
Applications of Automatic Differentiation in Image Registration

Warin Watson† , Cash Cherry‡ , and Rachelle Lang§

Project advisor: Lars Ruthotto¶

Abstract. We demonstrate that automatic differentiation (AD), which has become commonly available in ma-
chine learning frameworks, is an efficient way to explore ideas that lead to algorithmic improvement
in multi-scale affine image registration and affine super-resolution problems. In our first experiment
on multi-scale registration, we implement an ODE predictor-corrector method involving a derivative
with respect to the scale parameter and the Hessian of an image registration objective function,
both of which would be difficult to compute without AD. Our findings indicate that exact Hes-
sians are necessary for the method to provide any benefits over a traditional multi-scale method; a
Gauss-Newton Hessian approximation fails to provide such benefits. In our second experiment, we
implement a variable projected Gauss-Newton method for super-resolution and use AD to differenti-
ate through the iteratively computed projection, a method previously unaddressed in the literature.
We show that Jacobians obtained without differentiating through the projection are poor approxi-
mations to the true Jacobians of the variable projected forward map and explore the performance of
other approximations in the problem of super-resolution. By addressing these problems, this work
contributes to the application of AD in image registration and sets a precedent for further use of
machine learning tools in this field.

1. Introduction. In the context of medical imaging, image registration is the problem of
finding a reasonable transformation y⃗ to align a template image T with a reference image
R. In the optimization framework, we find a transformation by minimizing the sum of a
distance function D[T ◦ y⃗,R] and a regularization term [15]. Approaches to find optimal
transformations in a parameterized set of admissible transformations can be found either by
numerical optimization techniques, or by solving a nonlinear PDE derived from the optimality
condition [7]. Our strategy, following [15], is to parameterize the transformations by a vector
and numerically solve for the optimal transformation as a finite-dimensional unconstrained
optimization problem.

The problem of super-resolution, which we properly introduce in §4, seeks to reconstruct
an unknown high resolution reference image from a sequence of unregistered low resolution
templates [3]. Solution techniques for this problem implement on algorithms for image regis-
tration while simultaneously reconstructing the high resolution reference image. We use the
same strategy as in registration to solve the super-resolution problem by using a finite dimen-
sional approximation to the problem. However, due to the simultaneous reconstruction of the
reference image and the registration of the templates, the objective has a separable structure
amenable to a variable projection [9] approach.

Leveraging the PyTorch [18] library, we consider two novel applications of automatic
differentiation (AD) to this framework. We apply a predictor-corrector method to perform
multi-scale image registration and improve existing variable projection methodology to solve

†Department of Mathematics and Statistics, Colorado Mesa University (wdwatson2@mavs.coloradomesa.edu).
‡Department of Applied Mathematics and Statistics, Colorado School of Mines (ccherry@mines.edu).
§Department of Mathematics, University of Wisconsin-Madison (rklang@wisc.edu).
¶Department of Mathematics, Emory University

Copyright © SIAM

Unauthorized reproduction of this article is prohibited

 238

mailto:wdwatson2@mavs.coloradomesa.edu
mailto:ccherry@mines.edu
mailto:rklang@wisc.edu

W. WATSON, C. CHERRY, AND R. LANG

a super-resolution problem. The prediction step of the predictor-corrector method requires
a derivative with respect to a scaling parameter in the interpolation, and variable projection
involves differentiation through an inexact iterative least squares solve. Much of the theory
for these problems exists in the literature, but perhaps due to the difficulty of some required
derivatives, they do not exist in standard image registration packages like FAIR [15]. The
code and data required generate the figures used in this text and to reproduce results can be
found at our GitHub repository [22].

2. Image Registration Background. We provide background on the optimization setting
used in our work, and the capabilities of Automatic Differentiation.

2.1. Numerical Optimization Framework. Assume our images are supported on a box-
shaped subset Ω ⊂ Rd for d = 2 or 3. We consider an enumerated set ω = {x⃗1, . . . , x⃗n} ⊂ Ω
of points with even spacing hx and hy in each dimension, on which we have evaluations of the
reference and template images. (We do not have evaluations for points not on the grid, which
we will have to address.) Using this data, we would like to be able to compute the distance
D[T ◦ y⃗,R] of our choice, which in this work will be the least-squares distance metric

(2.1) D[T ◦ y⃗,R] =

∫
Ω
(T (y⃗(x⃗))−R(x⃗))2dV.

As an approximation to the integral (2.1), we use the quadrature rule ∥T (y⃗(ω))−R(ω)∥22hxhy,
where T (y⃗(ω)) and R(ω) are taken to be vectors of evaluations on ω of T ◦ y⃗ and R, respec-
tively. To compute the evaluations T (y⃗(ω)), we must evaluate the template image at points
y⃗(x⃗i) which will usually not be contained in the grid ω. Further, as we want to use first and
second order optimization techniques to minimize a function containing this term, we need
a twice continuously differentiable interpolant. To accomplish this, we use the spline inter-
polation scheme as described in [15]. (This hypothetically allows for exact quadrature of the
interpolants; however, it would be more difficult to code and it’s not clear it would make a
difference in the registration quality.)

The final thing to discretize is the transformation y⃗. The most expressive “non-parametric”
approach would be to solve for every value in y⃗(ω) separately. However, to avoid such a
high dimensional optimization problem, we use a parameterization in many fewer parameters
w ∈ Rp, henceforth writing y⃗(⃗·;w). A number of standard parameterizations are covered
in [15]. In this work, we consider only affine transformations for simplicity. Our goal is to
evaluate and demonstrate the behavior of the proposed methods, rather than to solve difficult
image registration problems.

Our discretized image registration loss function has the general form

(2.2) J(w) = ∥T (y⃗(ω;w))−R(ω)∥22hxhy + λ2S(w),

2
2

where S(w) is a regularization term, and λ > 0 is the corresponding regularization parameter.
Note that cubic splines are twice continuously differentiable, s o t he l east s quares distance
∥T (y⃗(ω; w)) − R(ω)∥ hxhy is twice continuously differentiable with r espect t o w a s l ong as
y⃗(ω; w) is. Note also that the third derivative of a cubic spline with fixed data exists and is
bounded almost everywhere (as cubic splines are piecewise cubic polynomials on intervals);

239

APPLICATIONS OF AD IN IMAGE REGISTRATION

so as long as y⃗(ω;w) also has bounded third derivatives with respect to w, the Hessian of
the least squares loss is also Lipschitz continuous. If we furthermore choose regularization
term satisfying this condition, then (2.2) is twice continuously differentiable function on Rp

with a Lipschitz continuous Hessian, thus we can rigorously expect Newton’s method, Gauss-
Newton, and gradient descent to converge to local minimizers with their respective rates of
convergence [17].

2.2. Automatic Differentiation. In the past, a major difficulty in implementing first and
second order numerical optimization schemes on complicated objective functions has been
the analytic computation of derivatives. However, with automatic differentiation (AD), the
implementation of such methods are simplified by no longer having to hand code analytical
derivatives, which is known to be time-consuming and error-prone [14].

To demonstrate the practical efficiency of automatic differentiation (AD), Table 1 reports
average evaluation times for computing various derivatives under two transformation models:
an affine transformation with 6 parameters, and a neural ODE-based transformation with 50
parameters [1, 20, 23].

We define the forward function as the map w 7→ T (y⃗(ω;w)), which evaluates the template
image at coordinates determined by w, prior to loss computation. The full loss function J(w)
follows (2.2), incorporating squared differences and quadrature. All derivatives are computed
using Functorch [12], which provides composable AD transforms similar to those in JAX [19].

While the theoretical cost of computing gradients and Hessians scales as O(n) and O(n2),
respectively, modern AD frameworks such as Functorch exploit graph-level optimizations,
vectorization, and batched computation to reduce overhead [12]. We observe that while the
gradient and Jacobian costs scale moderately, the Hessian cost increases substantially for
the 50-parameter case. This supports the practical distinction in cost between Newton and
quasi-Newton methods for higher-dimensional transformations.

Table 1
Empirical cost of computing derivatives using AD. “Factor” is the ratio of runtime relative to the corre-

sponding loss or forward function evaluation. For example, computing the gradient took 2.5× the time of a
loss evaluation in the affine case. Each measurement was averaged over 100 runs. Reported values are mean
runtime (µ) ± standard deviation (σ) in milliseconds.

6 parameters 50 parameters
Time (ms) (µ± σ) Factor Time (ms) (µ± σ) Factor

Loss Function 2.171± 0.259 1× 5.012± 2.168 1×
Gradient 5.422± 0.409 2.5× 13.65± 1.018 2.7×
Hessian 12.44± 1.798 5.7× 120.0± 8.737 24×
Forward Function 1.054± 0.076 1× 3.204± 0.149 1×
Jacobian 11.59± 1.518 11× 54.31± 3.240 17×

Many (real-valued) linear operators associated with these problems (particularly for the
Super Resolution problem) are cheap to apply to a given vector, but expensive to store ex-
plicitly. For the purpose of solving normal equations associated with them, it is necessary to
compute products with the adjoints of these operators. This is done easily using an explicitly

240

W. WATSON, C. CHERRY, AND R. LANG

Figure 1. θ = 0 corresponds to a regularly interpolated image with no blurring, while increasing θ increases
the amount of blurring.

stored matrix form by taking the transpose, but is not straightforward when we cannot store
the matrix.

Forward-mode automatic differentiation computes the derivative ∂f(x+hv)
∂h with respect

to any one dimensional perturbation v of the input space at the cost of a single forward
evaluation. For a matrix-vector product f(x) = Ax, such a derivative gives the product v⊤A,
for which A⊤v = (v⊤A)⊤, the desired adjoint-vector product. Crucially, the matrix A need
not be explicitly constructed, as long as the function for computing its action is written in an
automatically differentiable way.

3. Multi-scale Methods. One of the main difficulties of solving image registration prob-
lems is that the objective functions (2.2) resulting from real images are often non-convex and
contain many local minima due to fine-scale d etails. Thus, by solving a very down-sampled or
blurred registration problem, the minimum obtained is closer to the global minimizer of the
desired problem [15]. This leads to an iterative approach, where the solutions to easier versions
of the registration problem are iteratively used as initializations for harder versions. There
are two such commonly used approaches in registration: The multi-level approach (which we
don’t consider in this work) down-samples the images, and the multi-scale approach blurs the
images. Figure 1 illustrates the blurring effect that the scaling parameter, θ , has on the inter-
polation of an image. For further explanation and examples of the multi-level and multi-scale
techniques, the reader is directed to [15].

An ODE, derived in Section 3.1, describes how the optimal set of transformation param-
eters changes with respect to θ. One could follow the path of a minimizer from a large value
of θ down to a small value of θ purely by numerically solving the ODE, but in our experience,
this approach is computationally expensive. Instead, we opt for a predictor-corrector method,
where the ODE is used to refine t he i nitial g uess a t e ach s cale, a nd l ocal m inimization is
employed to correct errors at that scale. We distinguish these multi-scale methods from tra-
ditional multi-scale methods due to the utilization of the ODE. Additionally, we distinguish
these methods from homotopy methods [5] since the scaling is applied to the interpolation of
the images rather than directly to the objective function.

241

APPLICATIONS OF AD IN IMAGE REGISTRATION

3.1. Derivation of Multi-scale ODE. Consider a minimizer w∗ for a fixed θ image regis-
tration problem, defined by:

w∗(θ) ∈ argmin
w∈Rp

J(w; θ).

As J is twice continuously differentiable, and w∗ is a local minimizer, it must satisfy the
first-order optimality condition

(3.1) ∇wJ(w
∗(θ); θ) = 0.

Differentiating (3.1) with respect to θ,

d

dθ
∇wJ(w

∗(θ); θ) = ∇2
wJ(w

∗(θ); θ)
dw∗

dθ
+

d

dθ
∇wJ(w

∗(θ); θ) = 0.

It follows that

(3.2)
d

dθ
w∗(θ) = −

(
∇2

wJ(w
∗(θ); θ)

)−1(d

dθ
∇wJ(w

∗(θ); θ)

)
.

Each step of this ODE solve requires an inverse Hessian-vector product, so it is as feasible to
implement as Newton’s method for optimization.

3.2. Predictor-Corrector Method. The approach involves taking larger steps in θ when
solving (3.2) (i.e., using coarser discretizations for the ODE). The error introduced by these
larger steps is then corrected through local minimization. In practice, Newton’s method for
the minimization provides rapid local convergence [17], and allows us the ability to re-use
computed Hessians when taking a step in the ODE solve.

To take a step from a coarse scaling parameter θn to a finer scaling parameter θn+1 < θn
starting from a minimizer w∗(θn+1), a step

(3.3) w∗
pred = w∗(θn) + (θn − θn+1)

(
d

dθ
w∗(θn)

)
of forward Euler’s method is taken to predict the location of w∗(θn+1), and is then corrected
by a local minimization procedure to obtain the true w∗(θn+1).

Even with the predictor-corrector method, negative curvature in the local minimization
problem still poses a problem. The forward Euler predictor step (3.3) explicitly uses the
Hessian inverse, which can lead to computational instability if the Hessian is indefinite. Pure
Newton steps also struggle in this scenario, since directly using indefinite Hessians c an pro-
duce non-descent directions. To address this, we opt for using SciPy’s implementation of an
exact trust-region Newton solver [4] for the local minimization problem, which avoids explicit
Hessian inversion by solving a trust-region subproblem through eigen-decomposition [21]. A
line-search Newton method is another viable alternative [17]. After convergence of the lo-
cal minimization, we reuse the Hessian computed at the accepted iterate in the subsequent
forward Euler predictor step, avoiding additional Hessian evaluations.

242

W. WATSON, C. CHERRY, AND R. LANG

Si
ng

le
-S

ca
le

Pr
ed

ic
to
r-C

or
re
ct
or

Figure 2. Template and Reference are shown in the first r ow. The p redictor-corrector method i s u sed to
register the images in the second row. Attempting to register at the finest s cale a lone r esults i n a b ad local
minimizer as shown in the third row.

Note that the predictor-corrector method reduces to a traditional multi-scale method
when the forward Euler step of the ODE (3.3) is not taken. This suggests that to prefer the
predictor-corrector method over the traditional multi-scale method, you would need to ensure
the cost of computing (3.3) does not outweigh the cost of performing minimization to get the
same w∗. This would vary based on the problem and behavior of the optimization algorithm
and its implementation.

3.3. Results. Two results are shown in this section. First, the predictor-corrector method
is shown to work for a non-regularized problem where registering from a single scale does
not. This motivates the method as having a similar use case as the traditional multi-scale
method. Then, for the predictor-corrector method, the prediction is shown to fail when using
approximated Hessians via Gauss Newton, but succeeds when using Hessians computed using
AD, which are exact with respect to the discretized objective (2.2). An implementation of
Levenberg-Marquardt is used for Gauss Newton, while SciPy’s Exact Trust Region [21] is used
for Newton.

3.3.1. Single Scale vs Predictor-Corrector. Consider an affine, no n-regularized image
registration problem with template and reference shown in the first row of Figure 2 . As shown
in the figure, s ome i mage r egistration p roblems b enefit fr om us ing th e predictor-corrector
method, as opposed to optimizing from a single scale, in order to avoid getting stuck in a local
minimum.

243

APPLICATIONS OF AD IN IMAGE REGISTRATION

3.3.2. Approximated Hessian vs Exact Hessian. Gauss-Newton is often implemented
over a Newton method to optimize non-linear least squares problems as a way to avoid ex-
pensive and/or complicated Hessian computations. Let us define the residual function as
r(w) = T (y⃗(ω;w))−R(ω), and consider the un-regularized least squares loss function

J(w) = ∥r(w)∥22.

The exact Hessian of such a function is given by

∇2J(w) = ∇r(w)⊤∇r(w) +

n∑
i=1

ri(x)∇2ri(x),

where ∇r(w) is the Jacobian of r(w). Utilizing the exact Hessian in Newton’s method yields
a quadratic rate of convergence, but can be expensive. At the cost of relaxing the guarantee to
only sub-linear convergence, Gauss Newton avoids the computational expense of computing
second derivatives by approximating the Hessian using solely the term ∇r(w)⊤∇r(w). How-
ever, the method can approach quadratic convergence and often does in practice [17]. With
AD, both methods are simple to implement, though the computational expense of computing
the Hessian for Newton’s method is still greater.

To evaluate the effectiveness of the prediction at each scale, i.e., the step of forward Euler
(3.3) , we compare the loss and gradient at the predicted point to the loss and gradient
without the prediction. This comparison effectively compares the predictor-corrector method
with the traditional multi-scale method. We define the relative loss difference as (J(w∗) −
J(w∗

pred))/J(w
∗), and the relative gradient norm difference as (∥∇J(w∗)∥ − ∥∇J(w∗

pred)∥)/
∥∇J(w∗)∥ to give measures of how helpful the predictions are.

This experiment is illustrated in Figure 3. A positive value indicates a successful reduction
in loss or gradient, whereas a negative value indicates an increase. The results show that using
exact Hessians via Newton’s method tends to decrease the loss and gradient, while using
approximated Hessians via Gauss-Newton tends to increase the loss and gradient. Therefore,
using exact Hessians is necessary for the predictor-corrector method to provide any benefits
over a traditional multi-scale method.

4. Coupled Methods for Super-Resolution. We follow the framework developed in [3].

Interpolation of the reference is linear in the reference intensity vector f (0), thus, we can
mathematically model our transformations y⃗(j) using matrices I(j)(w). The notation I with no
argument is used for the identity matrix, which is consistent with viewing the identity as an
application of a trivial transformation. Note that the interpolation matrix is non-linear in
its dependence on the transformation parameter vector w. Our high resolution transformed
templates f (j) ∈ Rn, j = 1, . . . , q are thus given by the transformations I(j)(w)f (0) of an initial
reference image f (0). Our observed template images d(j) ∈ Rm, j = 0, 1 . . . , q are modeled as
d(j) = Kf (j), where K ∈ Rm×n is a linear operator which lowers the image resolution (m < n),
in our case by pooling, that is, averaging the pixels in k × k regions to reduce resolution
by k times in each dimension. Note that our modeling assumes that the template d(0) is
registered with the unknown reference f (0), as the data can only ever constrain f (0) up to
a transformation; registering d(0) with f (0) eliminates this non-uniqueness and saves some

244

W. WATSON, C. CHERRY, AND R. LANG

Figure 3. Relative loss and gradient norm, both plotted against θ on a logarithmic scale. Exact Hessians
are used for blue, approximated Hessians are used for orange. All relative gradient norm difference values using
approximated Hessians are less than −31000.

computational overhead. We further let hfx, h
f
y, h

d
x and hdy be the corresponding grid sizes for

the template and reference grids.
In the problem of super-resolution, we aim to reconstruct a high-resolution reference image,

f (0) from a vector of low resolution template images d = [d(0)⊤, . . . ,d(q)⊤]⊤, which are assumed
to be unregistered, down-sampled versions of f (0). Our aim in super-resolution is to register
multiple templates d(j) to an unknown reference f (0), while simultaneously reconstructing f (0)

from the unregistered templates.

4.1. Super-Resolution Framework. Representing the template intensities in a single vec-
tor d, our full model for the super resolution data is given by

d = (I⊗ K)I(w)f (0), I(w) =


I

I(1)(w)
...

I(q)(w)

 , d =

d
(0)

...

d(q)

 .

We could approach this as a regularized least squares problem in the two variables f (0) and
w:

J(w, f (0)) = ∥(I⊗ K)I(w)f (0) − d∥2hdxhdy + λ2
fSf (0)(f

(0)).

As before, we don’t regularize the transformation parameters w. Our regularization term on
the reference image f (0) is a finite difference approximation to the semi-norm

∫
Ω ∥∇R(0)(x⃗)∥2dV,

where R(0) denotes the continuous reference image approximated by the vector f (0). This is
given by

Sf (0)(f
(0)) = ∥Lf (0)∥2hfxhfy, L =

[
hfxD⊗ I
I⊗ hfyD

]
, D =

−1 1
. . .

. . .

−1 1

 .

245

APPLICATIONS OF AD IN IMAGE REGISTRATION

Our joint super resolution objective function is written

(4.1) J(w, f (0)) = ∥(I⊗ K)I(w)f (0) − d∥2 + λ2
f ∥Lf (0)∥2.

It should be noted that this quadratic regularizer is not ideal, as it penalizes high wavenum-
ber content in the reconstruction that may be part of the true reference image. This shows up
in our examples as “checkerboard” patterns in the residual. To move beyond this, nonlinear
regularization methods such as total variation can be used with a “Linearize-And-Project”
approach [11], however, like in [3], we stick to a quadratic regularization term as it simplifies
both the theory and practice of variable projection.

4.2. Variable Projection Theory. We begin by noticing that (4.1) is in the separable form
addressed by the variable projection method [9, 8, 6]. To make this even more clear, we write
it in the stacked form

J(w, f (0)) =

∥∥∥∥∥∥
√hdxh

d
y (I⊗ K)I(w)

λf

√
hfxh

f
y L

 f −

[√
hdxh

d
y d

O

]∥∥∥∥∥∥
2

= ∥Aλf
(w)f (0) − b∥2.

In this case, the optimal f (0) as a function of w is given by f (0)(w) = Aλf
(w)†b. Thus, our

variable projected objective function is given by

(4.2) J̃(w) = ∥Aλf
(w)f (0)(w)− b∥2

A natural approach to minimize (4.2) is Gauss-Newton, in which case we need to compute
the Jacobian of the term Aλf

(w)f (0)(w). Applying the product rule,

(4.3)
∂

∂w

(
Aλf

(w)f (0)(w)
)
=

∂Aλf
(w)

∂w
f (0)(w) + Aλf

(w)
∂f (0)(w)

∂w
.

Computing the Jacobian ∂f (0)(w)
∂w of the projection f (0)(w) requires differentiation through

the least squares solution. An exact formula for such a derivative based on implicit differen-
tiation through an exact solution exists [9], but it is expensive to compute. Previous work
in variable-projected Gauss-Newton has employed approximations to avoid this cost—either
through low-rank SVD approximations [16] or by entirely neglecting the Jacobian term (ef-

fectively setting ∂f (0)(w)
∂w = 0) as done in [3].

In an automatic differentiation f ramework, we can i gnore the projection term by turning
gradient tracking off during the l east squares s olve. However, by choosing to t rack gradients
through the least squares solution, we can include this term at the cost of increased memory
overhead. It has been shown that automatic differentiation through the Conjugate Gradient
(CG) algorithm gives correct gradients in the case of an inexact solve [10], and in the case of
an exact solve [2], which we will use in our solutions. A recent preprint [13] explores automatic
differentiation through other least-squares algorithms.

246

W. WATSON, C. CHERRY, AND R. LANG

True Reference Template 1 Template 2 Template 3 Template 4

Test Super Resolution Problem

Figure 4. Our test problem for super resolution. The reference image is 20 × 20 pixels, and the 4 templates
are 10 × 10 pixels. The problem is well-determined, as we are to infer 400 parameters from 400 pixels.

4.3. Implementation and Results. We consider the small super-resolution problem shown
in Figure 4 and note a significant b enefit in re construction qu ality an d co nvergence ra te of
the Gauss-Newton method when using AD to differentiate through a ll i terations o f CG (see
Figure 5 and Figure 6). There are 18 registration parameters to estimate in this problem, and
we found that computing the Jacobian of the variable-projected objective function (Equa-
tion (4.2)) using forward-mode automatic differentiation takes approximately six to ten times
longer than evaluating the objective function itself, which is in line with our expectations.
The final relative reconstruction error when differentiating all iterations of CG is 10.7%, while
ignoring the Jacobian of the projection results in a higher relative reconstruction error of
25.61%.

At each optimization step, the Jacobian (4.3) is computed using forward mode AD. Its
important to note that in forward mode, memory consumption scales with the size of the input
rather than the number of operations in a forward pass. For the variable projected super-
resolution problem, the memory consumption due to forward mode should remain constant
regardless the number of CG iterations. In our experiments we observed that memory usage
increases with the number of optimization steps which can be attributed to an implementation
issue in PyTorch.

The computational overhead of using CG to compute the projection still poses a diffi-
culty and its of great interest to reduce the number of iterations while still obtaining quality
reconstructions. We explore two options to reduce computational overhead: differentiating
through only a portion of CG iterations, but solving the system near exactly, and differenti-
ating through every iteration of CG, but not iterating CG to convergence when computing
the projection.

4.3.1. Differentiation o f a Portion o f CG I terations. D ifferentiating th rough th e later
iterations of CG proves essential for accurate computation. In these experiments, a total of
200 iterations of CG are used in each optimization step, but the percentage of the final itera-
tions that are differentiated through v ary. Figure 7 presents convergence plots f or Jacobians
obtained via AD, comparing various percentages of CG iterations through which differentia-
tion is applied. Interestingly, differentiating through the final 70% of iterations leads to poorer

247

APPLICATIONS OF AD IN IMAGE REGISTRATION

2 4 6 8 10
Optimization Iterations

10 2

10 1

100
Relative Loss

Diff All
No Diff

2 4 6 8 10
Optimization Iterations

10 2

10 1

100
Relative Gradient Norm

Diff All
No Diff

Performance of Differentiating Variable Projection

Figure 5. The performance of 10 iterations of variable-projected Gauss-Newton on the problem in Figure
4. Differentiating through all CG iterations provides a faster reduction in relative loss and relative gradient
norm.

0 10 20
0

5

10

15

20

25

Re
co

ns
tru

ct
io

n

Diff All

0 10 20
0

5

10

15

20

25
No Diff

0 10 20
0

5

10

15

20

25

Re
co

ns
tru

ct
io

n
- T

ru
e

0 10 20
0

5

10

15

20

25

0

50

100

150

200

250

40

20

0

20

40

Reconstructions

Figure 6. The final r econstructions f rom t he p erformance t est c omparing n o d ifferentiation ag ainst full
differentiation t hrough every i teration o f CG.

convergence than not differentiating through any i terations at a ll. However, when differenti-
ating through the entire set of iterations (100%), the convergence rate surpasses that of the
90% and 95% cases.

Our results shown in Figure 8 demonstrate that differentiating through more than 70% is
necessary. Differentiating through 100% of the iterations of CG is the best in terms of relative
loss and gradient norm reduction. The final reconstruction qualities additionally indicate that
100% is the best, but the visual difference in error is small after 90% as seen in Figure 9 . We
also tested differentiating through the initial iterations of CG, but the performance was worse
than using the later iterations. Therefore, these results are not included in this work.

248

W. WATSON, C. CHERRY, AND R. LANG

10 16 10 13 10 10 10 7 10 4 10 1 102 105

Perturbation Multiplier

10 2

100

102

104

106

108

1010

1012

Er
ro

r

Differentiating Last % of Iters
70%
90%
95%
100%
0%

Figure 7. Jacobian convergence plot for the residual function r(w) = Aλf (w)f (0)(w) − b. In this case,

Error = ∥r(w + hv) − r(w) − h ∂bfr(w)
∂w

v∥, where h is the perturbation multiplier, v is the direction of the

perturbation, and our Jacobian approximation ∂bfr(w)
∂w

varies in accuracy depending on the percentage of final
iterations of CG that are differentiated.

2 4 6 8 10
Optimization Iterations

10 2

10 1

100
Relative Loss

70% CG iters
90% CG iters
95% CG iters
100% CG iters

2 4 6 8 10
Optimization Iterations

10 2

10 1

100

Relative Gradient Norm

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Last CG Iters Diff (%)

0.10

0.15

0.20

0.25

0.30

0.35

Final Relative Error

Performance When Differentiating Last CG Iters

Figure 8. The performance of 200 iterations of variable-projected Gauss-Newton on the problem from
Figure 4 for various percentages of final CG i terations d ifferentiated. Th e fin al rel ative error is com puted by
solving the least squares problem exactly for the final reference image p rediction a nd measuring t he difference
from the true reference used to create the data.

4.3.2. Using Inexact Projections. We test how reconstruction quality varies when using
an inexact least squares solution for our projection. We consider the problem shown in Fig-
ure 4, which we solve using a variable projected Gauss-Newton method. We automatically
differentiate through every i teration o f CG, but run a fixed number of CG it erations in each
evaluation of the objective function.

Our results (Figure 10) show that there are diminishing returns for using more exact
projections in each iteration. Using 50 or 100 iterations performed the best in terms of

249

APPLICATIONS OF AD IN IMAGE REGISTRATION

0 10 20
0

5

10

15

20

25

Re
co

ns
tru

ct
io

n

70% CG Iters

0 10 20
0

5

10

15

20

25
90% CG Iters

0 10 20
0

5

10

15

20

25
95% CG Iters

0 10 20
0

5

10

15

20

25
100% CG Iters

0 10 20
0

5

10

15

20

25

Re
co

ns
tru

ct
io

n
- T

ru
e

0 10 20
0

5

10

15

20

25

0 10 20
0

5

10

15

20

25

0 10 20
0

5

10

15

20

25

0

50

100

150

200

250

40

20

0

20

40

Reconstructions When Differentiating Last CG Iters

Figure 9. The final reference images and reconstruction errors of variable projected super resolution with
inexact projections. The images are very similar, but some differences in the residuals can be seen.

2 4 6 8 10
Optimization Iterations

10 2

10 1

100
Relative Loss

2 4 6 8 10
Optimization Iterations

10 5

10 4

10 3

10 2

10 1

100

Relative Gradient Norm

1 CG iters
5 CG iters
10 CG iters
25 CG iters
50 CG iters
100 CG iters

0 20 40 60 80 100
CG Iterations

0.12

0.14

0.16

0.18

0.20

0.22

Final Relative Error

Performance of Inexact Variable Projection

Figure 10. The performance of 10 iterations of variable-projected Gauss-Newton on the problem from
Figure 4 for various numbers of Conjugate Gradient Iterations used in each projection. The final relative error
is computed by solving the least squares problem exactly for the final reference image prediction and measuring
the difference f rom t he t rue reference used t o c reate t he data.

relative loss and gradient norm reduction. The final r ecovered r eference images (Figure 11)
show that the best reconstruction qualitatively is that using 100 CG iterations, but 10, 25,
and 50 are close to the same reconstruction quality and the visual difference in reconstructions
and error images is small.

5. Conclusions. In the affine registration problem, automatic differentiation has opened
up the ability to directly compute Hessians, allowing for the application of Newton’s method,
which provides faster convergence than the previously used approaches. Furthermore, having
access to exact Hessians allows for the implementation of a predictor-corrector method, which

250

W. WATSON, C. CHERRY, AND R. LANG

0 10 20
0

5

10

15

20

25

Re
co

ns
tru

ct
io

n

1 CG Iters

0 10 20
0

5

10

15

20

25
5 CG Iters

0 10 20
0

5

10

15

20

25
10 CG Iters

0 10 20
0

5

10

15

20

25
25 CG Iters

0 10 20
0

5

10

15

20

25
50 CG Iters

0 10 20
0

5

10

15

20

25
100 CG Iters

0 10 20
0

5

10

15

20

25

Re
co

ns
tru

ct
io

n
- T

ru
e

0 10 20
0

5

10

15

20

25

0 10 20
0

5

10

15

20

25

0 10 20
0

5

10

15

20

25

0 10 20
0

5

10

15

20

25

0 10 20
0

5

10

15

20

25

0

50

100

150

200

250

40

20

0

20

40

Inexact Variable Projection Results after 20 Iterations

Figure 11. The final reference images and reconstruction errors of variable projected super resolution with
inexact projections. The images are very similar, but some differences i n t he residuals can be seen.

we’ve found to succeed in some problems where the standard multi-scale approach fails.
In the problem of super resolution, we showed that computing the full Jacobian of a vari-

able projected objective function improves both the speed of convergence of the optimization
and the final reconstruction quality from the previous approach of not differentiating through
the projection, though it introduces computational overhead. Through experiments on a small
super resolution problem, we found that tracking the computations of at least 70% of the final
iterations of the CG method was necessary to see the benefits of including the Jacobian of the
projection. Moreover, we found that using inexact projections during each iteration of opti-
mization maintains high reconstruction quality with fewer CG iterations, providing a balance
between computational efficiency and ac curacy. These results suggest that leveraging inexact
projections can mitigate computational costs while maintaining the advantage in results that
the AD computed Jacobian of the projection provide.

Using AD tools, we have been able to simply compute derivatives, opening up methods in
image registration that would be difficult to compute ma nually. The ability to automatically
differentiate through complex processes, such as inexact iterative least squares solves, and reg-
istration objective functions, has proven its use in developing better super resolution solutions
and second order optimization methods. These advancements demonstrate the potential of
AD to further progress in image registration. Future work could explore scaling these methods
to larger datasets and non-parametric transformations, as well as better optimizing memory
usage when computing the derivative of inexact iterative least squares solves.

Acknowledgments. This work was supported by the US National Science Foundation
(NSF) award DMS-2349534. Any opinions, findings, a nd c onclusions o r recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of
the NSF. We want to especially thank our mentor Dr. Lars Ruthotto and the other mentors

251

APPLICATIONS OF AD IN IMAGE REGISTRATION

of Emory’s 2024 REU for Computational Mathematics and Data Science for making this
possible.

REFERENCES

[1] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, Neural ordinary differential
equations, Advances in neural information processing systems, 31 (2018).

[2] B. Christianson, Differentiating through conjugate gradient, Optimization Methods and Software,
33 (2018), pp. 988–994, https://doi.org/10.1080/10556788.2018.1425862, https://doi.org/10.1080/
10556788.2018.1425862, https://arxiv.org/abs/https://doi.org/10.1080/10556788.2018.1425862.

[3] J. Chung, E. Haber, and J. Nagy, Numerical methods for coupled super-resolution, Inverse Prob-
lems, 22 (2006), p. 1261, https://doi.org/10.1088/0266-5611/22/4/009, https://dx.doi.org/10.1088/
0266-5611/22/4/009.

[4] A. R. Conn, N. I. Gould, and P. L. Toint, Trust region methods, SIAM, 2000.
[5] D. M. Dunlavy and D. P. O’Leary, Homotopy optimization methods for global optimization., tech.

report, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States),
12 2005, https://doi.org/10.2172/876373, https://www.osti.gov/biblio/876373.

[6] M. I. Español and G. Jeronimo, Convergence analysis of a variable projection method for regularized
separable nonlinear inverse problems, 2024, https://arxiv.org/abs/2402.08568, https://arxiv.org/abs/
2402.08568.

[7] B. Fischer and J. Modersitzki, Ill-posed medicine—an introduction to image registration, Inverse
Problems, 24 (2008), p. 034008, https://doi.org/10.1088/0266-5611/24/3/034008, https://dx.doi.org/
10.1088/0266-5611/24/3/034008.

[8] G. Golub and V. Pereyra, Separable nonlinear least squares: the variable projection method and its
applications, Inverse problems, 19 (2003), p. R1.

[9] G. H. Golub and V. Pereyra, The differentiation of pseudo-inverses and nonlinear least squares
problems whose variables separate, SIAM Journal on numerical analysis, 10 (1973), pp. 413–432.

[10] S. Gratton, D. Titley-Peloquin, P. Toint, and J. T. Ilunga, Differentiating the method of
conjugate gradients, SIAM Journal on Matrix Analysis and Applications, 35 (2014), pp. 110–
126, https://doi.org/10.1137/120889848, https://doi.org/10.1137/120889848, https://arxiv.org/abs/
https://doi.org/10.1137/120889848.

[11] J. L. Herring, J. G. Nagy, and L. Ruthotto, Lap: A linearize and project method for solving
inverse problems with coupled variables, Sampling Theory in Signal and Image Processing, 17 (2018),
p. 127–151, https://doi.org/10.1007/bf03549661, http://dx.doi.org/10.1007/BF03549661.

[12] R. Z. Horace He, functorch: Jax-like composable function transforms for pytorch. https://github.com/
pytorch/functorch, 2021.

[13] P. Hovland and J. Hückelheim, Differentiating through linear solvers, 2024, https://arxiv.org/abs/
2404.17039, https://arxiv.org/abs/2404.17039.

[14] C. C. Margossian, A review of automatic differentiation and its efficient implementation, Wiley inter-
disciplinary reviews: data mining and knowledge discovery, 9 (2019), p. e1305.

[15] J. Modersitzki, FAIR: flexible algorithms for image registration, vol. 6 of Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2009, https://doi.org/10.1137/1.9780898718843.

[16] E. Newman, L. Ruthotto, J. Hart, and B. van Bloemen Waanders, Train like a (var)pro: Efficient
training of neural networks with variable projection, SIAM Journal on Mathematics of Data Science, 3
(2021), pp. 1041–1066, https://doi.org/10.1137/20M1359511, https://doi.org/10.1137/20M1359511,
https://arxiv.org/abs/https://doi.org/10.1137/20M1359511.

[17] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, NY, USA, 2e ed., 2006.
[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, Pytorch: An
imperative style, high-performance deep learning library, in Advances in Neural Information Pro-
cessing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035, http://papers.neurips.cc/paper/

252

https://doi.org/10.1080/10556788.2018.1425862
https://doi.org/10.1080/10556788.2018.1425862
https://doi.org/10.1080/10556788.2018.1425862
https://arxiv.org/abs/https://doi.org/10.1080/10556788.2018.1425862
https://doi.org/10.1088/0266-5611/22/4/009
https://dx.doi.org/10.1088/0266-5611/22/4/009
https://dx.doi.org/10.1088/0266-5611/22/4/009
https://doi.org/10.2172/876373
https://www.osti.gov/biblio/876373
https://arxiv.org/abs/2402.08568
https://arxiv.org/abs/2402.08568
https://arxiv.org/abs/2402.08568
https://doi.org/10.1088/0266-5611/24/3/034008
https://dx.doi.org/10.1088/0266-5611/24/3/034008
https://dx.doi.org/10.1088/0266-5611/24/3/034008
https://doi.org/10.1137/120889848
https://doi.org/10.1137/120889848
https://arxiv.org/abs/https://doi.org/10.1137/120889848
https://arxiv.org/abs/https://doi.org/10.1137/120889848
https://doi.org/10.1007/bf03549661
http://dx.doi.org/10.1007/BF03549661
https://github.com/pytorch/functorch
https://github.com/pytorch/functorch
https://arxiv.org/abs/2404.17039
https://arxiv.org/abs/2404.17039
https://arxiv.org/abs/2404.17039
https://doi.org/10.1137/1.9780898718843
https://doi.org/10.1137/20M1359511
https://doi.org/10.1137/20M1359511
https://arxiv.org/abs/https://doi.org/10.1137/20M1359511
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

W. WATSON, C. CHERRY, AND R. LANG

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
[19] S. S. Schoenholz and E. D. Cubuk, {JAX} {md}: End-to-end differentiable, hardware accelerated,

molecular dynamics in pure python, 2020, https://openreview.net/forum?id=r1xMnCNYvB.
[20] S. Sun, K. Han, C. You, H. Tang, D. Kong, J. Naushad, X. Yan, H. Ma, P. Khosravi, J. S.

Duncan, and X. Xie, Medical image registration via neural fields, Medical Image Analysis, 97 (2024),
p. 103249, https://doi.org/https://doi.org/10.1016/j.media.2024.103249, https://www.sciencedirect.
com/science/article/pii/S1361841524001749.

[21] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Lar-
son, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perk-
told, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors, SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python, Nature Methods, 17 (2020), pp. 261–272,
https://doi.org/10.1038/s41592-019-0686-2.

[22] W. Watson, C. Cherry, R. Lang, and L. Ruthotto, Imgregpytorchproject. https://github.com/
wdwatson2/ImgRegPytorchProject, 2024. GitHub repository.

[23] Y. Wu, T. Z. Jiahao, J. Wang, P. A. Yushkevich, M. A. Hsieh, and J. C. Gee, Nodeo: A
neural ordinary differential equation based optimization framework for deformable image registra-
tion, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022,
pp. 20804–20813.

253

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://openreview.net/forum?id=r1xMnCNYvB
https://doi.org/https://doi.org/10.1016/j.media.2024.103249
https://www.sciencedirect.com/science/article/pii/S1361841524001749
https://www.sciencedirect.com/science/article/pii/S1361841524001749
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/wdwatson2/ImgRegPytorchProject
https://github.com/wdwatson2/ImgRegPytorchProject

	Introduction
	Image Registration Background
	Numerical Optimization Framework
	Automatic Differentiation

	Multi-scale Methods
	Derivation of Multi-scale ODE
	Predictor-Corrector Method
	Results
	Single Scale vs Predictor-Corrector
	Approximated Hessian vs Exact Hessian

	Coupled Methods for Super-Resolution
	Super-Resolution Framework
	Variable Projection Theory
	Implementation and Results
	Differentiation of a Portion of CG Iterations
	Using Inexact Projections

	Conclusions

