auto-
matically the center of 
curvature of the tractrix 
at F; leaving out the proof 
of this fact (which I will 
address in next month’s 
column), we show that T 
traces out a catenary, i.e., 
that y FT x= =cosh ,  where x is the coor-
dinate of F on the line. From 
Figure 3,			 

	      	            
       y =

1
sin

.
q

         (1)
 

According to Figure 4,

	   θ
θ

θ′= = −
d
dx

sin . 	  (2) 
        

Indeed, the angular 
velocity of the “bike” 
is given by the dif-
ference of the side-
ways velocities of F 
and R divided by the 
length | | ;RF =1  q  
decreases in the fig-
ure, which explains 

the minus sign. Differentiating (1) 
and using (2), we get

   
  	    
  y

dy
dx

′= = cot .θ 	
 

One more differentia-
tion and one more use      

                   of (2) gives

 
y y′′= − − = =

1 1
2sin
( sin )

sin
,

θ
θ

θ 

so that y is a combination of coshx  and 
sinh .x  And since y( )0 1=  and y ′ =( ) ,0 0  
we determine that y x= cosh ,  the equation 
of a catenary, as claimed.

In conclusion, here is an intriguing conse-
quence of the catenary-tractrix connection. 
Consider the two surfaces of revolution 
generated by spinning each curve around 
the line MN in Figure 1. The surface of 
revolution of the catenary has zero mean 

curvature (it is the shape of a soap film 
spanning two circular hoops), while the 
surface of revolution of the tractrix has 
constant Gaussian curvature −1 (a pseudo-
sphere). Is this just a coincidence, or a sign 
of something deeper?

The figures in this article were provided by 
the author.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 1. The catenary and the tractrix.

Figure 2. As the string unwraps from the catenary, its end R 
describes the tractrix.

Figure 3. Explanation of (1).

Figure 4. Explanation of (2).
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Modeling Vegetation Patterns in Vulnerable Ecosystems
By Lakshmi Chandrasekaran

On a cold, rainy January morning in 
a café in downtown Chicago, I met 

Mary Silber, a leading scientist who applies 
mathematics to understand repetitive pat-
terns of vegetation, which alternate rhyth-
mically with bands of bare soil. The vegeta-
tion that Silber and her team study grows 
in a part of the world that is quite unlike 
Chicago – the dry and arid Horn of Africa.

Parts of this region, such as areas in 
Somalia and Ethiopia, receive very little 
rain throughout the year. With the world’s 
population currently at 7 billion and pro-
jected to rise to 9.6 billion by 2050,1 food 
sustainability—ensuring that we produce 
enough food for everybody to eat—becomes 
especially important. It is thus imperative to 
globally increase the percentage of arable 
land available for food creation beyond the 
current 28%.2 Such an increase involves 
targeting new areas, such as deserts, which 
exist in numerous parts of the world.

But surely studying the flora of a region 
falls under an ecologist’s domain – why 
would a mathematician possibly be inter-
ested in this problem?

Silber, whose career trajectory started 
with a Ph.D. in physics from the University 
of California, Berkeley, has never been one 
to settle for something conventional. She 
is currently a professor in the Department 
of Statistics at the University of Chicago 
and director of a new graduate program 
called “Committee on Computational and 
Applied Mathematics.”

Over the past few decades, Silber built 
her expertise by using dynamical sys-
tems to study pattern formation in fluid 
mechanics. Over time, however, she grew 
restless and craved newer ventures—real-
world problems where she could apply 
her skills—ultimately shifting her focus to 
problems relevant to climate change, such 
as vegetation patterns. 

A bird’s-eye view is necessary to study 
the vegetative dynamics of any region. 
“You can only make out the vegetation 
pattern from the air because of its scale,” 
Silber said. The instability of the Horn of 
Africa makes it a challenging and interest-
ing region to study. But what drew Silber’s 
group to the region in the first place was the 
beauty of the landscape when viewed from 
above, whether via modern satellite images 
or early aerial photographs.

However, the vegetation project was not 
devoid of challenges. “Equations unknown, 
parameters unknown, time scales over a 
century or less, and spatial scales of about 
hundreds of meters or kilometers,” Silber 
said, all of which are unlike classical fluid 
mechanics problems. And, of course, the 
unpredictability that comes with studying 
our planet. “Carefully controlled experi-
ments?  No! This is Earth – we don’t repeat 
things!” Silber exclaimed with a laugh, 
pointing to the most difficult parameter to 
control in this problem.

In short, the vegetation problem does not 
present itself well to testing in controlled, 
pristine research settings and is prone to 
much heterogeneity, with a lack of physi-

1  http://www.pewresearch.org/fact-
tank/2014/02/03/10-projections-for-the-glob-
al-population-in-2050/

2  https://ourworldindata.org/land-use-in-
agriculture/

cal monitoring on the 
ground. Nevertheless, 
Silber toyed with this 
challenge, seeking a 
mathematical work-
around for the experi-
mental drawbacks. 
And in 2012, Karna 
Gowda, a student from 
Silber’s ‘Mathematical 
Modeling in the 
Earth Sciences’ class 
at Northwestern 
University, where 
she taught until quite 
recently, expressed 
interest in working on 
the project. “Karna has 
been the main driver 
behind this work,” 
Silber said proudly.

Gowda began with 
the question, “What 
vegetative pattern 
sequences can pos-
sibly occur when we set up the simplest 
problem we can think of?” Silber and her 
colleagues addressed this issue in [2]. They 
used a system of equations describing the 
amplitude of Fourier modes on a hexago-
nal lattice, which permits vegetative pat-
terns that resemble spots, stripes, and gaps 
(see Figure 1).

“The aim here was to find a bifurcation 
theoretic framework to allow us to investi-
gate the transition sequence emerging in a 
variety of different conceptual models that 

had been proposed,” Silber said. Analysis 
revealed that the gaps®labyrinths®spots 
pattern was only one of a few different 
scenarios that could possibly occur in the 
simple generic setup, and that these patterns 
occurred when certain conditions are met (a 
topic explored in their subsequent paper).

Is there a historical precedent to model-
ing vegetation patterns? Silber mentioned 
physicist Ehud Meron at Ben-Gurion 
University of the Negev in Israel as some-
one who has championed the development 
of mathematical frameworks for investigat-
ing vegetation patterns. She also referred 
me to her colleague Arjen Doelman, a pro-
fessor at Leiden University’s Mathematical 
Institute in the Netherlands and an expert 
at using mathematical models to predict 
vegetation patterns.

Doelman described the Klausmeier model 
[3], a system of advection-diffusion equa-
tions used to study banded vegetation. “The 
Klausmeier model is the oldest model, and 
it is a simple one. I prefer to think of it as 
a conceptual or even ‘toy’ model,” he said.

The equations governing the Klausmeier 
model describe how the dynamics of water 
(W) and plants (N) change by interacting 
with each other:

∂
∂
= − − +

∂
∂

W
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A LW RWN V
W
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(1) describes dynamics of water supply 
change over time as a function of rainfall, 
loss of water due to evaporation, infiltration 
by plants, and transport of water downhill.
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(2) describes the dynamics of plant growth 
over time as a function of water absorption 
by plants, distribution of plants over a given 
area, and loss of vegetation due to animal 
grazing or lack of water.

Successfully solving the Klausmeier 
model recapitulates some vegetation pat-
terns on certain terrains, such as sloped 
surfaces. However, this simple model has 
a limitation: it cannot be generalized to 
predict patterns from all kind of terrains, 
without modifications.

“The local topography of the environ-
ment in the Klausmeier model comes in 
through the spatial derivative (transport) 
terms, and specifically, the advection term 
in (1),” Gowda said. “The model in its origi-
nal form assumes that we are looking at a 
sloped surface on which the water travels at 

a constant speed V.” But in places with flat 
terrain, such as fairy circles of Namibia,3 
advective runoff may be insignificant.

So Silber and her team turned to the 
Reitkerk model, more realistic for their 
study. “It distinguishes the differences 
between ground water and surface water,” 
Doelman said. Several equations govern 
the Reitkerk model:

				     (3)∂
∂
= − + ∇

h
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(3) describes how the dynamics of surface 
water (h) change with respect to rainfall, 
diffusion, and loss of water via infiltration. 
The infiltration term I n( )  captures the loss 
of surface water through soil absorption 
in the presence of vegetation. Infiltration 
positively influences vegetative growth, 
which in turn influences infiltration, thus 
creating a feedback loop.
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(4) describes the dynamics of water (w). It 
involves surface water infiltration and loss 
of water due to evaporation, diffusion, and 
transpiration by plants.

∂
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(5)

(5) quantifies the growth of vegetation 
(n) as a function of soil water availability, 
dispersal of plants in a given area, and 
plant mortality.

Starting with a uniform vegetative cover, 
Gowda and colleagues examined when the 
vegetative patterns transition to patches 
with decreasing rainfall. Mathematically, 
these transitions occur between the lower 
and upper Turing points (see Figure 2).

These results, published last year in [1], 
use numerical simulations that match quali-
tatively with the analytical predictions in 
[2]. Key highlights of this work include 
understanding the transitions in patterns as a 
function of change, both in the rate of infil-
tration and its interaction with the amount 
of available vegetation (see Figure 3).

But the Reitkerk model has limitations 
too. “The models we used are idealized, 
since different types of vegetation are 
thrown into a single biomass variable,” 
Gowda said. “For instance, if a drought hits 
a certain type of vegetation more than oth-
ers, how is that going to affect the pattern? 
That is hard to predict.”

Rather than predict how vegetation pat-
terns develop in arid regions, this model 

3  https://www.nytimes.com/2017/01/19/
science/fishing-for-clues-to-solve-namibias-
fairy-circle-mystery.html

Figure 1. Aerial images of flat terrain vegetation patterns in Sudan. 1a. Spot (11.6280, 
27.9177). 1b. Labyrinth (11.1024, 27.8228). 1c. Gap patterns (10.7549, 28.5955). Images  © 
Google, DigitalGlobe. Image credit: Karna Gowda.

Figure 2. Uniform vegetation equilibria of the model by von Hardenberg et al. [5] plotted as a 
function of precipitation, with patterned solutions shown in insets. Image credit: Karna Gowda.

Figure 3. Map of pattern sequences observed via numerical simulation in a two-parameter space of the model by 
Rietkerk et al. [4]. The parameter f controls differential infiltration between bare and vegetated areas, and Dh is the sur-
face water diffusion parameter. A “spots only” sequence occurs in a thin red region of the parameter space predicted 
by analytical theory, while analogs of the “standard” gaps®labyrinths®spots occur in most simulations elsewhere. 
Example simulations are shown for three distinct parameter sets circled in the left panel, corresponding to f = 0.2 and 
Dh = 0.6, 1.0, and 4.0. Image credit: Karna Gowda.

See Vegetation on page 8
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Analyzing Multiple Time Scales in 
Two-Dimensional Fluids Using Dynamical Systems
By Margaret Beck and C. Eugene 
Wayne

The time scales over which fluids 
evolve have a critical effect on the 

physical systems in which they occur. 
These time scales arise from an interplay 
of different effects, some of which—like 
Lagrangian coherent structures—tend to 
stabilize the flow, while others, such as 
shear (inviscid) damping or viscous damp-
ing, tend to break down structures, at least 
on small-length scales. A variety of recent 
investigations, many of which involve a 
dynamical systems point of view, have 
begun to shed light on the origin of these 
time scales in the case of two-dimensional 
fluid flows. Since the basic questions of 
existence and uniqueness for two-dimen-
sional fluid flows are well understood, one 
can ask more detailed queries about their 
evolution. Moreover, these flows have a 
tendency to form large, vortical structures 
on both laboratory and geophysical scales, 
as seen in Figure 1, a satellite photo of the 
Gulf Stream. Dynamical systems theory is 
well suited to answer these types of ques-
tions since invariant families of solutions 
often appear to organize the dynamics, 
effectively creating the multiple time scales 
and observed asymptotic behavior [3, 5]. 
In simple settings, invariant manifolds [4, 
9] can even characterize this organization.

A particularly important example of 
this is the two-dimensional incompressible 
Navier-Stokes equation with small viscos-
ity, 0 1 n < :  

        ∂ + ⋅∇ =
t
ω ω ν ωu ∆ ,

     
      w w= ∈ ⊆( , ), .x t x Ω R2

Here, w  is the vorticity of the fluid and 
u  is the fluid velocity, recoverable from 
the vorticity via the Biot-Savart law. In 
other words, w = ∇× ⋅( ) ( , , ).u 0 0 1  When 
n = 0,  the equation reduces to the Euler 
equation, which has infinitely many sta-
tionary solutions. Though these no longer 
remain stationary states for positive (but 
small) vorticity, it is reasonable to believe 
that they still play an important role in the 
longtime evolution of the Navier-Stokes 
equation. However, most stationary states 
of the Euler equation are surprisingly never 
observed in the Navier-Stokes evolution. 
Instead, a small number of the Euler states 
become quasi-stationary states of Navier-
Stokes, and only a subset of these seem to 
have long-term influence. As a first “guess” 
at the time scales over which the viscosity 
makes itself felt, one can note that the two-
dimensional Navier-Stokes equations on 


2  have a family of exact solutions known 
as the Oseen vortices, given by

        ω νO
x
tx t

A
t
e( , ) .

| |
( )=

+

−
+

1

2

4 1

From this formula, it seems as if the viscos-
ity should be perceptible on a time scale

	        tvisc ~ .
1
n

However, numerical experiments indicate 
that vortices and other large-scale charac-
teristic structures emerge in the flow on a 
much shorter time scale. For instance, in the 
numerical simulation of Figure 2 [10], the 
viscous time scale would be t

visc
~ ,1500  

but large-scale vortical structures emerge on 
a much shorter time scale. Understanding 
the origin of these scales is currently a ques-
tion of great interest.

There is presently no mathematical theory 
predicting which of the Euler solutions will 
play the most important role in the vis-
cous evolution. However, a finite subset of 
these quasi-stationary states correspond to 
an explicit family that decays on the viscous 
time scale ( )e t-n  and can be described by 
the lowest four Fourier modes, { , }.e eix iy± ±  
Bar states (also known as Komogorov flow, 
a type of shear flow) are solutions that vary 
only in the x or only in the y direction, while 
dipoles vary in both directions. Researchers 
have observed, both experimentally and 
numerically, that most initial conditions 
lead to solutions which originally experi-
ence rapid evolution to either a bar state or a 
dipole, followed by slow decay to the back-
ground rest state (zero solution). A classical 

approach to analyzing such behavior begins 
by linearizing the Navier-Stokes equation 
about a bar state or dipole and attempting 
to determine the rate of convergence to 
the state, which should correspond to the 
observed initial period of rapid evolution. 
This type of linearization near a bar state [5] 
suggests that the rapid evolution occurs on 
the time scale ( ),e t- n  at least at the linear 
level. Interestingly, the linearization leads to 
a highly non-self-adjoint operator, making 
it unclear whether the multiple time scale 
phenomenon is spectral or pseudospectral. 
A dynamical systems perspective is useful in 
this analysis because it permits a separation 
between the decay rate to the invariant fam-
ily, at ( ),e t- n  and the decay rate within 
the family, at ( ).e t-n

A related work also analyzes the rapid 
convergence to bars and dipoles using 
a dynamical systems perspective [3]. 
Researchers take the two-dimensional 
Navier-Stokes equation, written in Fourier 
space, and formally project that system 
onto the lowest eight modes: the lower four 
contain the bars and dipoles and the next 
four model the effects of all higher modes. 
They then use classical dynamical systems 
techniques, including invariant manifolds 
and estimates involving Duhamel’s for-
mula, to study the resulting eight-dimen-
sional ordinary differential equation (ODE). 
This method focuses on understanding the 
effects of perturbing the domain from a 
square torus, represented by a parameter 
d = 1,  to a rectangular torus, represent-
ed by d ¹ 1.  The parameter d  controls 
whether a particular invariant manifold is a 
center ( ),d = 1  stable ( ),d < 1  or unstable 
( )d > 1  manifold, which then determines 
if the dominant quasi-stationary state was 
a dipole, y-bar state, or x-bar state, respec-
tively. In this ODE model, the initial period 
of rapid decay notably occurred on the 
time scale ( )/e t- n  instead of time scale 
( ),e t- n  which researchers observed in 
the previously-mentioned work.

The dynamical systems perspective sheds 
light not only on the question of multiple 
time scales in fluids, but on other aspects 
of their motion as well. For example, one 
can analyze the stability and interaction of 
vortices in the planar Navier-Stokes equa-
tion with limit n ® 0  using a point vortex 
model [11]. A key aspect of that work is its 
ability to capture the higher-order effects of 
vortex interaction, showing that for motions 
in which the centers of vorticity were ini-
tially well-separated, the essentially invis-
cid motion of the vortex cores accurately 
described the overall nature of the flow 
until the distance between vortices became 
comparable to the size of the vortex core. 
Interestingly, such configurations of near 
point vortices appear in a host of experi-
mental circumstances (see Figure 3) [1].

In work more closely related to the above 
discussion about bar state metastability [6], 
researchers studied solutions of the two-
dimensional Navier-Stokes equations in a 
neighborhood of Couette flow, a particular 
type of shear flow in a channel. Using 
careful partial differential equation (PDE) 
estimates in Gevrey spaces, they were able 
to treat the full nonlinear problem. This 
work is particularly interesting because it 
identifies precisely different time scales 
associated with an initial period of so-called 
inviscid damping—in which the Euler equa-
tions essentially govern flow—followed by 
a rapid evolution due to enhanced diffusion 
and then a final, slow period of convergence 
to the Couette flow, during which viscos-
ity dominates. The intermediate period of 
enhanced diffusion relates to the hypoco-
ercivity in [5, 8], and is further connected 
to the phenomenon of Taylor dispersion, 
which also occurs in the channel setting 
but for different boundary conditions. 
Originally studied in the 1950s, Taylor 
dispersion is another example of a situation 
in which shearing in the ambient flow field 
enhances dispersive or dissipative effects. 

Researchers have recently attacked this 
problem from two different perspectives 
using dynamical systems ideas. In [7], 
hypocoercivity methods are used to ana-
lyze the decay enhancement in a variety 
of shearing flows. In [2], more classical 
dynamical systems methods like invariant 
manifolds play a key role, but not in an 
entirely straightforward way. Although the 
PDE does not seem to possess an invari-
ant manifold—in fact, evidence suggests 
that it does not—its solutions are shown 
to be well-approximated by solutions to an 
ODE that does possess a center manifold, 
on which the enhanced diffusion can be 
computed explicitly. This matches Taylor’s 
original formal calculations from the 1950s.
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Figure 1. Satellite photo of the Gulf Stream. Image courtesy of NASA.

Figure 2. A numerical simulation of a two-dimensional flow at six different times. Image 
credit: [10], by permission of John Wiley & Sons, Inc.

Figure 3. Experimental illustrations of point vortices. Image credit: [1], by permission of 
the Royal Society.
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Mathematics in Space
Increasing Our Understanding of the Celestial 

Calculating the Cosmos: How 
Mathematics Unveils the Universe. By 
Ian Stewart. Basic Books, New York, NY, 
October 2016. 360 pages, $27.99.

From the beginning of time, writes Ian 
Stewart in his latest popular mathen-

science1 book, men have looked at the 
night sky and questioned, “What’s going 
on up there?” In fact, virtually all proposed 
answers to this question have been aban-
doned in favor of better ones, which are 
then abandoned in term. Indeed, with the 
advance of the physical and mathematical 
sciences, the ability to discriminate between 
good and bad guesses has grown mark-
edly, rendering not-yet-discredited guesses 
increasingly hard to dismiss. In Calculating 
the Cosmos: How Mathematics Unveils the 
Universe, Stewart offers an extensive cata-
logue of noteworthy conjectures concerning 
the nature and extent of the cosmos, begin-
ning with some of the earliest and culminat-
ing in current “best guesses.”

SIAM members are likely familiar 
with many of the earlier notions, such as 
Ptolemaic cosmology, which placed Earth 
at the center of the universe—surrounded 
by an invisible “celestial sphere,” to which 
fixed stars were attached—while the sun, 
the moon, and the planets travelled without 
collision on separate concentric spheres. 
The Copernican Revolution challenged 
medieval orthodoxy with evidence that 
the sun lies at the center of the universe, 
while Earth and other planets rotate around 
it in orbits consistent with Isaac Newton’s 
inverse-square law. Relativity and Edwin 
Hubble’s discovery of an expanding uni-
verse spawned yet another round of cos-
mological guesswork. More recently still, 
the succession of manned and unmanned 
missions that followed Sputnik I’s trip to 
space in October 1957 has given birth to 

1  Term coined by the elder President Bush 
to describe a subject in which few American 
students excel.

a phalanx of more modern guesses, no 
few of which were quickly debunked. 
Stewart follows space exploration closely, 
and offers an up-to-date summary of what 
scientists have learned.

Chapter 1 introduces gravity, conic sec-
tions, N-body problems, gen-
eral relativity, and the historic 
realization that nature obeys 
mathematical laws. After point-
ing out that Newton solved the 
two-body problem, and that the three-body 
problem appears insoluble, Stewart reveals 
that current investigators continue to dis-
cover new and unexpected consequences 
of Newton’s laws. 
He mentions par-
ticularly a family 
of planar orbits—
the simplest being 
shaped like a fig-
ure eight—around 
which three equal 
point masses can 
pursue one another 
indefinitely, along 
with a corkscrew-
shaped orbit that 
spirals around the 
line segment join-
ing the centers of 
a binary star. The 
spirals are loose 
near the middle of 
the segment but 
crowd together 
by the stars at the 
ends, somewhat 
resembling a slinky 
toy stretched only 
in the middle. 
There is some evi-
dence that an exoplanet named Kepler-b 
may be trapped in such an orbit.

Chapter 2 concerns the origins of the 
solar system. The current best proposition 
attributes its formation to the collapse of a 

giant gas cloud, in which non-uniformities 
in the initial distribution of matter, together 
with gravitational attraction, caused gaseous 
clumps to form and then congeal into solid 
bodies. These bodies frequently collided and 
grew in size as smaller bodies were drawn 

to larger ones. The vast num-
ber of craters on the moon, 
Mercury, and Mars attests to 
the frequency of such colli-
sions in the early universe.

The growth of computing power in the 
1980s, along with the development of accu-
rate computational techniques, allowed sci-
entists to model the collapse of giant gas 

clouds as N-body 
problems. A real-
istic application 
of this method 
requires a few 
hundred billion 
bodies, rendering 
the calculations 
infeasible. Hence, 
smaller numbers 
are used. Crude 
integration tech-
niques cannot be 
trusted here, since 
they neglect such 
physical realities as 
the conservation of 
energy and angu-
lar momentum. 
If such oversight 
were to decrease 
overall energy, for 
instance, rather 
than conserve it, 
the effect would 
resemble friction 
– closed planetary 

orbits would be replaced by decaying ones 
that spiral into the sun.

The development of symplectic inte-
grators, numerical methods specifically 
designed for the integration of ordinary 
differential equations in Hamiltonian form: 
p H p q

q
=− ( , ),  q H p q

p
=− ( , ),  has 

largely surmounted such difficulties. Since 
these methods preserve the symplectic 
2-form dp dqÙ ,  they also preserve linear 
and angular momentum exactly, along with 
total energy. As a result, symplectic integra-
tors permit the accurate simulation of sys-
tems of mutually-gravitating bodies in free 
space over extremely long periods of time.

Stewart writes extensively about the rings 
of Saturn, the study of which has a long 
and surprisingly complex history. Originally 
observed by Galileo in 1610, they seemed at 
first to look like separate moons, and later 
like ears on a face. But Christiaan Huygens, 
armed with a better telescope, was able to 
report in 1655 that Saturn “is surrounded by 
a thin flat ring, nowhere touching, inclined to 
the ecliptic.” By 1666, Robert Hooke could 
observe shadows, both of the globe upon the 
ring and the ring upon the globe, showing 

what’s in front of what. Then in 1787, Pierre-
Simon Laplace pointed out that a single 
wide flat ring would break apart since, by 
Johannes Kepler’s third law, the outer por-
tions must rotate more slowly than the inner 
ones. He thus concluded that the wide flat 
ring must be composed of several concentric 
ringlets, each rotating at a different speed. 
Next in 1859, James Clerk Maxwell showed 
that even a narrow flat ringlet is unstable, 
since the slightest disturbance causes such a 
surface to buckle, ripple, and bend, immedi-
ately snapping like a dry piece of spaghetti 
with the application of distortive forces. 
Could the rings be composed of fluid? No, 
because as Sophie Kovalevsky showed in 
1874, fluid rings would also be unstable. It 
was not until around 1895 that telescopes 
improved to the point where observers could 
declare Saturn’s rings to be composed of 
a truly vast number of small (presumably 
solid) orbiting bodies.

According to Stewart, no military plan 
survives contact with the enemy, and no 
astronomical theory survives contact with 
better observations. Man’s knowledge of 
Saturn changed forever in 1980, when 
Voyager I started sending back pictures of 
the rings. The images soon revealed, for 
instance, that one of the rings is not circu-
lar, and that dark fuzzy “spokes” seem to 
emanate from the center of the planet and 
rotate within the “wheel” formed by the 
rings. Nothing previously noted concern-
ing the rings had lacked circular symmetry. 
Voyager II, which had launched before 
Voyager I but was moving more slowly, 
confirmed both observations some nine 
months later. The Voyager missions also 
revealed that some of the rings appear to 
be braided, some exhibit strange kinks, 
and some are incomplete, consisting of 
discrete, roughly-circular arcs separated 
by gaps. Before the Voyager encounters, 
Earth-bound astronomers had observed 
that Saturn possessed nine moons; Voyager 
increased the number to 30. Today it’s 62, 
53 of which now have official names. The 
Cassini probe,2 currently orbiting Saturn, 
provides a stream of data on the planet, its 
rings, and its moons.

Later chapters discuss—in something 
like layman’s terms—the location of aster-
oids in the solar system; the rings of 
Saturn; the overall curvature of space; 
the Big Bang theory; the whereabouts of 
dark matter and dark energy; and a great 
deal more. For anyone who hasn’t kept 
up with space exploration, Calculating the 
Cosmos is an exceedingly pleasant and 
highly informative read.

James Case writes from Baltimore, 
Maryland.

2  https://saturn.jpl.nasa.gov/

Calculating the Cosmos: How Mathematics 
Unveils the Universe. By Ian Stewart. Courtesy 
of Basic Books.
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could instead predict the increasing deserti-
fication in drought-prone areas. “The final 
‘catastrophe’ of desertification is preceded 
by ‘mini-catastrophies’ in which the pattern 
undergoes significant changes, say, half 
of the stripe patterns disappear at a very 
fast time scale,” Doelman said. “These 
are model predictions, and we’re presently 
working with ecologists to validate this.”

To help constrain the model and deter-
mine what satellite images could actually 
measure and quantify, Gowda has been 
studying the available literature on these 
vegetation patterns from the past 60 years. 
He is currently looking at British aerial 
survey data of dry lands in Somalia, col-
lected during World War II. “Our goal 
is to try and construct some record of 
dynamics,” he said.

Another aspect of the problem involves 
analyzing the role of terrain-topography 
in influencing patterned vegetation. “We 
could see that the shallow topography 
was playing a role, and we want to bring 
together mathematical modelers in this 
area with eco-hydrologists for an exchange 
of ideas,” Silber said. “This meeting of the 
minds is what we hope will happen during 
the minisymposium4 that Sarah Iams and 
Punit Gandhi have organized for the SIAM 
Conference on Applications of Dynamical 
Systems (DS17), to be held in Snowbird, 
UT, in May 2017.”

With both Silber and Doelman’s groups 
as key players in the mathematical study of 

4  http://meetings.siam.org/sess/dsp_pro-
gramsess.cfm?SESSIONCODE=61789

vegetation in arid ecosystems, it should be 
very exciting to hear their sessions, as well 
as plenary lectures by Silber and Doelman, 
at DS17. Check out more details on the 
conference and register!5
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SIAGA: A New Window 
for Algebra and Geometry
By Bernd Sturmfels

The SIAM Journal on Applied Algebra 
and Geometry (SIAGA) is the latest 

member in the outstanding family of jour-
nals published by SIAM. SIAM News readers 
are already familiar with the “storyboard” 
behind the new journal, thanks to Anna 
Seigal’s inspiring three-part article from last 
year, “A SIAGA of Seven Pictures.”1 

SIAGA offers a new home for exciting 
themes in the core of mathematics and 
their emerging applications. The journal’s 
creation was the result of a thorough plan-
ning process that dates back several years. 
Its impetus came from the SIAM Activity 
Group on Algebraic Geometry (SIAG/
AG), which held its inaugural conference 
in Raleigh, NC, in October 2011. Following 
the second meeting in Fort Collins, CO, in 
August 2013, SIAG/AG members formed 
a committee to discuss the possibility of 
a new journal. The committee wrote a 
proposal under the leadership of Frank 
Sottile and Thorsten Theobald, and with 
strong support from the publications com-
mittee and SIAM’s 
board and council, 
the journal received 
its final approval in 
December 2015.

SIAGA’s mis-
sion is to publish 
“research articles of 
exceptional quality 
on the development 
of algebraic, geomet-
ric, and topological 
methods with strong 
connection to appli-
cations.” The journal 
covers mathematical 
subjects such as alge-
braic geometry, alge-
braic topology, alge-
braic and topological 
combinatorics, dif-
ferential geometry, 
convex and discrete 
geometry, commuta-
tive and noncommu-
tative algebra, mul-
tilinear and tensor algebra, number theory, 
representation theory, and symbolic and 
numerical computation. Areas of applica-
tion include biology, data science, coding 
theory, complexity theory, computer graph-
ics, computer vision, control theory, cryp-
tography, machine learning, game theory 
and economics, geometric design, optimiza-
tion, quantum computing, robotics, statis-
tics, and social choice.

Douglas Arnold, former president of 
SIAM and director of the Institute for 
Mathematics and its Applications, played 
a decisive role by supporting these devel-
opments. “Just a decade ago, algebra and 
geometry would have seemed strange direc-
tions for SIAM, and the title of the journal 
something of an oxymoron,” he writes. “But 
now, after the formation of the algebraic 
geometry activity group in 2009, the estab-
lishment of a biennial conference series, and 
the resulting influx of people, ideas, and 
interaction, applied algebra and geometry 
have become core areas for SIAM. This sig-
nals a change in scientific culture for which 
SIAM has been an important catalyst. The 
new SIAM Journal on Applied Algebra and 
Geometry is both a recognition and a natural 
outcome of this change. It’s great for math 
and science, and it’s great for SIAM.” 

Jan Draisma, former chair of SIAG/AG 
and an associate editor of SIAGA, also attri-
butes the journal’s birth to the two expand-
ing disciplines. “The SIAM activity group 

1  https://sinews.siam.org/Details-Page/
applied-algebra-and-geometry-a-siaga-of-sev-
en-pictures-2

in algebraic geometry unites the rapidly 
growing communities of algebraists and 
geometers fascinated by applications and 
scientists in need of new algebro-geometric 
techniques,” he says. “SIAGA is quickly 
becoming the journal of choice for the very 
best of their combined research.”

The new journal began taking submis-
sions in March 2016. A team of three cor-
responding editors and 26 associate editors is 
handling the growing number of submissions 
in a timely and professional manner. Many 
referees are contributing excellent reports, 
ensuring high standards for acceptance. 
Sottile, inaugural chair of SIAG/AG and a 
corresponding editor for SIAGA, empha-
sizes the journal’s influence. “This journal, 
because of its focus and editorial board, can 
get quality reports for papers that are inter-
disciplinary and require refereeing from two 
or more perspectives,” he says.

By the end of 2016, authors had submitted 
90 manuscripts for publication to SIAGA, 
and the journal was ready for its inaugural 
all-electronic volume. The first nine articles 
were published in February 2017. This ini-

tial batch touches 
upon a wide range 
of subjects, such as 
complexity theory, 
convex optimiza-
tion, frame theory, 
graphical models, 
machine learn-
ing, numerical 
analysis, projective 
geometry, signal 
processing, and 
tensor methods. A 
focus on models 
governed by non-
linear algebraic 
constraints remains 
a common thread. 
“We are overjoyed 
to see so many 
high-quality sub-
missions, especial-
ly from our junior 
colleagues,” says 
Alicia Dickenstein, 
vice president of 

the International Mathematical Union and a 
SIAGA corresponding editor.

To increase SIAGA readership well 
beyond the current community, the edito-
rial board reaches out to everyone inter-
ested in studying nonlinear problems that 
arise in the aforementioned application 
areas. We hope that the new approaches 
and research presented in the journal will 
be of interest to many scientists, engineers, 
and industrial mathematicians.

Now we will briefly introduce the authors 
and articles featured in the first volume of 
SIAGA. The article “On the geometry of 
border rank decompositions for matrix mul-
tiplication and other tensors with symme-
try,” by Joseph M. Landsberg and Mateusz 
Michalek, offers a new approach to tensors 
with symmetry, with focus on complex-
ity lower bounds for matrix multiplication. 
Michael Kech and Felix Krahmer advance 
our understanding of inverse problems by 
deriving “Optimal injectivity conditions 
for bilinear inverse problems with appli-
cations to identifiability of deconvolution 
problems.” Jameson Cahill, Dustin Mixon, 
and Nate Strawn resolve a longstanding 
problem in applied harmonic analysis with 
“Connectivity and irreducibility of algebra-
ic varieties of finite unit norm tight frames.” 
Diego Cifuentes and Pablo Parrilo achieve 
dramatic speed-ups when solving algebraic 
equations by using “Chordal networks of 
polynomial ideals.” Peter Bürgisser con-
nects numerics and algebraic geometry in 
an article titled “Condition of intersecting a 

The inaugural volume of SIAM’s newest jour-
nal, the SIAM Journal on Applied Algebra and 
Geometry (SIAGA), published in February 2017.

See SIAGA on page 10
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projective variety with a varying linear sub-
space.” In “On Fano schemes of toric vari-
eties,” Nathan Ilten and Alexandre Zontine 
show how to solve binomial equations in 
terms of linear forms.

“The geometry of rank-one tensor 
completion” reveals the work of Thomas 
Kahle, Kaie Kubjas, Mario Kummer, and 
Zvi Rosen. In a mathematical contribu-
tion to deep learning, titled “Dimension 
of marginals of Kronecker product mod-
els,” Guido Montufar and Jason Morton 
prove that restricted Boltzmann machines 
are identifiable. Greg Blekherman, Rainer 
Sinn, and Mauricio Velasco advance con-
vex geometry and polynomial optimization 
by addressing the intriguing question, “Do 
sums of squares dream of free resolutions?”

As the inaugural issue approached publi-
cation, the SIAGA team was also busy with 
articles to appear in the near future. For 
instance, next in line is an article on mathe-
matical neuroscience that grew out of a 2014 
Mathematics Research Communities pro-
gram. Carina Curto, Elizabeth Gross, Jack 

Jeffries, Katherine Morrison, Mohamed 
Omar, Zvi Rosen, Anne Shiu, and Nora 
Youngs answer the question, “What makes 
a neural code convex?”

We are still hoping to branch out further 
and attract truly outstanding submissions 
from a wider range of communities. For 
instance, we’d like to receive more articles 
from fields such as applied topology, cryp-
tography, geometric modeling, differential 
geometry, and mathematical biology. As 
the journal approaches its steady state, the 
future looks bright. SIAGA will serve as 
a window for first-rate research that tran-
scends the historic division of mathematics 
into “pure” and “applied.” In the immedi-
ate future, it welcomes outward-looking 
authors and all readers with a taste for alge-
bra, geometry, and topology.

Bernd Sturmfels is a professor of math-
ematics, statistics, and computer science 
at the University of California, Berkeley.
Starting in summer 2017, he will be  director 
of the Max Planck Institute for Mathematics 
in the Sciences in Leipzig, Germany. He 
serves as the editor-in-chief of SIAGA.

SIAM Committee on Science Policy Discusses 
Impact of Incoming U.S. Presidential Administration
By Karthika Swamy Cohen, Miriam 
Quintal, and Eliana Perlmutter

The SIAM Committee on Science Policy 
meets biannually to monitor develop-

ments in federal and/or state governments, 
as well as new policy directions of interest 
to SIAM and its members. The committee 
also helps increase visibility of applied 
mathematics and SIAM in the federal gov-
ernment and scientific community.

At its fall 2016 meeting last November, 
the committee met with key decision-mak-
ers at federal agencies to better understand 
the environment for research funding 
related to applied mathematics and com-
putational science, especially in regards 
to the new U.S. presidential administra-
tion and its potential impact on federal 
research priorities.

Representatives from the Department 
of Energy (DOE), the National Institutes 
of Health (NIH), the Defense Advanced 
Research Projects Agency (DARPA), and 
the National Science Foundation (NSF)’s 
Division of Mathematical Sciences (DMS) 
and Office of Integrative Activities pre-
sented updates on new research initiatives, 
personnel changes, and the fiscal year 
(FY) 2017 budget.

The historic election of Donald Trump 
as the 45th U.S. president will have signifi-
cant implications for scientific funding and 
research. The Republican Party’s retention 
of majorities in both the U.S. House of 
Representatives and the Senate will also 
have a major impact, as the U.S. will see 
one-party governance for the first time 
since former President Barack Obama’s 
first two years in office.

The extent of the White House’s poten-
tial involvement with setting the legisla-
tive agenda isn’t clear, except in a few 
key areas emphasized by Trump, such 
as tax reform, infrastructure, and health-
care. Neither Trump’s campaign nor his 
transition team have offered specifics 
with regard to proposed policies in edu-
cation, research, science, or technology. 
Hence, it is hard to assess the amount of 
emphasis (or lack thereof) that a Trump 
administration will place on universities 
and the research community.

As a result, as the Trump transition 
team and new administration refine their 
policy agenda and prioritize actions for 
early legislative activities in the coming 
months, it will be critical for universities, 
scientific societies, and organizations to 
carefully assess Trump’s positions as more 

details emerge, and define strategies to 
best concentrate energy with respect to key 
priorities. Opportunities for engagement 
will likely arise once science officials and 
lower-level agency leadership are chosen.

Based on information from policy advi-
sors and the Trump team’s responses to 
questionnaires such as Science Debate,1 
it seems that a Trump administration will 
likely value investment in basic academic 
research. Past Republican administrations 
have also placed a higher priority on basic 
research, rather than applied research, 
environmental sciences, and social and 
behavioral sciences.

On November 18, 2016, Trump’s transi-
tion team and congressional Republican 
leaders came to an agreement to extend 
the current Continuing Resolution (CR), 
which would prolong present funding levels 
for most governmental agencies to fund 
government operations through the end of 
March 2017. The extension includes cer-
tain funding increases or anomalies, such 
as $872 million to boost medical research 
and drug approval efforts, $10 billion in 
additional war funding for military and 
diplomatic efforts, $4.1 billion in disaster 
relief, $170 million to help repair the lead-
contaminated water system of Flint, Mich., 
and $45 million for continued healthcare 
benefits for retired coal miners.

With regard to committees, Congress’s 
composition has remained largely the same, 
except for a few key leadership positions 
and the loss of some science champions in 
the Senate. It is thus imperative to identify 
and nucleate new champions. While it is 
hard to know who the science liaisons 
will be in the new administration, we can 
assume that they will report to those without 
a technical background. Hence, it is impor-
tant to craft a message in a way that will be 
understandable to laypersons.

Additionally, with some knowledge of 
the new administration’s priorities—such 
as defense, cybersecurity, and infrastruc-
ture—mathematicians can begin to focus on 
advocacy in those areas.

Dr. Steven Binkley, Deputy Director for 
Science Programs in the Office of Science 
at the DOE, offered an overview of research 
initiatives, programs, and personnel chang-
es at the department. He described the 
Advanced Scientific Computing Research 
(ASCR) program’s exascale computing 
focus, with large scientific data as a central 
theme. Binkley also mentioned that the 
open position for director of the Advanced 

1  http://sciencedebate.org/20answers

Computing Technologies Division could 
have great impact.

Dr. Steven Lee, a physical scientist at the 
DOE, broke down the ASCR’s three main 
research themes: algorithms, models, and 
data. He noted that the shift of some applied 
math activities to the Exascale Computing 
Project had left an opening for new ideas 
and directions. Lee discussed ideas to rein-
vigorate the applied math program, includ-
ing organizing workshops, soliciting input 
from the community on ASCR research 
themes, and hosting a SIAM event to 
increase community involvement.

Dr. Michael Vogelius, director of the 
DMS, talked about recently-introduced 
DMS programs, including Transdisciplinary 
Research in Principles of Data Science 
(TRIPODS) and Algorithms for Modern 
Power Systems (AMPS). He also pro-
vided details on two joint programs: 
Algorithms for Threat Detection (ATD), 
with the National Geospatial-Intelligence 
Agency, and the joint NSF/NIH initiative 
on Quantitative Approaches to Biomedical 
Big Data (QuBBD). Other initiatives include 
public-private partnerships in centers for 
quantitative biology and DMS-funded 
internship opportunities for mathemati-
cal sciences graduate students at national 
labs. Vogelius also gave an update on the 
Mathematical Sciences Research Institutes, 
for which an open competition is planned, 
with proposals likely due in 2019. The DMS 
will put forward a solicitation in 2017 to call 
for new centers of mathematical biology.

Dr. Suzi Iacono, head of the NSF’s Office 
of Integrative Activities, gave an overview 
of the 10 “big ideas” for future NSF invest-
ments, defining a set of research agendas 
and processes that will require collabora-
tions with industry, agencies, scientific soci-
eties, research institutions, and universities. 
The six research ideas include harnessing 
data for 21st-century science and engineer-
ing; shaping the human-technology frontier; 
understanding the rules of life (i.e., predict-
ing phenotypes from genotypes); recogniz-
ing the next quantum revolution (physics); 
navigating the new Arctic (including a 
fixed and mobile observing network); and 
exploring windows on the universe: mul-
timessenger astrophysics. The three process 
ideas include more convergent research; 
support for midscale infrastructure (instru-
ments or facilities that cost between $10 
million and $100 million); and NSF 2050, 
a common fund to seed large, ambitious 
projects. The tenth idea is NSF’s Inclusion 
across the Nation of Communities of 
Learners of Underrepresented Discoverers 
in Engineering and Science (INCLUDES) 
program, which aims to transform science, 
technology, engineering, and mathematics 
(STEM) education and career pathways to 

make them more widely inclusive and more 
reflective of the diversity of U.S. society.

Dr. Susan Gregurick, division direc-
tor of the National Institute of General 
Medical Sciences (NIGMS) Division of 
Biomedical Technology, Bioinformatics, 
and Computational Biology (BBCB) at the 
NIH, spoke about NIH programs related 
to computation and mathematics, includ-
ing the Biomedical Information Science 
and Technology Initiative (BISTI) and the 
Maximizing Investigators’ Research Award 
(MIRA). The NIH also has many interagen-
cy partnerships involving computing, such 
as the Brain Research through Advancing 
Innovative Neurotechnologies (BRAIN) 
Initiative, the National Strategic Computing 
Initiative (NSCI), the Interagency Modeling 
and Analysis Group (IMAG), and the-DMS 
collaboration with the NSF. The NIH Big 
Data to Knowledge (BD2K) program has 
created an NIH Commons pilot to test a 
virtual platform for sharing data, using 
computing services, and accessing large 
public data sets. The goal is to make the 
Commons available to any researcher 
with an NIH grant by the fall of 2017.  
Gregurick also noted that NIH priorities for 
FY 2017 include “Applying Big Data and 
Technology to Improve Health.”

Drs. Fariba Fahroo, Carey Schwartz, 
and Hava Siegelmann, program manag-
ers at DARPA, summarized the role and 
structure of their agency. They highlighted 
DARPA’s long history of applied math and 
emphasized that conducted research is tar-
geted to improve national security. Fahroo 
remarked that Stefanie Tompkins, director 
of the Defense Sciences Office (DSO), has 
been tremendously supportive of math as 
a foundation of programs within the DSO, 
and that this office has a specified focus area 
in “Mathematics/Modeling/Design.” The 
panel also remarked that the Information 
Innovation Office (I2O) uses a significant 
amount of mathematics. Siegelmann high-
lighted a new program that she is developing 
intended to support efforts to create a contin-
uously learning and evolutionary computer.

While much is still unknown regard-
ing Congressional research and funding 
priorities at this time, the goal of SIAM 
and other scientific societies remains the 
same: raise visibility of applied mathemat-
ics in the federal government, define policy 
agendas, and conduct outreach and advo-
cacy to influence congressional legislation 
and federal programs.

Karthika Swamy Cohen is the managing 
editor of SIAM News. Miriam Quintal is 
SIAM’s Washington liaison at Lewis-Burke 
Associates LLC. Eliana Perlmutter is a 
Legislative Research Assistant at Lewis-
Burke Associates LLC.
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Call for U.S. Students and Postdocs 
from Iran, Iraq, Syria, Yemen, 
Somalia, Libya, and Sudan

If you are a student or a postdoc:
1. Admitted or studying at a major U.S. 

graduate school
2. Working in the field of scientific comput-

ing/computational science and engineering with 
interest in numerical optimization, partial differ-
ential equations or machine learning

3. Would like to pursue a Ph.D. degree at the 
University of British Columbia

I would love to hear from you. We have a vig-
orous program in Computational Geoscience part-
nering with industrial collaborators. Please visit 
my web page for some of the research done so far.

Please send your CV, grades, and any other 
relevant information to Eldad Haber at haber@
math.ubc.ca.

Call for Nominations for the 
2017 Ostrowski Prize

The aim of the Ostrowski Foundation is 
to promote the mathematical sciences. Every 

second year it provides a prize for recent out-
standing achievements in pure mathematics 
and in the foundations of numerical math-
ematics. The value of the prize for 2017 is 
100.000 Swiss francs.

The prize has been awarded every two 
years since 1989. The most recent winners 
are Ben Green and Terence Tao in 2005; 
Oded Schramm in 2007; Sorin Popa in 
2009; Ib Madsen, David Preiss, and Kannan 
Soundararajan in 2011; Yitang Zhang in 2013; 
and Peter Scholze in 2015.

See https://www.ostrowski.ch/index_e.
php for the complete list and further details.

The jury invites nominations for candidates 
for the 2017 Ostrowski Prize. Nominations 
should include a CV of the candidate, a letter of 
nomination, and two-three letters of reference.

The chair of the jury for 2017 is Gil Kalai 
of the Hebrew University of Jerusalem, Israel. 
Nominations should be sent to kalai@math.
huji.ac.il by May 15, 2017.

Send copy for classified advertisements and announcements to: marketing@siam.org; 
For rates, deadlines, and ad specifications visit www.siam.org/advertising.

Students (and others) in search of information about careers in the mathematical sciences 
can click on “Careers and Jobs” at the SIAM website (www.siam.org) or proceed directly 

to www.siam.org/careers.

Professional Opportunities 
and Announcements

Help Wanted at SIAM Review
By Desmond J. Higham, Tim 
Kelley, and David S. Watkins

S IAM Review (SIREV) is one of the few 
outlets for in-depth, expert overviews 

of recent books in applied and industrial 
mathematics. What makes a good book 
review? “A good book review doesn’t 
simply list the chapter titles and walk 
through the contents,” SIAM President 
Nick Higham said. “It gives a general feel 
for what the book is about, what the book’s 
distinctive features are, and how it fits into 
the landscape of existing books on the sub-
ject. It assesses whether the book is suitable 
for its target audience, comments on the 
accuracy of the contents (potential readers 
need to be warned if there are mathemati-
cal errors or many typos), and discusses 
the book’s usability (Good index? Useful 
bibliography? Suitable ordering of topics 
and cross-referencing?). Finally, it tells a 
non-expert reader something they didn’t 
already know about the field in question, 
such as what the most active research top-
ics and questions are (or no longer are).” 
Vice President at Large Ilse Ipsen also 
added a few thoughts. “Good book reviews 
are informative, insightful, and can help 
in deciding whether to buy a book, be it a 
research monograph or textbook,” she said.

For good reason, authors of journal arti-
cles are bound by the conventions of tech-
nical writing. The writer of a book review, 
however, has the opportunity to be interest-
ing as well as authoritative: to take a more 
personal stance on what’s important, provide 
anecdotes and historical asides, and specu-
late about future developments. Margaret 
Wright, a past president of SIAM and for-
mer editor-in-chief of SIREV, echoed these 
views. “In these days of information over-
load, more than ever people seeking to know 
more about a subject need help finding the 
right book,” she said. “A bland summary of 
the table of contents is easy enough to find 
for ourselves, but what we want most is an 
honest and fair review by an expert (even 
when opinionated). And this is precisely 
what SIREV book reviews give us.”

David Watkins will step down as Book 
Review Section Editor of SIREV when his 
terms ends in December 2017. The journal 
needs a book lover to take over the job 
starting on January 1, 2018. Perhaps you 
are that person.

The role is suitable for a senior applied 
mathematician with broad interests who 
enjoys books, likes to write, has some edi-
torial experience, and is prepared to serve a 
three-year term. SIREV publishes quarterly, 
and the Book Reviews section has around 
10 reviews (20 pages) per issue. The edito-
rial board for the section currently consists 
of six members. The new section editor may 
wish to increase this number to handle a 
growing workload and reflect the diversity 
(demographic, disciplinary, and geographic) 
of applied and industrial mathematics.

When asked to serve SIAM as a volunteer, 
most people want a job description. Watkins 
has one: I look at new applied math titles 
as they publish and make decisions about 
whether or not to review. I’ve also been 
doing some catch-up, reviewing books that 
are two-three years old but still merit a 
review. For each book I decide to review, I 
also choose an editor (or myself) to handle it.

About once every three months, I send 
each of my editors a list of perhaps three 
or four books for which I would like them 
to seek reviewers. They have veto power; if 
they think a book isn’t worth reviewing, we 
won’t review it.

For those titles that I decide to handle 
myself, I look for appropriate reviewers 
and send out requests to review. I get many 
rejections, but I keep trying until I find 
someone who agrees to do the job. Many 
people who decline are at least willing 
to suggest other possible reviewers. The 
internet is also a great aid in the search for 
appropriate reviewers. 

In the 21 months since I took over this 
job, I personally have handled about 70 
books, not all of which were reviewed. I 
like to review books, and I try to provide at 
least one review per issue. The next editor is 
under no obligation to do this.

As the reviews come in, I collect them, 
make minor edits, and send in a batch for 
the next issue once every three months. 
When the galleys come back, I read them 
(and so do the review authors), make any 
last corrections, and write the introduction 
for that SIREV issue.

The nature of this job is changing, and 
will continue to steadily evolve. I do things 
a lot differently from my predecessor, Bob 
O’Malley. My successor will surely make 
still more changes. Bob had every book 
come across his desk. He decided which to 
review and solicited reviewers. Once Bob 

found a reviewer, he mailed the book out 
(with some local secretarial help). I ask 
publishers not to send me physical books, 
but some do anyway. If they want to send 
a book, they can send it to the SIAM office. 
Brittni Holland, SIAM’s editorial associate, 
lets me know what we have received. My 
editors and I rely on publishers’ websites 
for the information we need to make deci-
sions about each book. Once we have a 
reviewer, Brittni mails him/her the book. 
Sometimes, and increasingly frequently, 
Brittni contacts the publisher and has the 
publisher send the book directly to the 
reviewer. Sometimes we deal with e-books, 
and I expect that to increase. We will prob-
ably end up with an entirely electronic 
operation eventually.

By reading book reviews, SIAM members 
explore the state of the art in research, keep 
abreast of emerging topics, and discover new 
teaching resources. By writing book reviews, 
authors can offer their slant on a subject, 
present insights and personal opinions, and 
draw connections between fields. At the top 
of this pyramid is the Book Review Section 

Editor, who steers the scope, content, and 
style of the section, and in doing so obtains a 
unique perspective on the field.

Persons interested in this role may infor-
mally contact Des Higham (d.j.higham@
strath.ac.uk) for further information. 
Mike Miksis, SIAM’s Vice President for 
Publications, hopes to have the next Book 
Review Section Editor approved by mid-
summer 2017.

Des Higham is a numerical analyst at the 
University of Strathclyde in Glasgow. He 
has research interests in stochastic compu-
tation, network science, and city analytics, 
and is a SIAM Fellow and a Fellow of the 
Royal Society of Edinburgh. He is also the 
editor-in-chief of SIAM Review. Tim Kelley 
chairs the SIAM Board of Trustees and has 
served as editor-in-cheif of SIAM Review 
and the SIAM Journal on Optimization. He 
is Drexel Professor of Mathematics at North 
Carolina State University. David Watkins is 
currently Book Review Section Editor for 
SIAM Review and a professor of mathemat-
ics at Washington State University.
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A New Twisting Somersault
By Holger R. Dullin

Platform and springboard diving are 
among the most beautiful Olympic 

sports. A fascinating outcome from our 
study of aerial motion and its mathemati-
cal description is the suggestion of a 
new twisting somersault [5] with five full 
twists, called “513XD.” The Fédération 
internationale de natation (FINA) diving 
code states that 513XD has three half-
somersaults and X = 10  half-twists. This 
dive has not yet been performed, but we 
believe that it is humanly possible and 
divers will perform it at world-class com-
petitions in the future. “Bodies in Space,” 
the ARC-funded research project that sup-
ported this work, is being carried out 
jointly with the New South Wales Institute 
of Sports in Sydney, Australia.

What mathematics led to the discovery 
of this tricky new dive?

Non-rigid Body Dynamics
Differential equations describing the 

motion of the human body have been used in 
biomechanics for a long time. Biomechanists 
typically model the body as a collection of 
rigid pieces coupled by joints. Inspired by 
geometric mechanics, our approach exploits 
the symmetry of the equations and, most 
importantly, clearly separates the shape of 
the athlete from the overall orientation. It all 
starts with Euler’s equation

	      
L L= ×W, 	  	  (1)

where L =∈ 3  is the angular momen-
tum vector and W Î 3  is the angular 
velocity vector, both in a body frame. An 
orthogonal matrix R SOÎ ( )3  describes 

the body’s orientation. The matrix R trans-
forms vectors from the body frame to 
the space-fixed frame, so that RL  gives 
the constant angular momentum in space. 
Differentiating the constant vector RL  
with respect to time yields  R RL L+ = 0,  
and solving for L  gives Euler’s equa-
tion (1). Differentiating R Rt = id  dem-
onstrates that R Rt   is antisymmetric. The 
usual hat-map from 



3  to so( )3  identifies 
the angular momentum as ˆ .W = R Rt   The 
essential point is that (1) is true even for a 
shape-changing body, as long as angular 
momentum conservation holds.

Computing the angular momentum for a 
shape-changing body [3] gives

	   L A= +IΩ , 		   (2)

where I is the body’s tensor of inertia and 
A Î 3  is a momentum shift vector. The 
difference between rigid and non-rigid body 

dynamics now appears. When the shape is 
constant, the vector A is zero and Euler’s 
rigid body equations are thus recovered. 
When the shape is changing, the symmet-
ric moment of inertia tensor I t( )  and the 
momentum shift vector A( )t  encompass all 
the complexity of a particular coupled rigid 
body model for the human body. Given a 
particular shape change, one can compute 
both I t( )  and A( );t  explicit formulas for 
this are available in [3]. Maurice Raymond 
Yeadon first derived similar equations for 
the description of the twisting somersault, 
as described in his collected papers [6].

Let us first describe a somersault. Fix 
a coordinate system in the body’s trunk 
where the x-axis points out of the chest, 
the y-axis points to the left, and the z-axis 
points towards the head. By definition, a 

somersault is a motion where R is a rotation 
about a fixed L = ( , , ) ,0 0l t  which is an 
eigenvector of I. When the diver pulls into a 
tuck position, the corresponding eigenvalue 
of I decreases and the angular momentum 
W  increases, as determined by (2). While 
the shape changes, the momentum shift 
A is non-zero but parallel to L, so that all 
three vectors remain parallel throughout the 
dive and—in the body frame—the solution 
remains at the equilibrium point L = 0.

The Kick Approximation
A twisting somersault dive begins with a 

somersault, followed by a shape change for 
which A is not parallel to L. This motion 
moves L away from the equilibrium point 
and the body starts twisting, with vector L 
revolving about the z-axis. To understand 
the dynamics, let’s consider a fast shape 
change, which makes A arbitrarily large in 
the kick-limit. In this limit, (1) and (2) yield

          L L A≈ − × −I 1 , 	 	  (3)

a linear, time-dependent differential equa-
tion. The shape change is simple to inte-
grate when it occurs such that the direc-
tion of I -1A  remains constant, and the 
solution is a rotation about that direction. 
Moving a stretched arm in the yz-plane 
produces a rotation R

x
 about the x-axis. In 

a typical twisting somersault, the first arm 
motion starts the twisting and—following 
a full number of twists—reversing the arm 
motion stops it.

We observed that when the second arm 
motion is performed after a half twist 
instead of a full twist, it has the opposite 
effect: instead of stopping the twist, it 
speeds it up. The reason for this is geo-
metrically simple. Let a  be the amount 
of rotation generated by the arm motion. 
While R R R

x z x
( ) ( ) ( )α π α2 -  is the iden-

tity, R R R
x z x
( ) ( ) ( )α π α- = R R

x z
( ) ( )2α π

= −R R
z x
( ) ( )π α2  is not. So the initial 

L = ( , , )0 0l t  moves closer to the pole in 
the second case. The twisting motion speeds 
up as L gets closer to the pole, and thus the 
second arm kick after a half-twist increases 
the twisting speed (see Figure 1).

The Full Model
This argument is no doubt approximate, 

and the true motion is more complicated 
than the analysis indicates. However, it 
does convey the central idea. More details 
and a full numerical simulation, in which 
the arm motions are performed with realis-
tic speed, confirm the mechanism’s validity 
[5].1 When the second arm motion involves 
both arms—one down, and one up, like 
the wings of a windmill (see Figure 2)—it 
achieves an effect roughly twice as big. We 
amplify that effect in [1], where a rotat-
ing disc replaces the arms. A reverse arm 
motion occurring a full number of twists 
later stops the high-speed twist, and a 
fourth arm motion stops the twisting alto-
gether, as in Figure 1.

1  View an animation of the 513XD dive at 
goo.gl/Xvi7pD.

But how much does the body rotate in 
space? A diver must perform a half-integer 
number of somersaults for the dive to 
be successful overall. Symmetry reduction 
to the body frame eliminates the rotation 
about the fixed angular momentum vector 
in space. But geometric mechanics teaches 
us that one can recover the missing somer-
sault angle as a combination of a geometric 
phase and a dynamic phase from data 
of the reduced equations alone. Richard 
Montgomery [4] does this for rigid bodies, 
and Alejandro Cabrera and La Plata [2] do 
the same for non-rigid bodies. We extend 
these formulas to our setting in [3], and 
show that within a certain limit, the ratio of 
the number of somersaults to the number 
of twists is a rotation number of the inte-
grable Euler top. All of this leads to a good 
theoretical understanding of the twisting 
somersault; now we hope to find a volunteer 
athlete to try the new 513XD dive—with 
five full twists—in practice!
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Figure 1. Trajectory on the sphere of constant momentum | | .L = l  Left. Kick model, second 
kickoff by a half twist. Right. Realistic model. Image credit: [5].

Figure 2. 513XD dive after the first 1/2 twist 
and 1/2 somersault is complete while arms 
are in windmill motion. The black vector is 
the constant angular momentum vector. 
Image credit: [5].

Call for Nominations 
for 2019 ICIAM Prizes
The International Council for Industrial 

and Applied Mathematics (ICIAM) 
Prize Committee calls for nominations for 
the five ICIAM prizes (the Collatz Prize, 
the Lagrange Prize, the Maxwell Prize, the 
Pioneer Prize, and the Su Buchin Prize) to 
be awarded in 2019. Each ICIAM Prize is 
truly international and has its own special 
character. We therefore welcome nomina-
tions from every part of the world. A nomi-
nation should consider the specifications for 
a particular prize1 and contain the following 
information:

•  Full name and address of nominee
•  Web home page, if applicable
•  Name of particular ICIAM prize
•  Justification for nomination; cite nomi-

nator’s reason for considering candidate 
to be deserving, including explanations of 
the scientific and practical influence of the 
candidate’s work and publications.

•  Proposed citation – a concise statement 
about the outstanding contribution in fewer 
than 250 words

•  CV of the nominee
• Two-three letters of support from 

experts in the field and/or two-three names 

1   See http://www.iciam.org/iciam-prizes

of experts to be consulted by the Prize 
Committee

•  Name and contact details of the nomi-
nator

Nominations should be made electroni-
cally through the website, https://iciam-
prizes.org/. The deadline for nominations 
is July 15th, 2017.

ICIAM Prize committee for 2019
•  Maria J. Esteban, Committee Chair
•  Zdenek Strakos, Chair of Collatz Prize 

Subcommittee
•  Alexandre Chorin, Chair of Lagrange 

Prize Subcommittee
•  Alexander Mielke, Chair of Maxwell 

Prize Subcommittee
• Denis Talay, Chair of Pioneer Prize 

Subcommittee
•  Zuowei Shen, Chair of Su Buchin Prize 

Subcommittee
•  Margaret H. Wright

ICIAM is the world organization for 
applied and industrial mathematics. Its 
members are mathematical societies based 
in more than 25 countries. For more infor-
mation, visit http://www.iciam.org/.


