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An Alternative System for Curbing 
COVID-19 Spread in the U.S.
By Samuel Awoniyi

Researchers are currently generating 
numerous mathematical models that 

predict both the proliferation and control of 
the ongoing COVID-19 pandemic. Here I 
employ Markov chain modeling to compare 
two possible systems for curbing COVID-
19 spread in the U.S. The country is pres-
ently utilizing one of these systems, while 
the other is a proposed alternative system 
that features a “corps of suppliers and 
caregivers” to address certain imperfections 
within the current framework.

My group has designed the alternative 
system to more effectively control the rate 
of infection, demand on existing healthcare 
facilities, overall costs, and disruption to 
the national economy. One could initiate 
this method at both the state or community 
level with only a few weeks of planning, 
either as a follow-up to—or replacement 
for—the current system.

The Markov chain model aims to dem-
onstrate the sound mathematical explana-

tion of the proposed alternative system’s 
superiority. This is followed by a section 
on practical implementation that would 
benefit U.S. decision-makers, including 
state governors’ staff, county commission-
ers’ personnel, and school system planning 
committees, among other groups.

Description of the 		
Two Potential Systems

Figure 1 depicts the two possible sys-
tems for COVID-19 mitigation in the U.S. 
In both systems, set B consists of all 
people in the country who currently test 
positive for COVID-19, including every-
one who is presently hospitalized with 
COVID-19 symptoms. In the existing sys-
tem, set A consists of the remaining U.S. 
population (or community of interest). 
However, set A is slightly smaller in the 
alternative method, as it comprises the rest 
of the population minus set C. And set C 
encompasses people who are officially 
commissioned as corps of suppliers and 
caregivers for everyone in set B.

The official function of individuals in set 
C is to coordinate and deliver the needs of 
those in set B, such as food and healthcare 
supplies, temporary housing, and hospital-
ization. To minimize infection probability 
in the proposed system, people in set C—
henceforth called “the Red Corps”—will 
always have all necessary personal protec-
tive equipment” (PPE). Detailed guidelines 
for in-person contacts in this alternative 
framework are as follows:

Guideline #1: Any person who tests pos-
itive for COVID-19 shall promptly move 
into set B as soon as the test result is known.

Guideline #2: Individuals in set A shall 
not have any direct, in-person contact with 
those in set B.

Guideline #3: Everyone in set B shall 
wear a preventive face mask during all in-
person interactions.

Guideline #4: Every member of the 
Red Corps (set C) shall limit their in-
person interactions with people in set B to 

Figure 1. Two possible systems for limiting COVID-19 spread in the U.S. The spongy look of set A is designed to reflect the malleable nature of 
the country’s relatively free society. Figure courtesy of Samuel Awoniyi.

See Alternative System on page 3

First-principles Machine  
Learning for COVID-19 Modeling
By Luca Magri and                    
Nguyen Anh Khoa Doan

In recent months, the novel coronavirus 
disease 2019 (COVID-19) has affected 

nearly all corners of the globe. On January 
30, 2020, the World Health Organization 
(WHO) declared the outbreak a Public 
Health Emergency of International Concern. 
On March 11, it recognized the outbreak as 
a pandemic. As of May 4 at 10:00 CEST, 
WHO reported 3,435,894 confirmed cases 
of COVID-19, 239,604 confirmed deaths 
[6], and cases in 215 countries.1 Government 
decisions are thus flanked by close scientific 
advice, perhaps now more than ever.

Mathematical models—which provide 
predictions about the evolution of the num-
ber of infected, recovered, and deceased 
patients—are central to official advice. The 
predictions’ accuracy steadily improves 
as researchers infer the contact rate ( ),b  
recovery rate ( ),g  and death rate ( )u  from 
confirmed cases data. The basic reproduc-
tion number ( )R0 —the average number 
of new infections that are generated by a 
single infected person within a susceptible 

1  https://www.who.int/emergencies/
diseases/novel-coronavirus-2019

population—depends on these rates. In the 
absence of preventative measures, most 
accredited sources estimate R0  to fall 
within the range of 2-3 [5]. The key epi-
demic parameters ( , , , )β γ µ R0  are crucial 
in helping governments take appropriate 
measures to combat the epidemic and flat-
ten the curve. Most measures are meant 
to reduce R0 , which one can achieve by 
decreasing the contact rate b  or increas-
ing the recovery rate g  [2]. The latter is 
obtainable with a vaccine or cure, neither 
of which are currently available. Therefore, 
governments are presently striving to con-
trol COVID-19 by minimizing the contact 
rate through lockdowns and social distanc-
ing. But how can we control a phenomenon 
about which we know very little?

To start, we must predict the epidemic to 
stay one step ahead of it — and can do so 
with modeling techniques. However, how 
can we model a disease when we only have 
partial and inaccurate information? The 
answer to this question is more difficult. 
Here, we employ a method developed for 
the prediction of chaotic dynamical systems 
[1] and apply it to COVID-19 [4]. We 
combine two sources of past and present 

See Machine Learning on page 4

Figure 3. Prediction of unit load in our hypothetical scenario involving a second 
wave of the pandemic. Figure courtesy of Marc Garbey et al.
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8	 Florida Students Recognized 
for Mathematical Model to 
Forecast the Implementation 
of Electric Semi-trucks

	 Each year, high school students 
from across the U.S. compete 
in the annual MathWorks Math 
Modeling (M3) Challenge for 
over $100,000 in scholarship 
funds. The 2020 Challenge 
problem focused on the truck-
ing industry’s eventual transi-
tion from diesel fuel to electric 
power. Students from Pine 
View School in Osprey, Fla., 
nabbed the top prize for their 
complex, multi-part model.

9	 Mathematical Modeling in 
High School: How It Begins 
and Where It Can Go

	 Most American high school 
mathematics programs progress 
through a standard curriculum 
without introducing students 
to the real-world relevance and 
applicability of math model-
ing. Alexandra Schmidt, a 
math teacher at the Emma 
Willard School in Troy, NY, 
details her decision to launch 
a semester-long, project-based 
math modeling course.

10 	 Mathematicians 
Quickly Respond to the          
COVID-19 Pandemic

	 The Division of Mathematical 
Sciences at the National Science 
Foundation recently requested 
proposals pertaining to the 
COVID-19 pandemic. Juan 
Meza, Zhilan Feng, Tie Luo, 
and Junping Wang describe the 
ensuing 15 Rapid Response 
Research awards that could have 
a significant impact in mitigat-
ing the spread of COVID-19.

11 	 Computational Science  
and Mental Health

	 Joshua Gordon, director of the 
National Institute of Mental 
Health (NIMH) at the National 
Institutes of Health, is dedicated 
to expanding the boundaries 
of computational psychiatry. 
He encourages mathematicians 
and computational scientists 
to explore collaborations with 
the mental health research 
community and pursue fund-
ing opportunities through  
NIMH’s Computational 
Psychiatry Program.
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Message from the Editor-in-chief of SIAM News
By Hans Kaper

As I write this message, the world is 
still in the midst of the COVID-19 

pandemic. The disease has significantly 
affected our daily lives—both personal 
and professional—in multiple ways, and 
the prospect of a speedy return to “nor-
mal” is bleak for most countries. If one 
observation should encourage and cheer 
us up, however, it is that the word “model-
ing” has entered mainstream vocabulary. 
Though it may not always refer to math-
ematical or computational modeling, the 
concept has become an integral part of 
the discussion surrounding SARS-CoV-2 
and COVID-19. Mathematical modeling 
is thus perhaps more important now than 
ever, as mathematicians and computa-
tional scientists have been presented with 
a unique opportunity to contribute to and 
shape global dialogue.

The June issue of SIAM News is the 
second of two consecutive special issues 

that present various methods and tools of 
applied and computational mathematics that 
facilitate our understanding of infectious 
disease dynamics in numerous contexts. We 
do not claim that the collection of articles in 
these two issues provides a comprehensive 
view of all pertinent topics. Our purpose 
is to expose a selection of disease-related 
modeling problems and illustrate the wide 
range of methods that researchers use to 
address them. Our main concern in assem-
bling this compilation was timeliness; the 
articles were solicited (not peer-reviewed) 
and reflect the authors’ opinions. Readers 
who seek more detailed information should 
refer to the SIAM Epidemiology Collection, 
which is freely available for one year and 
accessible online.1

We once again thank the authors for 
their enthusiastic and prompt response 
to our invitation to contribute articles to 

1  https://epubs.siam.org/page/Epidem
iologyCollection

this second special issue. The sugges-
tion to publish a series of articles on the 
spread of infectious diseases originated 
within the SIAM Activity Group on 
Mathematics of Planet Earth (SIAG/
MPE),2 and we appreciate the SIAG’s 
prompt attention to this timely matter.

As your professional society, SIAM 
is working hard to help facilitate a 
better understanding of COVID-19 and 
the research surrounding it. Please visit 
sinews.siam.org for additional posts and 
relevant mathematical resources. 

Hans Kaper, founding chair of the 
SIAM Activity Group on Mathematics 
of Planet Earth and editor-in-chief of 
SIAM News, is affiliate faculty in the 
Department of Mathematics and Statistics 
at Georgetown University.

2  https://www.siam.org/membership/
activity-groups/detail/mathematics-of-
planet-earth

Obituary: H. Thomas Banks
By William J. Browning

On December 31, 2019, the applied 
mathematics community lost a pro-

lific researcher, valued collaborator, and 
thoughtful mentor when Harvey Thomas 
Banks passed away after a short illness. He 
was 79 years old. During his long research 
and teaching career at Brown University, 
the University of Southern California 
(USC), and North Carolina State University 
(NCSU), Tom made seminal contributions 
in scientific comput-
ing with applications 
in control and estima-
tion; modeling and 
control in biomedical 
systems; smart materi-
als; inverse problems; 
semi-group theory; and 
electromagnetic mate-
rial interrogation. He 
authored more than 550 
peer-reviewed publica-
tions and five research 
monographs. Tom is 
remembered as an 
effective teacher and 
mentor who supervised 
51 Ph.D. theses and 40 
postdoctoral associates. 
He was also an out-
standing contributor to 
the applied mathematics community.

Tom was born in Hickory, N.C. on 
October 30, 1940, and raised in rural 
North Carolina’s Catawba County. He 
graduated from NCSU in 1963 with a 
B.S. in applied mathematics before attend-
ing graduate school at Purdue University, 
where he earned his Ph.D. in applied 
mathematics in 1967. Tom studied under 

the guidance of L.D. Berkovitz and wrote 
his dissertation on control of differential 
equation systems with delays.

After graduation, Tom joined the 
Division of Applied Mathematics and the 
Center for Dynamical Systems at Brown. 
Solomon Lefschetz had recently founded 
the latter, which was renowned worldwide 
for its work in dynamical systems, control 
theory, and their applications.

From 1969 to 1972, Tom served as direc-
tor of Brown’s Graduate Program in Applied 

Mathematics, which 
led to an early and 
lifelong interest in 
mentoring and work-
ing with graduate stu-
dents and postdocs. 
Though he had a well-
deserved reputation as 
a great teacher at both 
the undergraduate and 
graduate levels, Tom 
occasionally showed 
limited patience with 
slackers among his 
students; this is unsur-
prising, considering 
his own amazingly 
strong work ethic.

In 1970, Tom had 
the opportunity to 
work with medical 

researchers at Rhode Island Hospital on the 
modeling of glucose homeostasis, which 
provided a new research direction for him. 
This stimulated a career-long dedication to 
teaching and research in biological areas. 
In the early 1970s, Tom co-taught courses 
in physiology at Brown’s medical school, 
developed a joint applied mathematics/bio-
medical sciences program at Brown, and 

devoted significant research energy to top-
ics in biology, such as enzyme kinetics, 
physiological control systems, and enzyme 
cascades in biochemical pathways.

In 1971, Jacques-Louis Lions invited 
Tom to spend a month at Inria and lecture 
on biomedical applications of control and 
identification. These lectures inspired a 
long and fruitful collaboration with numer-
ous French applied mathematicians, an 
honorary faculty position at Université 
de Technologie de Compiègne (UTC), 
and multiple exchange visits between the 
groups at Brown and UTC.

Tom’s work in the biological sci-
ences resulted in research contributions 
to a wide variety of topics, including 
reaction-diffusion in membranes; protein 
synthesis; enzyme-regulated pathways in 
glycogenolysis; insect population growth 
and dispersal; size-structured models in 
fish populations; transport in brain tissue; 
physiologically-based pharmacodynamics 
kinetic models of toxic agents in animals; 
detection of coronary stenosis via propa-
gating waves in viscoelastic tissue; and 
electromagnetic interrogation in tissue by 
means of natural and/or acoustically gen-
erated electrical interfaces.

In 1974, Tom met Franz Kappel in 
Würzburg, Germany. They quickly became 
good friends and professional colleagues, 
initiating a lengthy research collaboration 
when Kappel and his family visited Brown 
later that same year. The pair initially 
focused their joint efforts on approxima-
tion methods for delay systems, but sub-
sequent collaboration included semigroup 
methods for inverse problems — especially 
those involving size-structured population 
models for fish populations. An important 
benefit of their association was exchange 
visits for many young mathematicians in 
the research centers at Brown/USC/NCSU 
and the University of Graz.

In 1980, Milt Rose, director of the 
Institute for Computer Applications 
in Science and Engineering (ICASE) at 
NASA’s Langley Research Center, asked 
Tom to help develop and direct an ICASE 
program in control theory to provide basic 
mathematical and computational research 
for NASA-related scientific and engineer-
ing questions. In addition to recruiting and 
mentoring many excellent postdocs for the 
program, Tom developed numerous col-
laborations with NASA engineers. These 
partnerships significantly affected the direc-
tions of his own research, as well as that of 
his students and postdocs.

At the time of his ICASE involve-
ment, Tom began a series of interactions 
with scientists and engineers at air force 

H. Thomas Banks, 1940-2019. Photo 
courtesy of Sue Banks.

See H. Thomas Banks on page 6
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By Jiangzhuo Chen, Simon Levin, 
Stephen Eubank, Henning Mortveit, 
Srinivasan Venkatramanan, Anil 
Vullikanti, and Madhav Marathe

Computational epidemiology aims to 
develop computer models and deci-

sion support systems that understand, 
predict, and control a disease’s spatio-
temporal diffusion throughout a popula-
tion. Researchers can use these models 
to forecast an epidemic’s future course, 
allocate scarce resources and assess deple-
tion of current resources, infer disease 
parameters, and evaluate various interven-
tions. Individual behavior and public policy 
are critical in understanding and control-
ling infectious diseases, and computational 
techniques provide a potentially powerful 
study tool. The COVID-19 pandemic has 
had significant social, health, economic, 
and political ramifications worldwide, and 
its impact will undoubtedly continue to 
grow in the coming months. Here we out-
line an approach to support the COVID-19 
response with examples that are rooted in 
network science and data-driven modeling. 

Computational Models: From 
ODEs to Multi-scale Networks

Compartmental mass action models are a 
cornerstone of mathematical epidemiology. 
They partition a homogeneous population 
into a small set of compartments that rep-
resent the possible disease states—e.g., sus-
ceptible ( ),S  infectious ( ),I  and removed 
( )R —and specify transition rates between 
states. Epidemiologists have successfully 
used these models in the past and continue 
to do so. Desirable features of compartmen-

tal models include their analytical tractabil-
ity—one can analyze simple dynamic mod-
els using scalable numerical simulations, or 
solve them to yield closed-form solutions or 
asymptotic limits––and their light demands 
on computational resources.

An alternative way to study epidemics 
involves explicit representation of the under-
lying contact structure that drives them [1-3]. 
We focus on networked models that con-
sider epidemic spread on an undirected social 
interaction network G V E( , ) over popula-
tion V . Each edge e u v E= ∈( , )  implies 
that individuals (also referred to as nodes) 
u v V, Î  interact. The specific form of inter-
action depends on the disease in question; 
for example, sexually transmitted diseases 
require physical sexual contact, while respi-
ratory illnesses necessitate only physical 
proximity. Let N v( )  denote the set of neigh-
bors of v.  The SIR model on graph G  is a 
dynamical process during which each node 
is in either an S ,  I ,  or R  state. Infection 
can potentially spread from u  to v  along 
edge  e u v= ( , ) with a probability of b( , )e t  
at time t  after u  becomes infected, which is 
conditional on node v remaining uninfected 
until time t;  this is a discrete version of the 
infection rate for the aforementioned ordi-
nary differential equation (ODE) model. We 
allow I t( )  to denote the set of nodes that 
become infected at time t. The random sub-
set of edges on which the infections spread 
represents a disease outcome and is called a 
dendrogram. This dynamical system begins 
with a configuration that features one or 
more nodes in state I  and ultimately reaches 
a fixed point where all nodes are in states S  
or R.  Some key topics of interest are as fol-
lows: (i) Characterization of aspects of I t( ) 
(the epicurve)—such as its peak, the time at 

which the peak occurs, and its integral (the 
outbreak size)—as a function of the disease 
model parameters and network structure; and 
(ii) the effectiveness of various interventions, 
including vaccination (which can be mod-
eled as node deletions) and social distancing 
(which can be modeled as edge deletions).

Networks: Scale,              
Structure, and Detail

One must treat the network G V E( , ) 
as a first-class model parameter, on equal 
footing with disease-related parameters 
like transmissibility and incubation peri-
od. This step simply acknowledges the 
importance of parameters that are swept 
under the rug by mass action assumption. 

Because certain combinations of parame-
ters—such as transmissibility and network 
structure—are not separately identifiable, 
problems with mass action assumption are 
not immediately obvious. Instead, they 
arise when one attempts to understand the 
effects of interventions.

For example, consider the following 
intervention: reduce contacts by 50 percent. 
Figure 1 illustrates three plausible interpreta-
tions. Figure 1a reduces the probability of 
transmission (represented by an edge weight) 
in each contact by 50 percent, 1b reduces 
the number of contacts by 50 percent, and 
1c cuts the graph in half. The dynamics on 
each of these graphs are clearly different. 

Networked Epidemiology for COVID-19

Figure 1. Three interpretations of “reducing contacts by half” in the top network. 1a. Reducing 
the strength of each contact by half. 1b. Reducing the number of contacts by half. 1c. Reducing 
the size of connected components by half. Figure courtesy of Stephen Eubank.

See Networked Epidemiology on page 7

essential deliveries of needed supplies and 
healthcare resources.

Guideline #5: Any person in set B shall 
move to set A after fully recovering from 
COVID-19; this might include possessing 
the requisite antibodies.

My team’s proposed alternative system 
somewhat resembles a compartmental model 
in the area of infectious disease modeling 
[3]. However, use of a Markov chain sojourn 
time cycle [1]—rather than mathematical 
analysis, as with typical compartmental mod-
els—makes our modeling efforts unique.

Two Corresponding             
Markov Chain Models

We utilize two discrete-time Markov 
chain models, based on the previous guide-
lines, to explain the superiority of our alter-
native system. Each model tracks the way in 
which COVID-19—behaving like a travel-
ing deliverer of harmful packages—moves 
back and forth between sets B and A in 
the current system, and sets B and C in the 
proposed alternative system. This applica-
tion justifies requisite Markov assumptions 
because COVID-19’s infection rate depends 
only on society’s diligence in following the 
five aforementioned guidelines.

Figure 2 depicts two discrete-time 
Markov chains (DTMCs). The meaning of 
states A, B, and C are the same as in Figure 
1 (on page 1), and the probability of 1 in 
each DTMC is on account of guideline #1: 
Any person who tests positive for COVID-
19 shall promptly move into set B as soon 
as the test result is known.

Probability p1 reflects the relatively free 
in-person interactions between individuals in 
sets A and B in the current system. Similarly, 
probability p2  reflects the carefully con-
trolled in-person interactions between the 
Red Corps (set C) and occupants of set B in 
the proposed alternative system. Accordingly, 
one would ordinarily have p p1 2 .

If we let STC1  denote the sojourn time 
cycle for the current system’s DTMC and 
STC 2  denote the sojourn time cycle for the 
proposed alternative system’s DTMC (see 
Figure 2), we then have STC STC2 1  by 
virtue of p p1 2 , because STC p1 1 11= +/  
and STC p2 1 12= +/ . A straightforward 
introduction to the computation of sojourn 
time cycles for general Markov chains is 
available in [1].

For instance, if p1 0 5= .  and p2 0 1= . , 
then STC1 3=  and STC 2 11= .  Because 
STC  signifies “average time to next infec-
tion” in this application, it is evident that the 
average time to next infection for the pro-
posed alternative system would ordinarily 
be much longer than for the current system. 

Practical Implementation
Regarding practical implementation, 

our alternative system first and fore-
most requires that some form of reliable 
COVID-19 testing be available to every-
one in the U.S. Testing of Red Corps mem-
bers must be especially prompt; otherwise 
the proposed framework will not fare much 
better than the current system in terms of 
infection probability.

Red Corps members include healthcare 
teams, grocery and food supply personnel, 
and communications supply groups. Most 
Red Corps members will have preferably 
acquired some COVID-19 antibodies. Each 
member must wear suitable PPE during 
in-person interactions with people in set B, 
and a proper face mask in grocery stores 
and other shops. This requirement is meant 
to minimize the probability of a Red Corps 
worker infecting the general population.

Asymptomatic set B members should be 
housed in suitable hotels, separate from the 
members of set B who already show symp-
toms. These symptomatic individuals should 
be housed in hospitals that are specialised 
for COVID-19 patients. Each set B member 
must wear an appropriate face mask during 
in-person interactions with Red Corps mem-
bers. As per guideline #2, people who are 
currently in set B must not have in-person 
interactions with those in set A.

Everyone in set A must wear a suitable 
face mask during in-person interactions 
involving four or more people. Members 
of set A who are certified to possess some 
COVID-19 antibodies can go to work as 
planned or needed. As such, COVID-19’s 
overall adverse impact on the national econ-
omy would likely be much less under the 
proposed system than the current system.

Since our proposed alternative system 
involves substantial reduction of human 
freedom in society, it should be suspended 
shortly after a viable COVID-19 vaccine 
or treatment becomes available. One may 
also suspend the alternative system about 
one month after set B becomes virtually 
empty. The fact that an infected person 

will either die or recover and develop the 
necessary antibodies guarantees set B’s 
eventual emptiness.

Ultimately, our proposed method is well-
suited to prevent a second wave of COVID-
19 infections because the Red Corps will 
keep set B below critical community size—
the minimum size of a closed population 
within which a human-to-human, non-zoo-
notic pathogen can persist indefinitely [2, 3].

References
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Samuel Awoniyi is a professor of indus-
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of Engineering.

Figure 2. Two discrete-time Markov chains (DTMCs). Figure courtesy of Samuel Awoniyi.
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knowledge—first principles of an epidemic 
model and data on COVID-19 confirmed 
cases from official databases—to predict 
the future. While (some) human brains are 
well suited to capture the first principles 
that govern a problem, machine learning 
is more effective at identifying quantita-
tive correlations in data. First-principles 
machine learning synergistically combines 
the strengths of human brains and machines. 
We showcase the method on a prototypical 
epidemic model, but one can apply the tech-
nique to more sophisticated models.

A Bit of Maths
To model an epidemic (as with any other 

phenomenon), we must capture the first prin-
ciples—assumptions, constraints, laws, and so 
forth—that govern the dynamics. These prin-
ciples serve as the “game rules” and should 
not be violated. We divide a country’s entire 
population into mutually exclusive groups: 
population ( )N  = susceptible ( )S  + infect-
ed ( )I  +  deceased ( )D  + recovered ( ).R  
We assume that the population is constant but 
the other variables change in time. Each group 
therefore possesses the same characteristics—
i.e., groups are homogeneous—and every 
susceptible person can contract the virus. 

One can relax these working assumptions 
in more complex models [2]. This approach 
is known as the SIR epidemic model with 
vital dynamics and constant population [3]; 
we refer to it as the SIRD model for brevity. 
We use four ordinary differential equations 
with time-varying parameters (a nonlinear, 
non-autonomous dynamical system) to math-
ematically describe the first principles:

  

    S t
I
N
S I S R D=− =− − −b( ) , ,

				     
(1)

       
 R t I D t I= =γ µ( ) , ( ) .

These equations are subject to initial 
conditions. The parameters depend on 
governmental policies (lockdown, school 
closures, social distancing, etc.), popu-
lation heterogeneity (age, lifestyle, herd 
immunity, hygiene standards, etc.), and 
the epidemic’s properties (virus genome, 
spreading mechanisms, etc.). The basic 
reproduction ratio is R0 ≡ +β γ µ/ ( ).  If 
R0 1> ,  the number of infected individuals 
increases; if R0 1< ,  the number of infected 
individuals decreases on average.

Formalizing the Problem
One can formulate the calculation of the 

groups’ time evolution and the time-vary-
ing epidemic parameters as a constrained 
optimization problem (or equivalently, a 
data assimilation problem): Calculate the 
number of infected, recovered, deceased, 
and susceptible individuals; contact rate; 
recovery rate; and death rate to minimize 
the error between data and predictions from 
the epidemic model. We want to accept only 
those candidate solutions that are consistent 
with the epidemic model. More details on 
the loss function are available in [4].

Solving the Problem
Our proposed first-principles machine 

learning epidemic model is based on a 
combination of an ordinary differential 
equation solver that time-advances the epi-

demic model (first principles), and a feed-
forward neural network (machine learning) 
that assimilates the data into the epidemic 
model to learn the parameters and state (see 
Figure 1). To begin, the neural network (NN) 
receives as an input the time histories of the 
cumulative confirmed infected cases and 
confirmed deaths up until May 4, 2020. This 
data is accessible online.2 Using the time 

histories of the confirmed cases, the NN next 
infers the time evolution of the epidemic 
model’s parameters. We minimize the loss 
function—which measures the error between 
the candidate solution and data—to train the 
network. We then feed the inferred epidemic 
parameters into the SIRD model’s time inte-
gration. This time integration provides the 
state’s evolution (number of infected, recov-
ered, deceased, and susceptible individuals).

Figure 2 depicts the results. At the epi-
demic’s inception and in the absence of pre-
ventative measures, COVID-19 cases grow 
exponentially. Implementation of preemptive 
measures significantly impacts R0 , which 
decreases to values that are close to unity. 
Although the results are consistent with the 
employed first principles, they are affected 
by uncertainty because of biases in the data 
— such as errors in reporting, changes in case 
definition and testing regime, and, of course, 
modeling assumptions. However, the fast 
growth rate and large numbers likely make 
small biases negligible [5], and multiplica-
tive corrections—such as constant under-
reporting—only weakly affect the observed 
trend. Our proposed data-driven and model-
informed methodology reveals new possi-
bilities for inferring an epidemic’s evolution 
from data (see Figure 1) [4]. Future research-
ers should utilize more detailed epidemic 
models and data to improve predictions.
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Figure 1. First-principles machine learning for epidemic modeling. Figure adapted from [4].  

Figure 2. The epidemic’s evolution. 2a. The left axis represents estimated infected individuals. Crosses indicate data and solid lines indicate 
the model. The right axis represents deceased cases. Circles indicate data and dashed lines indicate the model. The three dotted vertical lines 
designate the beginning of lockdown for each country. 2b. The left axis represents inferred recovered individuals (solid lines). The right axis 
represents susceptible individuals (dashed lines). 2c. Basic reproduction rate. 2d. Contact rate. 2e. Recovery rate. 2f. Death rate. Dates are 
in month/day format. Figure adapted from [4].
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A Mathematical Model to Support Hospital 
Workflow Management During a Pandemic
By Marc Garbey, Guillaume Joerger, 
Shannon Furr, and Vid Fikfak

As with all pandemics, the worldwide 
spread of COVID-19 is significantly 

hindering patient flow management and 
severely straining hospital resources. 
Therefore, some healthcare professionals 
must make difficult decisions regarding 
patient care and resource allocation. While 
checklists for patient triage do exist, the 
dynamics of pandemics make efficient exe-
cution of these lists especially challenging. 
Senior management thus requires a tool that 
facilitates end-to-end demand visibility to 
identify and predict hospital bed constraints.

Multiple governmental and private agen-
cies have focused on the creation of dash-
boards to supply the general public with 
assessments of COVID-19. A significant 
amount of literature concerning mathemat-
ical models in epidemiology provides a 
rigorous framework for the prediction of 
COVID-19 dynamics [9, 10]. However, pro-
viding the necessary information at the local 
hospital scale to optimize the management 
of patient workflow is complex, primarily 
because researchers still do not fully under-
stand the disease. Every hospital must there-
fore adapt to COVID-19’s daily changes. As 
guidelines take time to implement, follow-
ing the most up-to-date information yields 
significant variety in clinical practices.

The Appropriate Data Set and 
Agile Mathematical Modeling

The French government has released 
records of most public hospitals around the 
country during the COVID-19 crisis. This 
file1 reveals the number of patients in hospi-
tals, the number of patients in the intensive 
care unit (ICU), the number of patients that 
are recovered and discharged, and the num-
ber of patients that have died in a medical 
institution. These numbers are updated daily 
and date back to March 18, 2020. Because 
of the sparsity of available data, we begin 
with a very simple model that reproduces 
the workflow to match the disease manage-
ment of each patient (see Figure 1).

Most patients who require hospitaliza-
tion are first placed on a medicine floor 
for further assessment and treatment. Non-
invasive monitoring, as well as imaging and 
blood tests, help determine patients’ condi-
tions and continue for the duration of their 
hospital stay. These resources—i.e., imag-
ing and laboratory work—are shared by all 
patients in the hospital and may slow down 
the process when overwhelmed with users. 
Some people who receive medical atten-
tion do well with conservative management 
techniques and are discharged after only a 
few days. Other patients’ health conditions 
may deteriorate, necessitating a move to the 

1  https://www.data.gouv.fr/en/datasets/
donnees-hospitalieres-relatives-a-lepidemie-
de-covid-19/

intermediate care unit (IMU) for additional 
care or the ICU for ongoing monitoring and 
sometimes mechanical ventilation.

The IMU and ICU require extensive 
supplies and resources. Ventilators are not 
the only limiting factor, as patients under 
mechanical ventilation need sedation and 
might be connected to additional systems 
that handle organ failure. We can add these 

constraints to our mathematical model with 
no technical difficulties due to a bottom-
up workflow description [5, 8], as long 
as mandatory data is available. Additional 
levels of care for which we should account 
include recovery floor and palliative care 
floor — for patients who are not responsive 
to treatment. Of course, there are many 
exceptions and singularities to these stan-
dard paths. For example, a patient may go 
directly from admission to the ICU when 
his/her condition is too unstable. In some 

hospitals, recovering COVID-19 patients 
and palliative care patients might share 
the same floor. To summarize, we create 
a simple workflow graph that seeks to 
determine (i) the probability of a patient 
transitioning from one care unit to another 
and (ii) a statistical estimate of the patient’s 
duration of stay in each care unit.

The discrete model is stochastic, so we 
need to run many simulations to build a 
statistical estimate of quantities of interest. 
The number of unknown parameters that 
we must retrieve by fitting the data is rela-
tively large. To avoid overfitting, research-
ers should devise a strategy that lowers the 
number of unknowns based on either clini-
cal literature or validated hypothesis. One 
can retrieve the model’s unknown param-
eters via a stochastic optimization method 
since the workflow process—like that of the 
hospital—is discrete, noisy, and nonlinear.

A patient’s condition is dominated by the 
disease’s evolution. Furthermore, medical 
procedures accumulate delays; the dura-
tions of both biological and managerial pro-
cesses are often described by a lognormal 
distribution with a long tail. This does not 
contradict the fact that a simple exponen-
tial distribution may not ideally depict a 
patient’s length of stay (LOS) in the hospi-
tal. Overall, LOS adds up the time distribu-
tion of every step in a Markov process and 
might be described at the convolution of 
each step’s probability distribution [7]. For 
example, we found it necessary to intro-
duce an artificial two-phase decomposition 
of patient stay in the ICU to bypass the 
limitation of a single distribution that may 
not represent an adequate model of LOS in 
this unit, according to clinical studies [1].

To guide the optimization process, we 
employ a stability analysis of the model 

that ranks the most sensitive parameters, 
which should be estimated first. Performance 
depends on staff conditions and patient popu-
lation, and the clinicians are clearly experi-
enced with LOS in each step and provide an 
ad hoc window of time that we can fine-tune 
as a second pass of the algorithm. It is dif-
ficult to recover the true rate of death at the 
beginning of a new pandemic.

Our first, simplified model essentially 
requires the calibration of six parameters 
with a genetic algorithm that compares 
the model to France’s data set [4]. Figure 
2 depicts the model’s success compared 
with France’s data set from March 18, 
2020 to April 24, 2020.

Retrieving Information 		   
to Rationalize a Strategy

A manager may have the following sim-
ple yet essential questions. How many beds 
are needed on each floor and how many 
are available in the critical care unit? How 
many supplies should be ordered to support 
patient care and protect staff from infec-
tion? How long must the facility operate 
at maximum capacity, and is there enough 
staff to sustain this workload? One key fac-
tor involves anticipating the load of each 
care unit and required resources, either to 
match the patient increase or reallocate 
resources and begin rescheduling previ-
ously cancelled surgeries, for example.

We chose a hypothetical scenario that 
involves a second wave of the pandemic to 
illustrate this concept. We assume that the 
hospital has a nominally low flux of patients 
from weeks one to seven, and a recurrence 
with a daily 20 percent increase of new 
patients at week eight. Figure 3 (on page 1) 

Figure 1. Patient workflow in a hospital.

Figure 2. Model compared with data from France hospitals. Day 33 corresponds to March 18, 2020: the first date of our data set. Day 70 cor-
responds to April 24, 2020. We assume an exponential model of hospital admission for the missing period prior to March 18. 2a. Top: input of 
patient hospital admission. Bottom: patients under mechanical ventilation in the intensive care unit (ICU) versus the data set. 2b. Top: number 
of recovered patients leaving the hospital each day. Bottom: number of deaths per day.

See Hospital Workflow on page 6

Figure 4. Prediction of required infrastructure for our hypothetical scenario involving a second wave of the pandemic. 4a. Number of staff 
required for each eight-hour shift. 4b. Number of supplies needed per day.



6 • June 2020 SIAM NEWS 

displays the load dynamics of each care unit. 
The black curves mark week seven and the 
red curves predict week eight, when the sec-
ond wave hits. The thin uppermost red curve 
displays the deviation up one standard devia-
tion and provides a sense of the estimate’s 
uncertainty, which grows as the prediction 
time gets further away. The blue curve 
depicts the hypothetical capacity of each 
care unit; the floor would become saturated 
first and necessitate new beds after just a few 
days. A manager who sees this prediction 
would therefore continue cancelling elec-
tive surgeries in expectation of COVID-19 
patients occupying the floor, and anticipate 
the need for on-staff recruitment and addi-
tional supplies (see Figure 4, on page 5).

Our model could also allow managerial 
staff to make multiple decisions regarding 
patient care. Figure 5 compares patient out-
put with and without a shortage of nurses. 
These results are speculative since it is dif-
ficult to quantify patient risk beyond pub-
lished results [2, 3, 6]. We hope that new 
data accumulated during the COVID-19 
crisis will provide the base for mathemati-
cal modeling to rigorously conduct this 
estimate in future works.

There are admittedly several limitations 
to our approach. Smaller hospitals yield less 
predictable outcomes, and the characteristics 
of the patient population that visits the emer-
gency room change with time. Systematic 
testing would likely provide early diagnos-
tics and impact the health system’s per-
formance, as evidenced by the statistics of 
countries that adopted this strategy from the 
onset. Due to the heterogeneity of the patient 
population and disease patterns that depend 
heavily on patient characteristics, our next 
step to improve this model involves the 
inclusion of patients’ medical history from 
their electronic medical records. We plan to 
feed our model of hospital workflow with 
an epidemic model that maintains accuracy 
in the hospital’s ecosystem. Ultimately, we 
anticipate that the future of computational 
models in digital health during a pandemic 
will extensively include sociological and 
economical modeling components.

The figures in this article were provided 
by the authors.

Acknowledgments: We would like to 
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on management and risk evaluation based 
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Figure 5. Prediction of performance in our hypothetical scenario involving a second wave of the pandemic. 5a. Patient output for the previous 
week. 5b. Predicted patient output for the next week.
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laboratories. The most significant of these 
interactions resulted in a project with a 
group at Brooks Air Force Base, led by 
Richard Albanese. Tom met Albanese in 
the early 1990s and enjoyed a substantial 
and almost immediate scientific rapport, 
which promoted intense activities in elec-
tromagnetics and the health sciences for 
Tom and his graduate students.

Another important influence in the 1980s 
originated from a chance meeting between 
Tom and Daniel J. Inman at a work-
shop on control of flexible structures that 
was sponsored by the Air Force Office of 
Scientific Research. Their friendship gen-
erated significant collaborative efforts in 
control and identification, particularly in 
vibration-based damage detection methods 
for smart material structures.

In 1989, Tom established the Center for 
Applied Mathematical Sciences, a research 
institution in applied mathematics at USC. 
He became the center’s first director. Three 
years later, Tom joined the faculty of 
NCSU as University Professor and Drexel 
Professor of Mathematics. He made a num-
ber of important institutional contributions 
at NCSU, in addition to pursuing a prolific 
career in both research and education. For 
example, Tom resuscitated the Center for 
Research in Scientific Computation and 
founded the internationally recognized 
Industrial Applied Mathematics Program, 
which specializes in research projects and 
graduate/postdoctoral training with indus-
tries and government laboratories.

Tom was also one of the four founding 
directorate members of the Statistical and 
Applied Mathematical Sciences Institute 
(SAMSI) in North Carolina. He served on 
the directorate from 2002 to 2005, leading 
the effort in applied mathematics as well 
as education and outreach. Tom devel-
oped the SAMSI Education and Outreach 
(E&O) Program to foster participation 
of undergraduates, graduate students, and 
postdoctoral fellows in joint statistical/
mathematical research projects. This pro-
gram has become the model for similar 
E&O programs at other institutes of the 
National Science Foundation.

Throughout his lengthy research career, 
Tom retained a sharp eye for identifying 
emerging application areas to which he 
then made substantial contributions. He 

always worked quickly and accurately, 
thus attracting many like-minded collabo-
rators from a wide variety of engineering 
and scientific disciplines.

Service to the profession was impor-
tant to Tom. He was elected to the SIAM 
Board of Trustees and served as chair of 
the board. He also held multiple service 
positions at SIAM, including on the edito-
rial board of the SIAM Journal on Control 
and Optimization; Tom was the managing 
editor from 1979 to 1981 and 1986 to 1988. 
In addition, he was the Vice President for 
Publications and acted as founding editor 
and editor-in-chief of the SIAM book series 
on Frontiers in Applied Mathematics.

Tom received numerous honors for his 
research and service. These accolades 
include SIAM’s W.T. and Idalia Reid 
Prize, NCSU’s Distinguished Scholarship 
Achievement Award, and Purdue’s 
Distinguished Alumni Award. He was 
also an elected Fellow of the Institute of 
Physics and the Institute of Electrical and 
Electronics Engineers, as well as an Alumni 
Distinguished Graduate Professor at NCSU 
and Professeur Honoraire at Université de 
Technologie de Compiègne.

Students, postdoctoral researchers, and 
colleagues were extremely significant in 
Tom’s life, but his wife Sue was the most 
important part of his professional and 
personal endeavors. It was her efforts that 
led many of the students, postdocs, and 
visitors to become members of the Banks’ 
extended family.

Tom is survived by his wife Sue, son 
John, daughter Jennifer, and grandchildren 
Samantha and Emilie. He was admired and 
respected by all who knew him for his kind-
ness, collegiality, generosity, and strong 
work ethic, and is sorely missed by family, 
students, colleagues, and friends.

Please see the online version of this 
article for additional material.
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es to thank Wendell Fleming of Brown 
University for his valuable assistance in 
putting this tribute together.
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SIAM Members Honored 
for Notable Achievements

Over the last few months, several SIAM members were recognized in various capac-
ities for their outstanding work in the fields of applied mathematics and computa-

tional science. We applaud their accomplishments and thank them for their continuous 
service to the profession. The subsequent members are those of which we are aware; we 
of course offer our congratulations to anyone we might have accidentally overlooked.

This spring, Andrew Stuart was elected as a Fellow of the Royal Society for his excep-
tional contributions to scientific understanding, which embody the global nature of science. 
Stuart is the Bren Professor of Computing and Mathematical Sciences in the Department of 
Computing and Mathematical Sciences at the California Institute of Technology.

Bonnie Berger was elected as a new member of the National Academy of Sciences for 
her distinguished and ongoing achievements in original research. Berger is the Simons 
Professor of Mathematics in the Department of Mathematics at the Massachusetts 
Institute of Technology (MIT). She also holds joint appointments in electrical engi-
neering and computer science, serves as head of the Computation and Biology group 
in MIT’s Computer Science and Artificial Intelligence Laboratory, and is an associate 
member of the Broad Institute of MIT and Harvard University. 

Finally, Ioannis G. Kevrekidis, Tamara G. Kolda, and Jorge Nocedal were elected 
to the National Academy of Engineering. Kevrekidis is Bloomberg Distinguished 
Professor in the Department of Chemical and Biomolecular Engineering at Johns Hopkins 
University, where he also holds appointments in the Department of Applied Mathematics 
and Statistics and the Department of Urology. He was recognized for his “research on 
multiscale mathematical modeling and scientific computation for complex, nonlinear reac-
tion, and transport processes.” Kolda is a Distinguished Member of the Technical Staff at 
Sandia National Laboratories and was honored for her “contributions to the design of sci-
entific software, including tensor decompositions and multilinear algebra.” Nocedal is the 
Walter P. Murphy Professor of Industrial Engineering and Management Sciences and (by 
courtesy) Engineering Sciences and Applied Mathematics at Northwestern University. He 
is also the director of Northwestern’s Center for Optimization and Statistical Learning. 
Nocedal was recognized for his “contributions to the theory, design, and implementation 
of optimization algorithms and machine learning software.”

Congratulations to these esteemed members of SIAM!



June 2020 SIAM NEWS • 7

Figure 2 depicts the probability of a single, 
randomly selected person infecting as many 
as three other people on each graph as a 
function of the probability of transmission. 
One can calibrate a model’s transmissibility 
for a range of outbreak sizes to yield the 
same probability of large outbreaks on each 
graph: 0.2 in Figure 2. Given only the attack 
rate, the network structure and transmis-
sibility are thus not separately identifiable.

The only way to represent changes in 
network structure in mass action models is 
to adjust transmissibility, but this often has 
unrealistic consequences for model outcomes 
(in addition to outbreak size). In particular, a 
“stay at home” policy is best represented by 
the network in Figure 1c (on page 3). A mass 
action model of staying at home severely 
distorts the epidemic curve. The true policy 
impact is given by the sum of many out-
breaks in cliques whose sizes are drawn 
from the distribution of household sizes; in 
contrast, a mass action model attempts to fit 
an outbreak among the entire population with 
an extremely small transmissibility.

Building Contact Networks 

The study of epidemics leads to multi-
scale, multi-layer (MSML) networks (see 
Figure 3). Each network captures different 
types of interactions and forms the underly-
ing fabric for a distinct contagion process. 
Constructing social contact networks with 
sufficient accuracy to model disease spread 
in cities like Los Angeles or New York 
City is challenging. Researchers cannot 
construct such networks by using exten-
sive measurements except in very simple, 
restricted situations; doing so would require 
knowledge of every individual’s demo-
graphics, activities, and locations, which 
would be both technologically impossible 
and ethically questionable. So, how can 
we accurately represent a city’s populace? 
One must assemble the networks synthetical-
ly by integrating or fusing available datasets 
with simulation-based generative methods. 
Unlike simple random graph techniques, 
these methods synthesize networks by utiliz-
ing real-world data sources and combining 
them with behavioral and social theories.

Scalable Simulations to Study 
Epidemic Dynamics over Networks 

It is difficult to apply an analytical 
approach in a realistic setting that examines 
the effects of interventions (which consist 
of individual and collective behavior at dif-
ferent levels) on epidemics’ dynamics. The 
complication stems from the unstructured 
nature of real-world social contact networks, 
which represent the interactions and hetero-
geneities between the individuals. Therefore, 
simulations based on high-performance com-
puting are often the only feasible methods 
for studying networked epidemic models in 
large-scale population settings. Our group 

has developed a variety of these simulation 
environments to mimic disease spread in 
large social contact networks.

Network-based Simulations and 
Algorithmic Workflows during 
COVID-19 Response 

The ongoing COVID-19 pandemic illus-
trates the importance of MSML networks 
in representing the underlying interaction 
structure. Typical studies demonstrate the 
utility of network models and algorithmic 
workflows for managing epidemic response 
across various scales (international, sub-
national, and community-level) and stages 
(emergence, containment, and mitigation).

We analyzed global airline traffic to 
ascertain importation risk for various coun-
tries during the early stages of a pandemic. 
Using data on the number of passengers 
between international airports, we con-
structed a flow network on which COVID-
19 could potentially spread and reach other 
countries. This representation—coupled 
with a disease model at each node—allows 
us to characterize the time for case emer-
gence, assuming a given origin node. 
Furthermore, a structural characterization 
of this network (namely effective distance) 
captures disease emergence times more suc-
cessfully than purely geographical distance 
between airports. Such a network represen-
tation—with actual flow volumes labeled 
by airlines—permitted us to implement 
interventions like airline suspensions and 
evaluate the subsequent impact on delaying 
COVID-19’s arrival in various locations.

Networked epidemiology enables the 
study of social distancing policies, such as 
voluntary home isolation and school and 
workplace closures. Improved testing and 
social distancing—two current responses to 
COVID-19—work in tandem and must be 
studied together. Detailed network models 
help researchers examine better case iso-
lation and household quarantine (products 
of increased testing) while simultaneously 
mimicking the effects of workplace and non-
essential business closures in reduced mixing 
within the population. Similarly, an increased 
push for privacy-preserving contact trac-
ing efforts via smartphones has emerged in 
Western countries, following its success in 
China and South Korea. Individual-level 
contact networks allow for assimilation of 
such contact traces (equivalent to the den-
drograms of disease spread) and evaluation 
of the effects of coverage and compliance.

A final example involves determining 
COVID-19’s burden on healthcare infra-
structure and exploring possible mitigation 
strategies. The healthcare burden depends 
on many factors, including level of social 
distancing and regional testing, current 
healthcare resources, and population demo-
graphics. Various social distancing mea-
sures are attempting to “flatten the curve” 
and reduce the overload and potential col-
lapse of healthcare systems due to surges in 
critical cases. Our initial results suggest that 

patient transfers can have a tangible effect 
in reducing the healthcare resource deficit.

Traditional ODE models can effectively 
guide the development of “rules of thumb” 
for epidemic response. However, when it 
comes to assessing particular responses to 
specific outbreaks, a faithful representa-
tion in the form of a networked dynamical 
system is more useful.

Acknowledgments: The authors would 
like to thank members of the Network 
Systems Science and Advanced Computing 
Division at the University of Virginia 
(UVA) for useful discussion. This work 
was partially supported by National 
Institutes of Health Grant 1R01GM109718, 
National Science Foundation (NSF) BIG 
DATA Grant IIS-1633028, NSF DIBBS 
Grant ACI-1443054, NSF Grant No. OAC-
1916805, NSF Expeditions in Computing 
Grant CCF-1918656 and CCF-1917819, 
U.S. Centers for Disease Control and 
Prevention 75D30119C05935, DTRA sub-
contract/ARA S-D00189-15-TO-01-UVA, 
and a collaborative seed grant from UVA’s 
Global Infectious Disease Institute.

References
[1] Eubank, S., Guclu, H., Kumar, V.A., 

Marathe, M.V., Srinivasan, A., Toroczkai, 
Z., & Wang, N. (2004). Modelling disease 
outbreaks in realistic urban social networks. 
Nature, 429(6988), 180-184.

[2] Halloran, M.E., Ferguson, N.M., 
Eubank, S., Longini, I.M., Cummings, 
D.A.T., Lewis, B., ... & Cooley, P. (2008). 
Modeling targeted layered containment of 
an influenza pandemic in the United States. 
Proc. Nat. Acad. Sci., 105(12), 4639-4644.

[3] Marathe, M., & Vullikanti, A.K.S. 
(2013). Computational epidemiology. Comm. 
ACM, 56(7), 88-96.

Further Reading
Chinazzi, M., Davis, J.T., Ajelli, M., 

Gioannini, C., Litvinova, M., Merler, S., ..., 

Vespignani, A. (2020). The effect of travel 
restrictions on the spread of the 2019 novel 
coronavirus (COVID-19) outbreak. Science, 
368(6489), 395-400.

Ferguson, N., Laydon, D., Nedjati-Gilani, 
G., Imai, N., Ainslie, K., Baguelin, M., ... 
& Ghani, A.C. (2020). Report 9: Impact of 
non-pharmaceutical interventions (NPIs) to 
reduce COVID19 mortality and healthcare 
demand. Imperial College London.

Levin, S.A. (Ed.). (1994). Frontiers in 
mathematical biology. Berlin, Germany: 
Springer.

Moghadas, S.M., Shoukat, A., Fitzpatrick, 
M.C., Wells, C.R., Sah, P., Pandey, A., ..., 
Galvani, A.P. (2020). Projecting hospital 
utilization during the COVID-19 outbreaks 
in the United States. Proc. Nat. Acad. Sci., 
117(16), 9122-9126.

Perrings, C., Levin, S., & Daszak, P. 
(2018). The economics of infectious dis-
ease, trade and pandemic risk. EcoHealth, 
15, 241-243.

Verity, R., Okell, L.C., Dorigatti, I., 
Winskill, P., Whittaker, C., Imai, N., ... & 
Ferguson, N.M. (2020). Estimates of the 
severity of coronavirus disease 2019: a 
model-based analysis. Lancet Infect. Dis.

Jiangzhuo Chen is a research associate 
professor in the Biocomplexity Institute at the 
University of Virginia (UVA). Simon Levin 
is a professor in the Department of Ecology 
and Evolutionary Biology and the Princeton 
Environmental Institute at Princeton 
University. Stephen Eubank is a professor 
in the Department of Public Health Sciences 
and the Biocomplexity Institute at UVA. 
Henning Mortveit is an associate professor in 
the Department of Engineering Systems and 
Environment and the Biocomplexity Institute 
at UVA. Srinivasan Venkatramanan is a 
research scientist at UVA’s Biocomplexity 
Institute. Anil Vullikanti is a professor in 
the Department of Computer Science and 
the Biocomplexity Institute at UVA. Madhav 
Marathe (marathe@virginia.edu) is a profes-
sor in the Department of Computer Science 
and the Biocomplexity Institute at UVA.

Figure 3. Epidemics are generated by interacting dynamical systems that evolve on multi-scale, multi-layer (MSML) networks. 3a. Interactions and behaviors in a MSML network, with interactions 
spanning multiple scales that range from within a household to a community, region, and nation. The specific types of interactions can differ by scale. 3b. Interactions at different scales yield a 
complex, multi-scale social contact network. 3c. Interactions across multiple layers correspond to social and cultural factors. Figure courtesy of Henning Mortveit. 

Figure 2. Probability T  that the total number of infections exceeds a threshold in the networks in 
Figure 1 as a function of the probability of transmission across each edge. The underlying network 
and transmissibility are not separately identifiable from T .  Figure courtesy of Stephen Eubank. 
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Florida Students Recognized for Mathematical Model 
to Forecast the Implementation of Electric Semi-trucks
MathWorks Math Modeling Challenge Tackles Trucking’s Transition to Electric Power
By Lina Sorg

More than 1.7 million semi-trucks 
transport nearly every type of imag-

inable cargo across the country, often from 
manufacturing plants to retail distribution 
centers. The continuous movement of raw 
materials, finished goods, and miscella-
neous freight bolsters the economy and 
keeps society running smoothly. As a result, 
nearly 7.5 million Americans hold jobs that 
are related to the trucking industry.1

Diesel fuel currently powers semi-trucks, 
which collectively travel an estimated 150 
billion miles each year. Unfortunately, these 
tractor trailers are not known for their fuel 
efficiency; they average less than seven 
miles per gallon and are responsible for 
roughly one third of transport-related car-
bon emissions.2 As battery electric vehicles 
become increasingly popular, the trucking 
industry is beginning to explore the viability 
of electric trucking. Tesla plans to intro-
duce a line of electric semis in 2021, and 
PepsiCo, Walmart, and UPS have pledged 
to purchase several hundred. However, 
more infrastructure is needed to determine 
whether electric semi-trucks will meet cur-
rent trucking demands and serve as feasible 
replacements for traditional diesel vehicles.

“Trucking is a very modest business,” 
Mike Roeth, executive director of the 
North American Council for Freight 
Efficiency (NACFE), said. “We go about 

1  https://www.rtsinc.com/articles/why-
trucking-still-america-s-number-one-job

2  https://www.iea.org/news/iea-study-
unveils-key-role-for-trucks-in-global-oil-
demand-growth

getting everything consumers need and 
want to stores and homes without getting 
in the way. But trucking is also very com-
plicated due to the many truck configura-
tions, types of freight, and duty cycles, so 
it requires mathematical modeling to help 
figure out the details.”

The complexity of a potential transi-
tion to electric power in U.S. semi-trucks 
served as the basis for the 2020 MathWorks 
Math Modeling (M3) Challenge,3 an annual 
competition for high school juniors and 
seniors. The contest, which is organized 
by SIAM and sponsored by MathWorks, 
invites U.S.-based teams of three to five stu-
dents to address a multi-layered, real-world 
problem via mathematical modeling and 
submit their results in just 14 hours. After 
two meticulous rounds of online judging by 
nearly 150 Ph.D.-level mathematicians, six 
finalist teams emerged. The third and final 
round of judging—traditionally held in New 
York City so the top teams can present their 
work in person—occurred virtually this 
year due to the ongoing COVID-19 pan-
demic. Participating students competed for 
$107,500 in scholarship funds, which was 
ultimately split among the six finalist teams 
and 32 other top performers.

The three-part Challenge problem4 asked 
teams to create a mathematical model to 
predict the percentage of electric semi-
trucks in 2025, 2030, and 2040; calculate 
the required number of stations and char-
gers along five different U.S. truck routes 
to support the current level of traffic; and 

3  https://m3challenge.siam.org/
4  https://m3challenge.siam.org/archives/

2020/problem

rank the five trucking corridors to determine 
which should undergo development first. 
Neil Nicholson (North Central College) 
authored the problem, with input from Roeth 
at NACFE and the M3 Challenge Problem 
Development Committee, which is led by 
Karen Bliss (Virginia Military Institute).

“This country depends on trucks to move 
goods around, now more than ever,” Bliss 
said. “Our infrastructure is built around this 
mode of transporting goods, and yet it’s 
relatively inefficient. A switch to electric 
trucking seems to be an attractive option, 
but there are a lot of barriers to converting 
an entire fleet of trucks.”

This year’s first-place team, from Pine 
View School in Osprey, Fla., began by 

dividing semi-trucks into three categories: 
long-haul, regional-haul, and short-haul 
vehicles. They calculated overall operat-
ing costs for both diesel and electric trucks 
based on existing data, then assumed pur-
chasing costs from the current prices of cab 
and sleeper semis, as well as base prices for 
Tesla electric semi-trucks. The students used 
the differences in operating and purchasing 
costs to derive the probability values of 
replacing diesel trucks with electric trucks.

Next, they created three Markov chains—
one for each type of truck—to predict the 
percentage of electric semis in future years. 
“To execute the three Markov chains, we 
utilized MATLAB software and determined 

From left to right: Nicholas Butakow, Pragnya Govindu, and Kristoffer Selberg of Pine View 
School in Osprey, Fla., tackle the 2020 MathWorks Math Modeling Challenge trucking prob-
lem during Challenge weekend. The Pine View team, which also included Christiana Guan 
and Michael Gutierrez, took home $20,000 in scholarship funds for their first-place finish. 
Photo courtesy of Mark Mattia.

See Electric Semi-trucks on page 10
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By Alexandra Schmidt

For most American high school stu-
dents, interaction with mathematics 

involves progression through the standard 
high school math curriculum — typically 
the higher-level sections of algebra, geom-
etry, trigonometry, precalculus, statistics, 
and calculus. Students who enjoy challenge 
and variety sometimes partake in a math 
club, math circle, or competition team. 
These extracurriculars typically provide par-
ticipants with the opportunity to individu-
ally solve problems in search of a correct 
answer, though certain supportive classroom 
and competition settings allow students to 
work together to address harder, more com-
plex questions that require teamwork. Many 
of my students have successfully pursued 
degrees and careers in various science, 
technology, engineering, and mathematics 
(STEM) fields. Unfortunately, few of them 
actually use mathematics to determine a 
best course of action or educate themselves 
about a non-STEM topic until they begin 
professional internships or careers.

Though I have taught and coached com-
petition mathematics for over 16 years, 
my previous 15-year career as a control 
systems engineer found me working with 
and learning about optimization of loco-
motive fuel consumption, signal switch-
ing at television networks, air traffic path 
planning, and DVD manufacturing, among 
other applications. These experiences pre-
figure my goal that students learn about 
other fields besides mathematics, consider 
math’s applicability as a decision-making 
tool, and talk to each other in the process.

While it is possible to create small labs 
and explorations in the traditional math 
sequence that let students work toward 
these goals, SIAM’s MathWorks Math 
Modeling (M3) Challenge1 implements this 
on a larger scale. When I first learned about 
M3 Challenge, I reached out to some of my 
strongest students who enjoyed mathemat-
ics, were omnivorous in their interests, and 
could write and communicate effectively. 
The annual contest also inspired me to 
begin the process of launching a math mod-
eling culture at my high school, the Emma 
Willard School in Troy, NY.

Apart from student curiosity and per-
sistence, I have identified three important 
prerequisites for launching a math modeling 
culture in high school: a thorough under-
standing of the general process, competency 
with a basic tool set, and a multitude of 
interesting problems on which to work.

Although I spent the first part of my 
professional career developing mathemati-
cal models of dynamic systems, I was ini-
tially unsure where to begin in teaching 
the process. The Guidelines for Assessment 
and Instruction in Mathematical Modeling 

1  https://m3challenge.siam.org/

Mathematical Modeling in High School: 
How It Begins and Where It Can Go

es to a real-world scenario really interested 
me, especially given that there wasn’t one 
concrete answer to each question,” another 
student said. “We could really apply the 
organizational and math modeling skills—
as well as the communication and col-
laboration skills—that we used during this 
process to any field or numerical situation.”

The contest’s benefits seemed so clear 
that I suggested that Emma Willard offer 
a semester-long, project-based course in 
mathematical modeling for seniors, acces-
sible to any student who has completed 
precalculus or an advanced algebra course 
that focused on functions. The course plan, 
which I developed with several colleagues, 
introduces students to the use of models 
to capture the behavior or most important 
aspects of a messy, real-world problem 
with many contributing factors. The class’s 
inaugural semester is set for the fall of 2020.

After introducing the basics of the model-
ing process, the course will allow students 
to practice defining problems, research-
ing contributing factors, quantifying their 
assumptions, and developing and testing 
models. It will also emphasize quantita-
tive writing and oral presentation skills, as 
these are important components of any high 
school curriculum or professional setting.

The class will culminate in an individual 
project that each student chooses for herself, 
with guidance from the instructor. Students 
will decide whether experimental or empiri-
cal modeling is most appropriate for their 
problem, and select from model types that 
correspond with both the problem and their 
level of mathematical experience. For some, 
the projects will bring depth and relevance 
to second-year algebraic models, such as 
those originating with exponential, power, 
sinusoidal, and logarithmic functions. 
Difference equations, smoothed polynomial 
or spline models, and probabilistic simula-
tions will provide additional depth and 
challenge for students who have completed 
a year of calculus. Most (if not all) partici-
pants will already be familiar with Desmos 
or GeoGebra from earlier courses, and we 
plan to teach and extend existing knowl-
edge of spreadsheets. We may even include 
MATLAB or Python if enough students 
have coding experience. As developers 
of a new course, we as teachers will also 
be learning from our initial model and 
changing it to incorporate novel data as it 
becomes available. While our plan is to uti-
lize GAIMME-based rubrics to assess student 
models, I expect that the process will require 
patience, critical thinking, and a willingness 
to regularly amend small details as necessary.

As a final note, I want to reflect on the 
very specific experience of teaching math 
modeling to young women (Emma Willard 
is an all-girls’ high school). As one of my 
students observed, “an all-female team like 
ours is a rarity, and we have created a spe-
cial sisterhood.” Despite the intensity of 
working within M3 Challenge’s regulated 
time window—which gives participants 14 

hours in which to educate themselves on an 
unfamiliar topic and produce a substantive 
paper—my students found the process moti-
vating, stimulating, and even empowering. 
By practicing regularly before the competi-
tion, the team developed a collaborative and 
supportive bond and became comfortable 
sharing and challenging each other’s ideas. 
As I stopped by during Challenge Weekend 
to bring the competing students fancy coffee 
drinks and baked goods and laugh with them 
during “vibe checks,” I was struck by both 
the productivity and camaraderie in the room. 
At the end of the day, my students came away 
from M3 Challenge with an enhanced sense 
of math’s applicability to their future studies.

Acknowledgments: Special thanks to 
Caroline Albert, Laszlo Bardos, Judy Price, 
Chiara Shah, and Yoosong Song for their 
input and reflections.
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Education (GAIMME) report2 and SIAM’s 
math modeling handbooks3 helped me cre-
ate a walk-through for my students. I would 
also highly recommend notes from the 2019 
SIAM-MfA Math Modeling Workshop4 for 
high school teachers, which draw on and 
distill these materials. All high school stu-
dents are capable of browsing the internet 
to obtain information on unfamiliar top-
ics, and Google’s suite of collaborative 
tools facilitates collective contribution to 
a problem’s initial mind mapping. While I 
do teach basic spreadsheet use for function 
exploration and data analysis in precalculus, 
I developed short workshops to familiar-
ize my M3 Challenge teams with the pro-
cesses of creating more complex formulas 
and charts and using random functions to 
simulate outcomes. I have also begun teach-
ing MATLAB, which I particularly enjoy 
as it is a technology bridge that spans my 
careers. Because M3 Challenge is only open 
to juniors and seniors, I ask experienced 
seniors to provide new team members with 
a summary of their participation by breaking 
down, researching, analyzing, developing, 
quantifying assumptions for, and validating 
their model from the prior year.

What makes this all “real,” of course, is 
finding motivating problems on which to 
practice. These problems should be topical 
and real; it is even better when they touch 
on subjects about which the teacher can 
cheerfully admit to knowing very little! One 
of the nicest aspects of M3 Challenge is 
that both past competitions and the website5 
provide numerous different problems, all 
of which comprise a multilayered “story” 
whose relevance extends beyond the com-
petition. One of my students who participat-
ed in this year’s contest6 praised the topic’s 
real-world relevance. “I knew absolutely 
nothing about electric trucks and very little 
about charging stations before this experi-
ence,” she said. “I really enjoyed being 
able to apply my math skills while learning 
about new topics. Although at times the 
amount of data felt overwhelming, it was 
so rewarding to see all of our observations 
and calculations come together in the final 
product. I will definitely be keeping tabs on 
the evolution of vehicles and their environ-
mental impact in the future.”

While my school’s teams have yet to 
make it beyond the second round of com-
petition, student response has been remark-
ably positive. “Being able to apply the 
knowledge I’ve gained from my math class-

2 https://www.siam.org/publications/reports/
detail/guidelines-for-assessment-and-instruction-
in-mathematical-modeling-education

3  https://m3challenge.siam.org/resources/
modeling-handbook

4  https://m3challenge.siam.org/newsroom/
2019-siam-mfa-math-modeling-teacher-workshop

5  https://m3challenge.siam.org/
6  Read about the winning solution of this 

year’s M3 Challenge on page 8. 

Whiteboard walls are the best tools for mind-mapping a problem when the clock is ticking and 
everyone has something to add. Photo courtesy of Alexandra Schmidt.

With the right team and the right attitude, 14 hours of math modeling can still include moments 
that are as fun as a slumber party. Photo courtesy of Alexandra Schmidt.
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the best estimate of the number of inoperable 
semi-trucks that would be replaced by elec-
tric ones in five, 10, and 20 years,” Pragnya 
Govindu of Pine View said. “With these val-
ues, we ultimately predicted the percentage 
of semis that will be electric.” The team’s 
model forecasts that electric semi-trucks will 
comprise 27.39, 69.49, and 97.77 percent of 
operational semi-trucks in the next five, 10, 
and 20 years respectively.

The Pine View students then generated 
another model to discern the mandatory 
quantity of charging infrastructure for sus-
tainable, large-scale electronic trucking. 
This task demanded consideration of elec-
tric vehicles’ varying ranges and charging 
times. “Electric vehicle batteries are tricky 
because they charge quickly in the begin-
ning but slowly at the end,” team member 
Michael Gutierrez said. “We didn’t want 
the trucks to use their full charge capac-
ity, as it would waste a lot of time. So we 
developed a model to find the optimal stop-
ping interval and based our charging station 
locations around that.”

To test their model, the group simu-
lated the resource needs of a large fleet of 
trucks on the following five major trucking 
routes: to/from (i) San Antonio, Texas, and 
New Orleans, La.; (ii) Minneapolis, Minn., 
and Chicago, Ill.; (iii) Boston, Mass., and 
Harrisburg, Pa.; (iv) Jacksonville, Fla., and 
Washington, D.C.; and (v) Los Angeles, 
Calif., and San Francisco, Calif. “Initially, 
we created a formula for the number of sta-
tions needed along a given route,” Nicholas 
Butakow said. “With this formula, we used 
the Monte Carlo method to determine the 
number of stations with randomly generated 
values, which reflect projected distributions 
of commercial electric semi-trucks.” 

Interestingly, Butakow and his teammates 
found that all five truck routes required 
charging points roughly every 90 minutes, 
given the nature of electric batteries. They 
used a second Monte Carlo simulation—
based on the average number of trucks pres-
ent at each stop at any given time—to deter-
mine the necessary number of charging sta-
tions per stop, which ranged from 14 to 29.

Finally, the team created an importance 
score based on three different factors—
economic growth, environmental consid-

By Juan C. Meza, Zhilan Feng,   
Tie Luo, and Junping Wang

The Division of Mathematical Sciences 
(DMS) at the National Science 

Foundation (NSF) recently participated in 
an NSF-wide Dear Colleague Letter,1 which 
was published on April 3 and requested pro-
posals that address the COVID-19 pandem-
ic. The mathematical sciences community 
was quick to respond! Ideas ranged from 
developing tools to help decision-makers 
better understand the possible outcomes 
of proposed nonpharmaceutical interven-
tion policies to combining mathematicians’ 
expertise with other disciplines—like biol-
ogy and chemistry, for example—to study 
new approaches and accelerate the identi-
fication of potential therapeutic treatments.

Overall, the DMS issued a set of 15 Rapid 
Response Research (RAPID) awards over 
the span of several weeks that could have a 
significant impact in mitigating the spread 
of COVID-19. These awards highlight the 
critically important need for swift and reli-
able prediction of epidemics’ spatial and 
temporal risks. Furthermore, many of them 
use mathematical, statistical, and computa-
tional models to evaluate various therapeutic 
and non-therapeutic mitigation policies, thus 
allowing policymakers to quickly identify 
intervention strategies that effectively slow 
the inevitable. Such strategies can buy addi-
tional time to put pandemic plans into effect, 
reducing peak demand for hospital-based 
care and ultimately saving lives.

The collection of RAPID awards spans 
a range of diverse ideas, including novel 
variations of well-known SIR (suscepti-
ble-infected-recovered) models, statistical 
inference approaches for rapidly changing 
situations where only partial data is avail-
able, and techniques that employ a com-
bination of deep learning and mechanistic 
methods to quickly improve mathematical 
models that capture the specific characteris-
tics of COVID-19. Other awards dive deep-
er into our understanding of how the novel 
coronavirus infects hosts cells, targeting the 
identification of critical areas in the viral 
genome that could be attacked during drug 
design. Yet another common theme is the 
use of data and corresponding mathemati-
cal procedures to improve existing models, 
particularly in situations where the data is 
incomplete and changes rapidly.

In general, the awards fell into one of 
two major areas: (i) mathematical models 
for predicting the spread of COVID-19 and 
the effects of different mitigation strategies, 
and (ii) study of the novel coronavirus, the 

1  h t tps : / /www.nsf .gov/pubs/2020/
nsf20052/nsf20052.jsp

Mathematicians Quickly Respond to the COVID-19 Pandemic
risk, age structure within a hospitalized 
population, population demographics, socio-
economic conditions, and spatial structure. 
They will then use the models to inform 
coordination of disease control policies with 
different scales, ranging from local commu-
nities to entire countries. Finally, Cameron 
Browne (DMS – 2028728) and his team 
will create a modeling framework at the 
interface of mathematics, epidemiology, and 
genetics. Their approach may help derive 
the outbreak size’s dependence on contact 
tracing and broad quarantine intervention 
parameters, thus quantifying region-specific 
control characteristics for COVID-19.

Deterministic models are not the only 
possible tactic. To study systems with high 
stochasticity, Jason Xu and Allison Aiello 
(DMS – 2030355/2030242) will generate 
new stochastic compartmental models that 
extend classical mechanisms to explicitly 
account for changes to the social contact 
network that underlies disease spread. They 
will combine these developments with like-
lihood-based methods to infer key epidemic 
parameters that offer mechanistic interpre-
tations with uncertainty quantification.

Two other interesting techniques involve 
modeling the COVID-19 pandemic via net-
work and graph theory. In this group, Nicole 
Eikmeier and Matthew Junge (DMS – 
2028880/2028892) plan to study quaran-
tine’s effect on the network connectivity of 
graphs to better model societal connections. 
Individual quarantine is akin to remov-
ing a vertex from a graph; the systematic 
removal of vertices is called site percola-
tion. Eikmeier and Junge will explore biased 
site percolation’s effect on graph structure, 
particularly the way in which different per-
colation rules influence the size of a given 
graph’s largest component. The second part 
of the project will then focus on how an 
epidemic’s critical threshold and size change 
after percolation for an SIR model.

Faryad Darabi Sahneh’s (DMS-
2028401) research will take a similar 
approach but emphasize a data-driven mathe-
matical modeling framework for the forecast 
of temporal and spatial COVID-19 trends. 
His team’s modeling framework can handle 
a constantly evolving environment, including 
individuals’ behavioral changes in response 
to mitigation efforts. Interestingly, Darabi 
Sahneh borrows this idea from economics.

The second major area of network and 
graph theory addresses the infectivity and vir-
ulence of the novel coronavirus itself, such as 
the viral evolution, virus structure, and effect 
on host cells. Here the general line of attack 
involves studying the RNA viral genome for 
clues on the way in which it infects the host 
cells, and determining treatments that might 
disrupt the infective process.

Gregory Forest’s (DMS – 2028758) 
group has teamed up with two experi-
mental biology laboratories to develop 
a mathematical modeling platform that 
will explore the delicate interplay among 
inhaled loads of SARS-CoV-2 and 
their diffusion within—and potentially 
through—the mucus-coated respiratory 
tract. This will allow the researchers to 
determine infectivity onset as the virus 
reaches and invades epithelial cells and 
propagates the infection. Their ultimate 
goal is to optimize design of monoclonal 
antibodies (mAb), characterize efficiency 
of given mAb affinities to COVID-19 and 
mucus, and quantify the inhaled mAb dose 
required to arrest COVID-19 infection at 
various stages of progression.

Two other awards seek to understand 
the specific protein that is key to the 
coronavirus’ invasion of host cells: the 
so-called spike or S-protein in the RNA 
viral genome. Tamar  Schlick’s (DMS 
– 2030377) project involves comprehend-
ing the COVID-19 RNA viral genome 
through structural analysis and molecu-
lar dynamics studies. The coronavirus 
is known to mutate over time, but few 
specifics are currently established. Javier 
Arsuaga, Raymond Rodriguez, and 
Mariel Vasquez (DMS – 2030491) intend 
to employ a combination of Markov pro-
cesses, graph theory, and topological data 
analysis to better understand this mutation 
process and estimate evolutionary param-
eters and the S-protein’s fitness function.

The DMS is thankful to the mathemati-
cal sciences community for its incredible 
response to our call for proposals regarding 
the worldwide COVID-19 pandemic.

Juan C. Meza is a professor of applied 
mathematics at the University of California, 
Merced and currently serves as the division 
director for the Division of Mathematical 
Sciences (DMS) at the National Science 
Foundation (NSF). He became a SIAM 
Fellow in 2019. Zhilan Feng is a professor 
of mathematics at Purdue University and 
presently serves as a program director in 
the DMS’s Mathematical Biology Program. 
She is an editor for the SIAM Journal on 
Applied Mathematics. Tie Luo joined the 
NSF as a program director in the Algebra 
and Number Theory Program before serv-
ing as deputy division director of the DMS. 
He is currently the Acting Deputy Assistant 
Director for Mathematical and Physical 
Sciences. Junping Wang joined the NSF 
in 2003 and is currently serving as a pro-
gram director in the Mathematical Biology 
Program, as well as the acting deputy divi-
sion director for the DMS. He is also a mem-
ber of the working group for the NSF’s Big 
Idea on “Understanding the Rules of Life.”

viral evolution, and subsequent plans for 
detecting target areas in the viral genome 
for drug compounds. We can subdivide 
the awards in the first major area into three 
general categories: (i) SIR/SEIR (suscep-
tible-exposed-infected-recovered) types of 
compartmental models with various levels 
of extensions and complexities; (ii) stochas-
tic, statistical, or probabilistic models; and 
(iii) network or graph theory-based models.

The DMS made five awards in the 
first subgroup that will investigate vari-
ous aspects of the well-known SIR/SEIR 
model. Andrea Bertozzi and Mason 
Porter (DMS – 2027438) plan to integrate a 
basic SIR framework with high-resolution 
societal mixing patterns in epidemics and 
models with self-exciting point processes 
that are fitted to real-world data. These 
actions will allow them to study the sto-
chasticity of infection and latency, ana-
lyze the uncertainty in disease transmission 
rates, and evaluate intervention policies. 
The pair will also examine the outcomes 
of social distancing using data from a 
Princess Cruise ship and lecture halls at the 
University of California, Los Angeles. 

Jeffrey Shaman (DMS – 2027369) will 
utilize SIR-type models with spatial move-
ments and statistical/computational tools to 
estimate critical epidemiological character-
istics that are associated with the transmis-
sion of SARS-CoV-2. He will then fore-
cast future COVID-19 incidence, estimate 
the effectiveness of public health policies 
(such as school closures and travel restric-
tions), and project the geographic spread of 
COVID-19 for given scenarios with various 
levels of intervention.

Yulia Gel and Georgiy Bobashev (DMS 
– 2027793/2027802) plan to use a predictive 
approach based on multiple data sources and 
dynamical SEIR models to train deep learn-
ing networks. If one then views simulation 
SEIR models as surrogate pre-trainers for 
deep learning models, Gel and Bobashev’s 
work could minimize the amount of real 
data needed to retrain the predictive model 
and reflect real-world COVID-19 progres-
sion. In contrast, Grzegorz Rempala (DMS 
– 2027001) will employ dynamical survival 
analysis—which exploits aggregated mean 
field equations for the underlying large 
stochastic network approach—to estimate 
parameters that are similar to those in SIR 
models. The survival dynamical system 
may yield new understanding of the pan-
demic, as it does not require knowledge of 
the susceptible population’s size or overall 
disease prevalence.

Folashade Agusto (DMS – 2028297) and 
her collaborators intend to develop disease 
transmission models that incorporate vari-
ous factors, including public perception of 

Electric Semi-trucks
Continued from page 8

eration, and total cost of installation—to 
rank the five corridors. A higher impor-
tance score indicated a higher priority for 
projected development, and the students 
determined that developers should target the 
Minneapolis-Chicago corridor first.

The Pine View team—which included 
Kristoffer Selberg and Christiana Guan, 
in addition to Govindu, Gutierrez, and 
Butakow—will split $20,000 in schol-
arship funds for their winning solution. 
The group also nabbed an Outstanding 
Communication of Results Award, which 
recognized the excellence and clarity of 
their video demonstration (submitted in 
lieu of a physical presentation) and deliv-
ered an additional $1,000.

“It was really different because we had 
to work over Zoom instead of communi-
cating and presenting in person, which was 
difficult,” Guan said. “But being able to 
use visuals—which likely wouldn’t have 
been as possible during an in-person pre-
sentation—was helpful.”

Working together under stringent time 
and resource constraints provides partici-
pating students with unique collaborative 
modeling experience — much like the type 

of projects that computational scientists and 
professional mathematicians tackle in the 
real world. In addition to showcasing the 
vast potential of a career in applied math-
ematics, M3 Challenge illustrates the practi-
cal applicability of mathematical modeling 
as an acute problem-solving tool, something 
that most students do not experience in the 
traditional classroom setting.

“Typically, the math education that I 
get in school rigorously teaches the funda-
mentals of mathematics,” Selberg, who is 
interested in pursuing a career in applied 
mathematics, said. “M3 Challenge takes 
what students have learned in school and 
provides a platform for the expression of 
mathematics in unique ways that are rarely 
exhibited in classrooms today.”

Pine View School’s winning paper is avail-
able online,5 as is their final presentation.6

Lina Sorg is the managing editor of 
SIAM News.

5  https://m3challenge.siam.org/sites/default/
files/uploads/M3%20CHAMPION_13343.pdf

6  https://youtu.be/uS4JKTfgYVU
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By Joshua A. Gordon

Since I assumed leadership of the 
National Institute of Mental Health1 

(NIMH) at the National Institutes of Health 
(NIH), pushing the boundaries of the pos-
sible in computational psychiatry has been 
among my top priorities.

The science of psychiatry is a study 
in contrasts. On the one hand, advanc-
es in genetics, basic neuroscience, neu-
roimaging, and integrative computation-
al approaches promise to dramatically 
improve knowledge of and treatments for 
mental illnesses. On the other hand, prog-
ress in the mental health translational pipe-
line has been frustratingly slow, leaving 
us with few reliable biomarkers, indefinite 
and subjective diagnostic categories, and 
partially effective treatments.

Why the slow progress? A principal fac-
tor involves understanding the complexity 
of the brain and its influence on behavior. It 

1  https://www.nimh.nih.gov/

Computational Science and Mental Health

Call for Papers: SIAM Journal on Control and 
Optimization Special Section on Mathematical 
Modeling, Analysis, and Control of Epidemics

The 2020 revision of the Mathematics Subject Classification (MSC2020) was pub-
lished earlier this year. It is a joint project of Mathematical Reviews (MR) and 

zbMATH, which collectively maintain the MSC. Reviewing services, publishers, fund-
ing agencies, and other organizations use this alphanumerical classification scheme to 
categorize items in the mathematical sciences literature.

Every 10 years, MR and zbMATH request input from the mathematics community 
and generate an updated MSC based on the resulting comments. MSC2020 contains 63 
two-digit classifications, 529 three-digit classifications, and 6,006 five-digit classifica-
tions, reflecting updates at both the three-digit and five-digit level. It also accounts for 
data and computation’s ongoing influence on the mathematical sciences, and features 
general amendments to class descriptions — which are now more useful to those con-
ducting searches both online and via database interfaces.

MR and zbMATH are now using MSC2020 as their respective classification 
schemes and invite the mathematics community to do the same. MSC2020 is acces-
sible online at msc2020.org. Searchable versions are available from the zbMATH 
site1 and the MathSciNet site.2

1  https://zbmath.org/classification/
2  https://mathscinet.ams.org/msc/msc2020.html

Mathematics Subject Classification 2020

The SIAM Journal on Control and Optimization1 (SICON) is seeking submissions for a 
Special Section that amasses contributions at the intersection of the fields of systems 

and control theory and the mathematical study of epidemic spread processes. Articles can be 
related to COVID-19, though the journal welcomes general topics associated with epidemic 
processes as well. Submissions will be accepted from July 1 through October 1, 2020. 

The ongoing COVID-19 pandemic has highlighted the critical importance and danger of 
complex epidemic processes. SICON’s Special Section intends to gather recent developments 
that address the fundamental challenges inherent in the mathematical analysis, estimation, 
and control of epidemics. Specific topics will include (but are not limited to) the following:

•  Mathematical modeling and analysis methods, such as ordinary and partial differen-
tial equations as well as deterministic and stochastic systems

•  Closed-loop control design strategies, including triggers for enforcing and relaxing 
nonpharmaceutical intervention strategies

•  Optimization algorithms for intervention scheduling and resource allocation
•  Computational methods for stochastic simulation   
•  Learning methods for early tracking, identification, inference, and data-driven analysis.
All interested authors should submit a manuscript and cover letter in PDF format via 

SICON’s online submission site.2 Note the block labeled “Special Section” (just under the 
“keywords” block on your submission screen). Select “Mathematical Modeling, Analysis, 
and Control of Epidemics” from the dropdown menu. 

Anyone with questions should contact Mitch Chernoff, SIAM’s publications manager, 
at chernoff@siam.org, or Brian Fauth, editorial associate, at sicon@siam.org. Questions 
about content suitability can be directed to Francesco Bullo, guest editor-in-charge, at 
bullo@engineering.ucsb.edu.  

1  https://www.siam.org/publications/journals/siam-journal-on-control-and-optimization-sicon
2  https://sicon.siam.org

By Daniel B. Szyld

We invite you to submit proposals 
of special sessions for the third 

Mathematical Congress of the Americas 
(MCA 2021),1 which will take place in 
Buenos Aires, Argentina, from July 19-24, 
2021. The deadline for proposal submis-
sion is July 31, 2020.

SIAM is a founding member of the 
Mathematical Council of the Americas,2 a 
network for professional mathematics soci-
eties and research institutes throughout the 
Americas. The organization currently has 
32 members from countries ranging from 
Canada to Argentina and Chile. Both small 
and large countries—like Costa Rica and 
Brazil—are represented.

The Council supports several activi-
ties—including some “summer schools,” 
though they do not always occur during the 
summer—and organizes the Mathematical 

1  http://mca2021.org/
2  http://www.mcofamericas.org/

Call for Special Sessions for the 2021 
Mathematical Congress of the Americas

New York Times, “The city continues…
producing amazing new restaurants; invent-
ing fresh ways to showcase the country’s 
always-thrilling wine offerings; developing 
an exceptionally stimulating arts scene; and 
coming up with creative twists on tradition 
in everything from aperitifs to bookstores. 
Visiting Buenos Aires is always filled with 
new discoveries and beloved stalwarts.”4

It is worth nothing that the 2021 SIAM 
Annual Meeting5 (AN21) is scheduled for 
the same week as MCA 2021. AN21, which 
will take place from July 19-23 in Spokane, 
Wash., is being held jointly with the SIAM 
Conference on Control and Its Applications 
(CT21) and the SIAM Conference on 
Applied and Computational Discrete 
Algorithms (ACDA21). The SIAM Activity 
Groups on Mathematics of Planet Earth and 
Nonlinear Waves and Coherent Structures 
will also have tracks at the meeting.

4  https://www.nytimes.com/2020/01/16/
travel/what-to-do-36-hours-buenos-aires.html

5  https://www.siam.org/conferences/cm/
conference/an21

AN21 will feature the SIAM Career 
Fair, Workshop Celebrating Diversity, 
Industry Panel and Reception, and Student 
Days activities, in addition to the standard 
assortment of minisymposia, minitutori-
als, contributed talks, invited presenta-
tions, panel discussions, and prize lectures. 
Jonathan Mattingly (Duke University) 
will deliver the I. E. Block Community 
Lecture, and several talks and events origi-
nally planned for the 2020 SIAM Annual 
Meeting (which is cancelled with select 
virtual sessions due to the COVID-19 pan-
demic) will now take place at AN21.

The organizing committee co-chairs are 
Fadil Santosa (University of Minnesota) 
and Elaine Spiller (Marquette University). 
More details will be released in the coming 
months, and the call for participation will be 
made available in September 2020.

Daniel B. Szyld is a SIAM representa-
tive to the Mathematical Council of the 
Americas.

Congress of the Americas, a very large 
quadrennial conference that rotates host 
countries. The first two conferences were 
held in Guanajuato, Mexico, and Montreal, 
Canada. The next conference (MCA 2021) 
is scheduled for July 2021 in Buenos Aires, 
Argentina. It will take place in a new build-
ing at the University of Buenos Aires’ 
School of Exact and Natural Sciences.

SIAM members are encouraged to orga-
nize special sessions3 (akin to minisympo-
sia) for this meeting. The list of organizers 
must include affiliations of more than one 
country in the Americas. The submission 
period for these proposals is currently open 
and will close on July 31, 2020.

In addition to the opportunity to net-
work with old and new colleagues, attend 
talks, and learn about novel trends, con-
ference attendees can experience Buenos 
Aires during the mild South American 
winter. To quote a recent article in The 

3  http://mca2021.org/news/item/16-mca-
2021-call-for-special-sessions

is incredibly challenging to connect knowl-
edge gained at genetic, circuit, systems, 
and behavioral levels. For example, how 
do the genes that predispose schizophrenia 
alter function in the circuits that govern 
the cognitive processes in patients with the 
disorder? And how might computational 
approaches help us understand and rep-
resent circuit dysfunction in information 
processing that is visible through neuro-
imaging? How can we comprehend the 
incredible heterogeneity in affected patients 
— even those who share the same genes?

I believe that SIAM and its members 
can help us answer some of these questions 
through the application of computational 
science. Computational approaches allow us 
to describe and test the way in which com-
plex, high-level phenomena emerge from 
smaller-scale interactions. Computational 
models of neural circuits that account for 
differences in genetic makeup can put test-
able hypotheses pertaining to gene altera-
tions’ potential effect on circuit function 
into explicit mathematical terms. Similarly, 

computational models of circuit dysfunction 
can test such dysfunction’s ability to create 
a progressive, chronic disorder by impact-
ing neural development and plasticity. They 
can also quantify and explain findings in 
neural systems’ dysfunctions—captured 
through neuroimaging—and link them to 
behavioral manifestations. Finally, compu-
tational approaches can take advantage of 
large data sets, categorizing brain dysfunc-
tion in a way that may help predict treat-
ment response and lead to better diagnoses 
and improved biomarkers.

NIMH’s Computational Psychiatry 
Program2 is the primary engine for this 
type of research. Through this program, we 
hope to bring mathematics, biology, and 
behavioral science into the pathology and 
physiology of mental illness via the use of 
theoretical modeling and machine learning. 
Employing these tools to investigate the 
underpinnings of neural activity allows us 
to make discoveries that aid in our funda-
mental understanding of the way in which 
mental states develop and change over time.

In addition, data-driven approaches can 
assist in the evaluation and testing of cer-
tain drugs, neuromodulations, and cognitive 
interventions. This is key because not all 
patients with similar disorders will react 
identically to the same treatments. There is 
increasing interest in the potential of artifi-

2  https://www.nimh.nih.gov/about/orga-
nization/dtr/adult-psychopathology-and-
psychosocial-interventions-research-branch/
computational-psychiatry-program.shtml

cial intelligence to decide the most appro-
priate drugs for treating common mental 
illnesses such as depression, a disorder for 
which there is a wide range of pharmaceuti-
cal options. Personalized medicine for more 
widespread disorders like depression can 
increase the likelihood that sufferers will 
seek help and be better equipped to stick 
with their treatment plans.

 Vast potential for advancement exists 
in these areas, but it will not be possible 
without robust participation from applied 
mathematicians and computational scien-
tists. Therefore, I urge computational psy-
chiatrists to explore collaborations with 
the mental health research community and 
pursue funding opportunities through the 
Computational Psychiatry Program. NIMH 
is constantly seeking chances to leverage 
expertise in computational psychiatry to 
make new discoveries in mental health and 
improve training of researchers that are 
fluent in data and modeling approaches; 
these efforts will advance the understanding 
and treatment of mental disorders. In addi-
tion, NIMH is always interested in hearing 
from researchers who may wish to serve on 
our study sections and review proposals. 
Doing so can help the organization hone 
its approach to computational neuroscience 
while simultaneously exposing researchers 
to new funding prospects.

Joshua A. Gordon, M.D., Ph.D., is the 
director of the National Institute of Mental 
Health at the National Institutes of Health.
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By René Carmona                      
and François Delarue

Since its introduction nearly 15 years 
ago, the theory of mean field games 

has rapidly become an exciting source of 
progress in the study of large dynamic 
stochastic systems. In 2006, Jean-Michel 
Lasry and Pierre-Louis Lions proposed a 
methodology to produce approximate Nash 
equilibria for stochastic differential games 
with symmetric interactions and many play-
ers. These players feel the impact of other 
players’ states and actions through their 
empirical distributions only. Researchers 
extensively studied this type of interaction 
under the name “mean field interaction” — 
hence the terminology “mean field game” 
(MFG) that Lasry and Lions introduced [4]. 
Peter Caines, Minyi Huang, and Roland 
Malhamé simultaneously developed a simi-
lar approach, calling it the Nash certainty 
equivalence (NCE) principle [3]. Since its 
inception, this paradigm has evolved from 
its seminal principles into a fully-fledged 
field that attracts theoretically inclined 
investigators as well as applied mathemati-
cians, engineers, and social scientists.

Early Applications
Early contributors to the field introduced 

and analyzed some particular applications, 
primarily to illustrate the explanatory poten-
tial of MFG paradigm. To serve their peda-
gogical purpose, they only captured stylized 
facts from real-life applications, examples 

in the form of the following questions: Why 
does the Mexican wave have universal fea-
tures? When does a large meeting begin? 
Where do I put my towel on the beach? 
Realistic engineering applications in wireless 
communications were concurrently recast as 
MFG models that showcased the relevance 
of the search for equilibria in such a frame-
work. Nevertheless, one of MFGs’ main 
attractions is their ability to facilitate the 
modeling and investigation of large stochas-
tic systems for which standard equilibrium 
analyses are intractable. Spectacular success-
es have already occurred (or are expected) 
in the study of populations in ecology and 
evolutionary biology—e.g., schooling fish, 
flocking birds, crowd motion, herding, and 
swarming—and in financial applications like 
trading in the presence of price impact (e.g., 
on high frequency markets) or the quest for 
better understanding of systemic risk.

However, the number of influential mac-
roeconomic models that foreshadowed the 
MFG paradigm’s introduction is befud-
dling. Looking back at some of the fun-
damental works of S. Rao Aiyagari, Per 
Krusell, and Anthony Smith on macroeco-
nomic growth in the late 1990s, it becomes 
apparent that these authors were introducing 
MFG models without identifying them as 
such. Instead, they proposed to numerically 
compute approximate solutions by iterating 
the forward and backward time-stepping of 
the Hamilton-Jacobi-Bellman (HJB) and 
Kolmogorov-Fokker-Planck (KFP) equa-
tions. In particular, these contributions are 
a convincing testimony of the importance 
of a common noise’s presence on top of the 

Mean Field Games 15 Years Later: Where Do We Stand?

The Master Equation
Whether the forward-backward system 

used to handle an MFG is comprised of 
PDEs or SDEs, one can regard it as the 
system of characteristics of a PDE, called 
the master equation. It is set on the product 
of the physical state space and the space of 
probability measures. The equation’s solu-
tion must be understood as the cost in 
equilibrium of a generic player, beginning 
from a given state under a given initial prob-
ability distribution for the population. This 
PDE’s well-posedness is a difficult question 
that requires equilibrium uniqueness. The 
standard condition for uniqueness is a mono-
tonicity condition introduced by Lasry and 
Lions; monotonicity intuitively encourages 
players to move away from each other. In 
fact, it induces a form of strong stability that 
plays a key role in proving that the charac-
teristics are smooth with respect to the initial 
condition, whether the latter is a probability 
measure (as in the PDE approach) or a ran-
dom variable (as in the BSDE approach).

The Convergence Problem
A mainstay of MFG theory is that one 

can inject any MFG solution into the 
N -player version of the game in the form 
of a distributed strategy (i.e., dependent 
only on each player’s own state, hence 
of a lower complexity). This provides an 
approximate equilibrium, the accuracy of 
which increases with N .

The converse, which aims to show that 
equilibria of the N -player game converge 
towards an MFG solution, is known as the 
convergence problem (see Figure 3). It is 
much more difficult and remained open until 
researchers developed an approach based on 
the master equation [1, 2]. The proof is meant 
to take advantage of the regularity of the mas-
ter equation’s solution to build an approxi-
mate solution to the Nash PDE system of the 
N -player game, which is the analogue of the 
HJB equation for games. This approach per-
mits a sharp bound for the error, which leads 
to a central limit theorem and a large devia-
tion principle for the empirical distributions 
of the finite player equilibria. In practice, 
these results produce estimates of finite size 
effects in the N -player game.

MFGs with Common Noise
Important economic and engineering 

applications require the presence of an 
extra source of noise that is common to 
all players; equilibria become random in 
these cases. Natural extensions of the afore-
mentioned results merely guarantee the 
existence of weak solutions that may not be 
adapted to the common noise. Fortunately, 
this lack of adaptivity cannot occur under 
the Lasry-Lions monotonicity condition. 
Indeed, the resulting MFG system can be 
uniquely solved by a continuation method 
— despite the fact that the HJB and KFP 
equations are stochastic. Outside the mono-
tone regime, researchers seek to understand 

whether the common noise can contribute 
to uniqueness. This a subject of ongoing 
research, which raises the question of a 
possible vanishing viscosity method for 
selecting solutions to non-uniquely solvable 
MFGs (without common noise).

Further Developments
Many extensions of MFGs’ original form 

exist. For instance, analysts have focused 
on the longtime behavior of finite horizon 
MFGs; they have established convergence 
towards a stationary MFG under monoto-
nicity conditions, but recent examples indi-
cate that oscillatory behavior may occur in 
the non-monotone case. Furthermore, both 
analysts and probabilists have investigated 
games involving interactions through the 
laws of the controls, as well as games that 
feature a major player who interacts with a 
continuum of minor players. Researchers 
have also adapted many of the preceding 
results to finite state games, which are natu-
rally amenable to numerical computations.

Finally, we mention attempts at numeri-
cal analysis of MFGs despite their obvi-
ous complexity. Early on, finite difference 
schemes were shown to converge in various 
situations, and analysts have used optimiza-
tion methods to solve the corresponding 
MFC problem. More recently, they have 
applied ideas from machine learning to 
parameterize the HJB/KFP system and the 
master equation via a neural network.

The figures in this article were provided 
by the authors.
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idiosyncratic sources of random shocks that 
are attached to each individual player.

The Analytic Approach
In the spirit of the NCE’s original intro-

duction, one can formulate MFGs as a family 
of standard stochastic control problems that 
are parameterized by flows of probabil-
ity measures, which are followed by a fixed 
point problem on those flows (see Figure 1). 
This is the typical search for a fixed point 
of the best response function characteristic 
of Nash equilibrium. The cornerstone of the 
analytic approach involves identification of 
the control problems’ value functions as 
solutions to HJB equations, and then the opti-
mal trajectories’ distributions as solutions 
of KFP equations. One can thus formulate 
MFGs as a forward-backward system of cou-
pled partial differential equations (PDEs), the 
analysis of which faces subtle difficulties as 
the equations’ time evolutions run in oppo-
site directions. While researchers may carry 
out short time analysis via standard contrac-
tion fixed point arguments, existence over 
arbitrary time intervals is much harder and 
was first completed by Lasry and Lions [4].

The Probabilistic Approach
Probabilists employ several approaches 

when analyzing MFGs. One approach relies 
on the theory of backward stochastic dif-
ferential equations (BSDEs), which are used 
to handle optimal control problems either 
through representation of the value process or 
the stochastic Pontryagin maximum princi-

ple. Combined with the Nash fixed point con-
dition, this leads to the introduction of a new 
class of forward-backward stochastic differ-
ential equations (FBSDEs), called McKean-
Vlasov (MKV) FBSDEs. MKV refers to the 
fact that the coefficients of the stochastic 
differential equations (SDEs) depend upon 
their own solutions’ distributions. Analysis 
of these MKV forward-backward equations 
was essentially nonexistent before MFGs 
highlighted their role. Their investigation is 
now a very active field of research.

Practitioners often use linear quadratic 
models as test beds in classical control and 
game theory. Their extensions to MFGs 
form a class of models that one can solve 
explicitly in the probabilistic approach by 
solving (possibly matrix) Riccati equations.

Potential Games
MFGs share many similarities with a 

natural problem that has attracted much 
attention recently: optimal control of MKV 
SDEs, also known as mean field control 
(MFC) (see Figure 2). MFC corresponds to 
a population of individuals that contribute to 
an overall cost and take actions according to 
a control policy chosen by a central planner 
who minimizes that cost. MFC problems 
are hence intrinsically optimization prob-
lems, while the search for Nash equilibria 
in MFGs is more of a fixed point problem. 
Nevertheless, they are linked by their respec-
tive Pontryagin principles. Indeed, an MFC 
problem’s Pontryagin system is an MFG’s 
forward-backward system. MFGs that 
appear this way are called potential games, 
and their variational structure is very useful 
for both theoretical and numerical purposes.

Figure 1. Mean field game (MFG) diagram. 1a. Optimization problem for each given input. 1b. 
Input is a flow of probability measures that describes the statistical state of the population’s 
players. 1c. Output is the flow of the optimal trajectories’ marginal laws. The Nash condition 
equalizes the input and output flows.

Figure 2. Mean field games (MFGs) versus mean field control (MFC): a non-commutative 
diagram. In MFC, the mean field limit is taken before optimization is performed. In MFGs, 
equilibria are reached before the mean field limit is taken.

Figure 3. The two ways of connecting finite player games and mean field games (MFGs).


