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Figure 1. Direction-of-arrival estimation. 1a. Multiple signals impinge on an array of antennae. The goal is to estimate all angles xi using the 
(noisy) data received at the array. Here we assume that the antenna gains are unknown. 1b. A typical example of how one of the methods can 
solve this self-calibration problem. Figure 1a courtesy of authors and 1b courtesy of [6, 9].

Learning from Their Mistakes: Self-Calibrating Sensors
By Benjamin Friedlander, Shuyang 
Ling, and Thomas Strohmer

The Internet of Things (IoT) contains 
billions of sensors that provide infor-

mation for a large number of measurands. 
Many of these sensors are embedded in 
complex systems and can be deployed 
in remote locations. Careful calibration 
of such sensors, which is essential for 
optimal results, is often difficult or even 
impossible to achieve in practice. Indeed, 
the need for precise calibration of sens-
ing devices—ranging from tiny sensors 
to space telescopes—manifests itself as 
a major roadblock in many scientific and 
technological endeavors beyond the IoT. In 
this context, calibration is an effort to cor-
rect for specific uncertainties or aberrations 
in the measurement process.

Consider the calibration of antenna 
arrays to correct gain/phase offsets in 
received data, a common problem in direc-
tion-of-arrival estimation when engineers 
attempt to calculate the direction of propa-
gating waves based on data received from 
the antennae (see Figure 1) [6, 7]. Another 
instance is blind deconvolution, the issue 
of recovering a signal from its noisy con-
volution with a poorly-known or unknown 
point spread function [3]. This problem 

occurs in diverse fields, such as astronomi-
cal imaging and audio processing. Other 
instances arise in wireless communication 
[4], cryo-electron microscopy [12], and 
X-ray crystallography [11].

It is therefore highly desirable to equip 
sensors and systems with the capability 
for self-calibration using information col-
lected by the system to simultaneously 
estimate the calibration parameters and 
perform the system’s intended function 
(image reconstruction, signal estimation, 

target detection, etc.) [7, 9]. With some 
poetic license, we might say that sensors 
learn from their mistakes; instead of physi-
cally recalibrating themselves (usually an 
impractical or impossible task), they con-
duct a form of virtual self-calibration by 
correcting errors in the sensing process via 
carefully-constructed algorithms.

We can express many self-calibration prob-
lems in the following mathematical form:

            y A x w= +( , ) ,q   (1)

where y  represents the measurements, 
A( , )q ×  is the sensing operator dependent 
on some unknown or imprecisely known 
parameters q, x  is the information we wish 
to recover, and w  denotes additive noise. 
A  may depend linearly or nonlinearly on q, 
while the properties of sensing uncertainty 
q  depend largely on the application.

The generality of (1) renders it inca-
pable of developing a rigorous and efficient 
framework for its solution. So we focus 
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Algorithms designed for automated 
trading on financial markets have 

existed for at least two decades but became 
ubiquitous with the creation of electronic 
exchanges. Because of their lightning-fast 
reaction times and ability to process huge 
quantities of data in real time, such algo-
rithms are preferable to manual traders for 
intra-day trading.

Due to the speed and volume of informa-
tion, trading decisions must be made with-
out human intervention and designers must 
be conscious of market complexities. As all 
models are merely approximations, an ideal 
algorithm should learn from its environ-
ment and dynamically adapt its strategy. 
Some of the earliest mathematical work in 
algorithmic trading focused on the execu-
tion problem [1], but researchers have since 
devoted much time to areas like market-
making, statistical arbitrage, and optimal 
tracking of stochastic targets [3].

The Limit Order Book                
and Price Impact

Market complexity stems from the mil-
lions of traders who continuously interact 

with one another to form prices. These 
interactions showcase themselves in the 
dynamics of the limit order book (LOB), 
which contains the outstanding collection 
of limit orders (LOs) that traders are will-
ing to buy and sell assets at. Incoming mar-
ket orders (MOs) are matched with the best 
available prices (see Figure 1) and gradu-
ally chip away at the LOB. The combined 
actions of posting (and cancelling) LOs 
and executing MOs move prices according 
to general supply and demand for the asset 
in question. Although individual trader 
impact is minuscule, the accumulation of 
all traders’ actions is significant.

The Market Model
We develop a very general market model 

where a large population N  of intelligent 
heterogenous agents trades against each 
other in a market with latent factors [4]. Our 
model is inspired by studies that address 
single-agent problems accounting for order 
flow and latent factors [5], as well as mul-
tiple homogeneous agents without latent 
factors [2, 6]. These agents’ actions, along 
with exogenous factors accounting for other 
traders’ actions, drive the (controlled) asset 
price process S S

t t T
n n= ∈( ) .
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 For simplic-

ity, all agents trade continuously at rates 
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mean excess drift on the asset price and 
M M

t t T
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 is a martingale represent-

ing an exogenous noise source. The term 
λ

ν
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N
t
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 acccounts for the effect of net 

order flow on price; excess buy or sell pres-
sure pushes prices up or down respectively.

Agents’ strategies are adapted only to asset 
price S,  total order flow n n( ) ,N

j
N

t
j= =∑ 1  

and their own holdings Q Qj
t
j
t T

= ∈( ) .
[ , ]0  

Thus, A  and M  are invisible to agents and 
may contain latent factors in the market. 
In addition, other agents’ inventories are 
invisible to any one given agent. As part of 
the stochastic game’s solution, agents must 
filter the excess drift ˆ [ | ]A A

t t t
=    from 

the visible filtration.
Agents trade over the interval [ , ]0 T  

and aim to maximize their own objective 
functional

Figure 1. The limit order book (LOB) of Intel Corporation stock at 10:36 on March 26, 2018, as a buy market order (MO) for 21,000 arrives. Blue 
bars represent the available volume of sell orders at shown price, red bars indicate the available volume of buy orders at shown price, and yellow 
bars designate limit orders (LOs) matching incoming MOs. Figure courtesy of Sebastian Jaimungal.
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4 Ex Numeris: Confessions of 
a Common Mathematician 
(with apologies to Anne 
Fadiman)

 In this month’s career column, 
Kevin Gillette recalls his profes-
sional trajectory, which began 
with an initial fondness for 
biochemistry and led to degrees 
in mathematics, a growing inter-
est in operations research, and 
stints in multiple areas of the 
the industrial sector. Gillette is 
currently an analytics principal 
at Accenture Federal Services 
and insists that he is still a 
“common mathematician.”

5 A New Mathematical Field 
Answers Old Questions

 James Case reviews 
John Stillwell’s Reverse 
Mathematics: Proofs from the 
Inside Out, which details recent 
progress in the field and antici-
pates exciting future discoveries. 
While mathematicians tradi-
tionally deduce theorems from 
axioms, reverse mathematicians 
do the contrary: identify axioms 
that establish key theorems. 
Stillwell focuses on three recent-
ly-identified axiom systems.

6 The Vinous Shock: How to 
Open a Bottle with a Book

 In his latest column, Mark Levi 
examines the science behind 
opening a bottle of wine by 
smacking its bottom against a 
book. While the bottle accel-
erates towards the book, the 
wine moves backward and air 
gathers forward. This opens a 
vacuum bubble near the cork 
that compresses the air, which 
rebounds the wine to hit the 
cork hard enough to push it out.

8 Knowing What to Know in 
Stochastic Optimization

 The National Science 
Foundation’s Transdisciplinary 
Research in Principles of Data 
Science program brings together 
theoretical computer scientists, 
mathematicians, and statisti-
cians to develop mathematical 
foundations for “Harnessing 
the Data Revolution.” Katya 
Scheinberg describes novel con-
tinuous optimization algorithms, 
which lie at the core of most 
foundational data science topics.

7 Professional Opportunities 
and Announcements 
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  (2)

where n n n n n− − +=j j j N: { ,..., , ,..., }1 1 1  
denotes the actions of all agents except 
agent -j.  This objective represents a com-
bination of three quantities: the accumu-
lated cash from trading, a liquidation cost 
for holding inventory at time T,  and a run-
ning penalty that accounts for model risk. 
The relative importance of these penalties 
is controlled by Ψ, .f ≥ 0  All agents’ 
actions affect the objective through the 
asset price process St

n .
The goal is to obtain a Nash equilibrium, 

the collection of strategies such that

     (3) H H
j

j j
j

j j( , ) ( , ),,* ,* ,*n n n n− −≤  

for all j NÎ { ,..., }1  and n j
j

Î  ,  where


j  is the set of admissible strategies for 
agent -j.  No agent can improve by unilater-
ally deviating from the Nash equilibria.

The Mean Field Game 
Approximation

Obtaining the Nash equilibria for the 
finite player game is difficult. As an alter-
native, we take the limit N →∞  to 
obtain a mean field game (MFG) and apply 
a version of the optimal MFG strategy to 
the finite player game. While the MFG 
problem itself is still challenging to solve, 
we demonstrate that one can apply con-
vex analysis tools [4] rather than dynamic 
programming techniques or the stochastic 
Pontryagin maximum principle, as is typi-
cally done in MFG problems. For the MFG 

limit, [4] uses the following approach: (i) 
take the mean field trading rate n  as given; 
(ii) maximize each agent’s strictly concave 
objective functional by setting its Gâteaux 
derivative to zero; (iii) derive a system of 
forward-backward stochastic differential 
equations (FBSDEs), which induces the 
Gâteaux derivative to vanish:

     (4)
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(iv) solve the FBSDEs; and (v) average over 
all agents’ optimal strategy and equalize it 
to the initial mean field trading rate n . In 
other words, we obtain a fixed point on 
the space of controls that simultaneously 
optimizes each agent’s objective functional, 
resulting in a Nash equilibrium.

Carrying out this program, [4] proves 
that the expression

      n n
t t t t

a g g q= +−( ) ( ),
, ,

2 1
1 2   (5)

     
where g

t2,
 is a deterministic matrix-valued 

function, yields the optimal mean field 
strategy. In the above,

     
g A du
t t

T

t u u t1
1

,
[ ]ˆ | ,= ∫ − x x    (6)

where xt  is a stochastic, matrix-valued 
process. All subpopulations are interlinked 
and cannot be factorized.

The term g q
t t2,

n  in (5) pulls the mean 
field inventories towards zero and corre-
sponds to an optimal execution component 

of the strategy. The term 
g
t1,
 incorporates predic-

tions about the filtered 
future latent states and 
corresponds to the strate-
gy’s statistical arbitrage 
component. Estimating 
the model parameters 
and filtering requires 
setup of a machine 
learning problem to 
“learn” the behaviour of 

prices and latent states. Figure 2 depicts a 
graphical model of the discretisation of (1), 
and [5] demonstrates parameter estima-
tion via an expectation-maximisation and 
forward-backward algorithm.

For an individual agent -j  in subpopula-
tion -k,  we obtain the Nash equilibrium at

n n n n
t
j

t
k

k
t
k

t
j

t
k

a
h q q

j

= + −
1

2 2,
, ,( ),   (7)

where h
t
k
2

0
,
<  is a subpopulation-specific 

deterministic function. Thus, the individual 

trades at a rate that pulls his/her inven-
tory towards the subpopulation’s mean field 
inventory. We prove that such strategies 
form an -Nash equilibrium when applied 
to the finite player game; i.e., agents may 
improve by unilaterally deviating from the 
MFG strategy, but only by an amount   
with ® 0  as N →∞  [4].

A Simulated Example
Figure 3 shows how two subpopulations 

with differing goals and beliefs interact and 
react to the market. The midprice follows a 
pure jump process that mean-reverts, where 
a latent two-state Markov chain Q

t
 modu-

lates the mean-reversion level. All agents 
aim to fully liquidate their holdings by time 
T = 1, have different urgencies in doing 
so, and agree on possible mean-reversion 
levels. The two subpopulations, however, 
differ on the prior distribution of the latent 
Markov chain’s initial state and on their 
urgency in unwinding. The results illustrate 
the strategies’ complexities; one group liq-
uidates its position while the other performs 
statistical arbitrage, and both account for 
each other’s impact.

Many interesting questions remain. For 
example, how do agents account for uncer-
tainty in their selected models? And how 
can we correct the strategy to factor in 
finite population size? Future exploration 
pertaining to the ways in which traders 
resolve the bid-ask spread, nonlinear trad-
ing impact, and/or trade of nonlinear con-
tracts would also be valuable.
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Figure 2. Directed graphical representation of (observable) price 
changes DS

t
 and (unobservable) latent states Zt  for the continu-

ous time model in (1).  Figure adapted from [5].

Figure 3. Individual traders’ inventory (negative values indicate short selling). 3a. Inventory 
paths: the blue population is more urgent than the orange population. Broken lines repre-
sent subpopulation averages and dotted lines represent the corresponding mean fields. 3b. 
Price path: midprice process S

t
,  unimpacted midprice F

t
 (subtracting order flow), and latent 

Markov chain Q
t
.  3c. Posterior probability: estimated posterior probability of Θ

t
= 4 95. . 

Figure courtesy of Philippe Casgrain and Sebastian Jaimungal.
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instead on some important special cases. 
A seemingly simple yet surprisingly useful 
case is the model

 y D Ax w= +( ) ,q   (2)

where the matrix A  and vector y  are known 
but the diagonal matrix D( )q  and vector x  
are not. As before, w  is additive noise and 
thus unknown as well, though we may have 
statistical information about it. We can also 
interpret the goal of finding x  as solving a 
linear system where an unknown gain D

i
( )q  

rescales the i th row of the system matrix A.
One may assume that we have reached a 

level of simplicity with (2) that is too trivial 
to analyze mathematically and no longer 
useful in practice. However, as is often the 
case in mathematics, an outwardly simple 
model can be deceptive. On the one hand, 
a rigorous analysis of the aforementioned 
diagonal calibration model requires non-
trivial mathematical tools; on the other, 
this “simple” model arises in numerous 
important applications [9].

One way to tackle this situation is by 
solving a nonlinear least squares problem

      (3)
     
min ( ) .
,θ

θ
x
D Ax y− 2

This scenario is far more intricate than linear 
least squares, where a well-defined solution 
often exists. The objective function’s non-
convexity may result in many local minima. 
In fact, recovering x  is not necessarily an 
easy task even if q  is completely known, 
especially when the linear system is under-
determined. If D  depends linearly on q, 
then (3) becomes a bilinear problem, which 
should make its solution easier; alas, bilinear 
problems are non-deterministic polynomial-
time-hard in general. We will describe how 
recent advances in optimization can resolve 
these issues in many cases of interest.

Compressive sensing [2, 5] has become 
a game changer in modern signal process-
ing. Using convex optimization, we can 
exploit the signal’s sparsity and accelerate 
the sensing process tremendously. Unlike 
additive perturbations in the measurement 
matrix, sparse signal reconstruction from 
compressive measurements is sensitive to 
multiplicative perturbations. The linear 
dependence of D  on q  results in a bilin-
ear compressive sensing problem: how do 
we estimate the calibration parameter q 
and sparse x  from their bilinear measure-
ments? For example, after proper discreti-
zation in direction-of-arrival estimation, the 
location of nonzero entries of x  represents 
the direction of waves and D( )q  denotes 
the antennas’ unknown gains [6, 7].

We have developed a convenient method 
called SparseLift to tackle such bilinear 

compressive sensing problems [9]. Linear 
algebra reveals that the recovery of two 
vectors ( , )q x  is equivalent to estimating 
a sparse rank-1 matrix qx  in this bilinear 
inverse problem. Due to the bilinearity, 
the measurement y  is actually a linear 
function on the matrix space. We denote 
this linear map as   and estimate qx  by 
exploiting the sparsity of the “lifted” rank-1 
matrix qx  via 

1
--regularization:

     (4)min , ( ) ,Z Z y
1
s.t. A =

where Z
1
 is the 

1
--norm of the vector-

ized Z.  Ideally we have qx Z= ,  but in 
practice we compute the leading left and 
right singular vectors of Z  to extract q 
and x  from Z  (up to a scalar). Indeed, 
SparseLift recovers ( , )q x  successful-
ly if the number of constraints equals 
�Ω( ),θx�

0
 where θx�

0
 is the cardinal-

ity of nonzero entries in qx. Many varia-
tions and extensions of (4) naturally exist.

Besides direction-of-arrival estima-
tion with unknown antenna gains, we can 
express various other problems—either 
directly or after some proper transform—in 
the form of (2). The blind deconvolu-
tion problem is perhaps the most widely-
known example. How can we reconstruct 
two signals ( , )f g  from their convolution 
y f g= ∗ ? This highly ill-posed inverse 
problem pervades many areas of science 
and technology, such as image deblur-
ring, wireless communication [1], and 
spike detection in neuroscience. The blind 
deconvolution problem is equivalent to the 
self-calibration model (2) in the frequency 
domain. If we take the Fourier transform of 
f ,  then = ° ,y f gˆ ˆ ˆ=  where f̂  represents the 
Fourier transform of f  and “°” signifies 
entrywise multiplication. Now this exactly 
fits (2) by setting D f( ) ˆθ =  and A W= ,̂ 
where g Wx=  is the image/function, W  
is a dictionary to represent g  (e.g., wavelet 
basis), and x  denotes the coefficients (pos-
sibly sparse or approximately sparse).

We propose a simple gradient-descent-
based algorithm to this blind deconvolu-
tion problem [8]. The algorithm consists 
of two steps: construction of a suitable 
initial guess via the spectral method and 
application of the gradient descent method 
to the objective function. The proposed 
algorithm is robust in the presence of noise 
and comes with rigorous convergence guar-
antees under relatively mild assumptions.

Figure 2 depicts an example. Figure 2a 
portrays convolution of an image with an 
unknown motion blurring kernel, while 
2b shows the reconstructed image via the 
aforementioned method [8]. This approach 
outperforms convex alternatives in com-
putation time and sampling complexity. 
The framework also allows us to solve 
joint blind deconvolution and demixing 
problems that can arise in multiuser com-
munication scenarios of the IoT [10, 13].

While we have barely scratched the 
surface of self-calibration in this article, 
we hope we have communicated its versa-
tility as a playground for mathematicians 
— full of difficult theoretical problems, 
interesting numerical challenges, and cut-
ting-edge applications.
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Benjamin Friedlander is a professor of 
electrical engineering at the University of 
California, Santa Cruz, studying statistical 
signal processing and its applications to 
wireless communications and array process-
ing. Shuyang Ling is a Courant Instructor 
at the Courant Institute of Mathematical 
Sciences at New York University. His 
research interests focus on the mathematics 
of data science, including signal process-
ing, inverse problems, optimization, and 
machine learning. Thomas Strohmer is a 
professor of mathematics at the University 
of California, Davis. His research interests 
include applied harmonic analysis, math-
ematics of information, signal and image 
processing, and machine learning.

Figure 2. Blind deconvolution. 2a. Blurred image of a flying swan with unknown blurring kernel. 2b. Recovered image via regularized gradient 
descent method. Original unblurred image (not pictured) courtesy of Steve Byland.
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AMS-SIAM Norbert Wiener Prize in Applied Mathematics
SIAM and the American Mathematical 

Society (AMS) jointly award the Norbert 
Wiener Prize in Applied Mathematics for 
an outstanding contribution to applied 
mathematics in the highest and broad-
est sense. The recipient must be a mem-
ber of one of these two societies. The 
prize was established in 1967 in honor of 
Norbert Wiener and endowed by a fund 
from the Department of Mathematics at the 
Massachusetts Institute of Technology. The 
endowment was further supplemented by a 
generous donor. The 2019 Norbert Wiener 
Prize is awarded to Marsha Berger (New 
York University) and Arkadi Nemirovski 
(Georgia Institute of Technology).

Berger is being recognized for her funda-
mental contributions to adaptive mesh 

refinement (AMR) and Cartesian mesh 
techniques by automating the simulation of 
compressible flows in complex geometry.

AMR algorithms can improve the accu-
racy of a partial differential equation’s solu-
tion by locally and dynamically resolving 

a simulation’s complex features. Berger 
helped invent AMR. She introduced the 
block-structured approach to AMR in her 
Ph.D. thesis and later developed the Berger-
Oliger algorithm and the Berger-Colella 
algorithm with Joseph Oliger and Phillip 
Colella respectively. Berger provided the 
mathematical foundations, algorithms, and 
software that allowed the solution of many 
otherwise intractable simulation problems, 
including those related to blood flow, climate 
modeling, and galaxy simulation. She is part 
of the team that created Cart3D, a NASA 
code based on her AMR algorithms that is 
extensively used for aerodynamic simula-
tions and was instrumental in understanding 
the Space Shuttle Columbia disaster.

Berger received her Ph.D. in computer sci-
ence from Stanford University in 1982. She 
conducted postdoctoral research at New York 
University’s Courant Institute of Mathematical 
Sciences and is currently a Silver Professor 
of Computer Science and Mathematics in 
the institute’s Computer Science Department, 
where she has been since 1985.

Berger’s honors include membership in the 
National Academy of Sciences, the National 
Academy of Engineering, and the American 
Academy of Arts and Sciences. She is also 
a Fellow of SIAM. Berger was the 2004 
recipient of the Institute of Electrical and 
Electronics Engineers Computer Society’s 
Sidney Fernbach Award, and was part of the 
team that won NASA’s 2002 Software of the 
Year Award for its Cart3D software.

Upon learning of her receipt of the 
Norbert Wiener Prize, Berger expressed 
her delight and extended her gratitude to 
colleagues. “What a thrill to learn that I 
will be one of the recipients of the 2019 
Norbert Wiener Prize,” she said. “One 
of the main enjoyments of my research 
is developing tools that others can use 
to solve real problems in aerodynamics, 
tsunami modeling, etc. This has been pos-
sible because of the collaborators I have 
been fortunate to meet, starting with Phil 
Colella and Antony Jameson, and later 
Randy LeVeque and Michael Aftosmis, 
along with a number of postdocs.”

“I am particularly pleased that this kind 
of research is being recognized,” she contin-
ued. “The AMR and Cartesian grid projects 
have both required the creation of new tech-
niques in mathematics and computer sci-
ence. They were decade-long efforts during 
which my colleagues and I developed theory 
and algorithms while paying attention to 
important practical aspects of their use 
in realistic geometries. Complicated algo-
rithms have complicated implementations, 
and accuracy, robustness, and performance 
are all essential parts of the research.”

Nemirovski is being honored for his 
fundamental contributions to high-

dimensional optimization and discovery 
of key phenomena in the theory of signal 
estimation and recovery.

A powerful and original developer of 
the mathematics of high-dimensional opti-
mization, Nemirovski—along with David 
Yudin—invented the ellipsoid method 
that Leonid Khachiyan used to show (for 

See Norbert Wiener Prize on page 5
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By Amit Singer and David Holcman

Zeev Schuss, professor emeritus of 
applied mathematics at Tel Aviv 

University (TAU), passed away on July 29, 
2018. Zeev was born in Poland in 1937. He 
graduated from the Tel Aviv Academy of 
Music in 1963 with a degree in composi-
tion, conducting, and theory, and earned a 
degree in mathematics two years later. Zeev 
received his Ph.D. in mathematics from 
Northwestern University in 1970, working 
with Avner Friedman on classical analysis 
of partial differential equations (PDEs). 
He went on to become a professor at TAU 
and chaired the Department of Applied 
Mathematics from 1993 to 1995. 

During the course of his career, Zeev 
published over 200 papers in pure and 
applied math, chemistry, physics, engineer-
ing, and biology. He also wrote six books in 
applied mathematics, published by Springer 
and Wiley. He supervised dozens of M.Sc. 
and Ph.D. students in the aforementioned 
disciplines, many of whom hold positions 
at prestigious institutions around the world.

It took time for Zeev to define the mean-
ing of applied mathematics for himself. 
After attaining his Ph.D., he decided to 
move in a more applied direction. The 
starting point was a class that he took 
with Henry McKean about stochastic pro-
cesses and the asymptotics of differential 
equations that McKean had developed with 
Bernard Matkowsky. Zeev then discovered 

Sivaramakrishna Chandrasekhar’s 1943 
review of thermal activation escape from 
an attractor. He was able to obtain a formal 
asymptotic formula as a solution to the exit 
problem in n  dimensions. News of this work 
spread following a talk Zeev delivered at 
New York University’s Courant Institute 
of Mathematical Sciences in the 1970s. 
Although his result was not considered 
mathematically rigorous, Zeev recognized 
its newness and proceeded in this direction 
for the next 40 years. It was this type of 
mathematics that he wanted to develop and 
apply to the sciences, engineering, technol-
ogy, etc. Rather than discover formal proofs, 
he aimed to define and accurately execute 
new computations, as well as find new 
physical mechanisms through modeling and 
novel explanations from calculations.

Closed formulas, obtained by asymptotic 
approximation to solutions of PDEs, are 
among the most robust and efficient tools for 
uncovering physical laws. These formulas 
deal precisely with manipulation of infini-
ties and are thus very relevant in understand-
ing the studied systems’ refined properties. 
Zeev made several significant contributions 
by applying asymptotics to rare events, 
such as thermally activated escape from an 
attractor in physics and chemistry, and loss 
of lock in signal tracking.

With his collaborators, friends, and stu-
dents, Zeev developed new tools to analyze 
data about selectivity of ionic channels (the 
selection of ions in a channel pore that is only 

Obituary: Zeev Schuss

a few atomic diameters in size). Another 
of his innovations was the narrow escape 
theory (escape of a stochastic particle from a 
narrow window), which inspired many scien-
tific communities of applied mathematicians, 
physicists, biophysicists, and computational 
biologists, in addition to the fourth episode of 
the television series Fargo. Zeev continued 
to work through retirement, authoring five of 
his six books during this time.

Throughout his life, Zeev demonstrated 
that there are no standard academic paths 

for a career in applied mathematics. This is 
a lesson for all scholars: do what you like, 
because nobody knows where the next revo-
lution in applied mathematics lies.

Amit Singer is a professor of math-
ematics in the Program in Applied and 
Computational Mathematics at Princeton 
University. David Holcman is Director of 
Research at École Normale Supérieure in 
Paris, France and a fellow of Churchill 
College in Cambridge, U.K.

Zeev Schuss (1937-2018). He is pictured here with Bob Eisenberg’s granddaughter. Image 
courtesy of Bob Eisenberg.

Ex Numeris: Confessions of a Common 
Mathematician (with apologies to Anne Fadiman)
By Kevin Gillette

I am a common mathematician, thorough-
ly mathematical by training, tempera-

ment, and trade. I’ve trod weary footpaths 
through numerous industrial sectors, ply-
ing my skills in areas as diverse as bank-
ing, transportation, telecommunications, 
retail, and even venture capital. My appe-
tite for mathematical application is quite 
ecumenical; although I focus on optimiza-
tion and discrete mathematics, I embrace 
any opportunity to contribute to the world 
amenity through judicious employment 
of mathematical principles and practices. 
Yes, I am a common mathematician.

It was not always this way. My origi-
nal intent upon entering university was to 
become a biochemist. Like many scientists 
before and after me, I aimed (in no particu-
lar order) to discover a cure for cancer; find 
a solution to Type 1 diabetes; win a Nobel 
Prize in Chemistry; and not set fire to, blow 
up, or otherwise damage any laboratories or 
chemical facilities. As luck would have it, 
I achieved none of these goals. Indeed, my 
migration from chemistry to mathematics 
was precipitated by an unfortunate “inci-
dent” in the laboratory of my then-advisor, 
James Collman, when a combination of my 
maladroitness and ignorance inadvertently 

caused a reaction vessel to catch fire. The 
details, I believe, are unnecessary [ahem].

Suitably abashed, I abandoned my goal of 
becoming a chemist of any stripe. Instead, 
I accepted a lateral “promotion” within  
Stanford University’s School of Humanities 
and Sciences and switched my major to 
mathematics. In those days (the late 1970s 
and early 1980s), one could 
receive either a B.A. in (pure) 
mathematics or a B.S. in 
(applied) mathematical scienc-
es. Being of a pragmatic bent, I 
chose the latter, which sparked 
my interest in operations 
research. Excess credits from both advanced 
placement classes in high school and an 
aggressive freshman course load afforded 
me a chance to simultaneously pursue my 
bachelor’s and master’s degrees. I leapt at 
the opportunity to save time and money 
while scoring two degrees within four years 
at an expensive school like Stanford.

Upon graduating with both degrees, I 
faced the perennial question that many 
young SIAM members encounter: What 
comes next? I had always fancied being a 
college professor, and contemplated work-
ing towards a Ph.D. in math or a related 
discipline. But just how much PTA (pain/
torture/agony) would I endure along the 

way, between the whims and vicissitudes 
of advisors and faculty and the subsequent 
POP (publish or perish) mentality that per-
vades academia? Achieving tenure requires 
suffering for one’s art, and I’ve never 
savored the idea of being a starving artist, 
irrespective of the art form (yes, mathemat-
ics is indeed an art form).

My practical and pro-
ductive upbringing steered 
me towards an industrial 
career. I had happily com-
pleted an undergradu-
ate internship at Bank of 
America and evidently left 

a good impression on the team; they invited 
me to join them full-time upon gradua-
tion, which I did. Mathematical finance is 
now all the rage, and ample job opportu-
nities—and commensurate salaries—exist 
for mathematicians who enjoy working 
with Ito calculus and stochastic differential 
equations. In the early 1980s, when such 
techniques were still relatively inchoate, 
the practicing mathematician had two basic 
paths: actuarial work or general consult-
ing within the company. My team’s title, 
“Management Sciences,” aptly described 
its role. Our projects on behalf of the bank 
included issues like float management (cash 
that the bank can use for investments before 
it posts against account ledgers), portfolio 
diversification, and risk scoring. I spent 18 
months working on these types of problems. 
My marriage and a desire for different work 
caused me and my new bride to relocate.

I moved to Dallas, Texas, where I con-
tinue to reside. My second industrial set-
ting was transportation — specifically 
American Airlines, headquartered in the 
Dallas/Fort Worth area. I was invited to 
join their Operations Research department. 
Interesting work abounded there, includ-
ing network optimization problems (crew 
assignments to flights, repair of crew and 
passenger assignments during weather 
complications, etc.); inventory-theoretic 
problems (rotable parts inventory stock-
piles); queueing-theoretic problems (gate 
assignments in real time); and simulations 

(which replicated how complicated airports 
like Dallas/Fort Worth or Chicago O’Hare 
operated under different gating protocols, 
call center resource distribution, and so 
forth). I also applied my tradecraft as a 
systems support analyst in the Operations 
Engineering group. This team comprised 
the lion’s share of American Airlines’ aero-
nautical engineers and performed mission 
analyses for both existing and prospective 
aircraft fleet types, flight planning system 
studies and data grooming, and weight-and-
balance examination for individual flights. 
I became an in-house expert on map projec-
tion equations and techniques for calculat-
ing route distances and headings — fairly 
quotidian calculations, but vitally important 
to get right the first time.

Since then, I have served in a wide vari-
ety of positions and contexts. I worked for 
nearly five years as a de facto senior engi-
neer with MCI, where statistical analysis 
was exceedingly important. Following my 
tenure, I engaged in numerous contract pro-
gramming and analytical assignments. One 
of them was a small (two-person) venture 
capital experiment where I vetted hard-sci-
ence investment opportunities (chemistry, 
physics, geophysics, life sciences, etc.) for 
a select list of investors. This job required 
that I read through and scour nearly 50 
peer-reviewed journals each month to get a 
feel for current research.

I also spent four years working at 
Blockbuster LLC prior to its ultimate 
demise. The need for statistical knowl-
edge once again became paramount, as our 
business was primarily devoted to product 
placement and assortment. My team met 
the challenge of demand forecasting with 
a variety of techniques, most of them 
standard (principal component analysis, 
clustering, autoregressive integrated mov-
ing average, and so on).

All of this experience served as pre-
lude to my current position as a princi-
pal in the analytics practice at Accenture 
Federal Services, a domestic subsidiary 
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Deep thoughts, deep learning — it is all of a piece for Kevin Gillette, a common mathematician 
at Accenture Federal Services. Photo credit: Joon Yoon. See Ex Numeris on page 7
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the first time) that one can solve linear 
programs in polynomial time. With Yurii 
Nesterov, he extended interior point meth-
ods in the style of Narendra Karmarkar 
to general nonlinear convex optimization. 
This foundational work established that 33 
semidefinite programs, a rich class of con-
vex problems, are solvable in polynomial 
time; nowadays researchers routinely use 
semidefinite programs to model concrete 
applied problems or study deep problems in 
theoretical computational complexity.

A third breakthrough, with Aharon Ben-
Tal, was the invention of robust optimiza-
tion methods to address problems whose 
solutions may be very sensitive to problem 
data. Nemirovski also made seminal con-
tributions to mathematical statistics, estab-
lishing the optimal rates at which one can 
recover certain classes of nonparametric 
signals from noisy data and investigating 
limits of performance for the estimation of 
nonlinear functionals from noisy measure-
ments. His contributions have become bed-
rock standards with tremendous theoretical 
and practical impact on the field of continu-
ous optimization and beyond.

Nemirovski earned his Ph.D. from 
Moscow State University in 1974. He has 
held research associate positions at the 
Moscow Research Institute for Automatic 
Equipment and the Central Economic 
Mathematical Institute of USSR/Russian 
Academy of Sciences, as well as a pro-
fessorship at the Faculty of Industrial 
Engineering and Management, Technion, 
Israel. He has been a professor at the 
Georgia Institute of Technology’s H. 
Milton Stewart School of Industrial and 
Systems Engineering since 2005.

A New Mathematical Field Answers Old Questions
Reverse Mathematics: Proofs from the 

Inside Out. By John Stillwell. Princeton 
University Press, Princeton, NJ, January 
2018. 200 pages, $24.95.

I t distresses John Stillwell that foundation-
al questions, long in the mainstream of 

mathematical research, amount to little more 
than a backwater today. His latest book, 
Reverse Mathematics, is intended to acquaint 
colleagues with recent progress in the field 
and convince them that exciting discoveries 
remain to be made. He notes in passing that 
the same foundations underlie not only the 
several branches of mathematics, but physics 
and computer science as well.

While mathematicians ordinarily deduce 
theorems from axioms, reverse mathema-
ticians seek to identify the axioms that 
establish key theorems like the Bolzano-
Weierstrass, Heine-Borel, intermediate 
value, extreme value, uniform continuity, 
and Riemann integrability theorems. This 
approach enables Stillwell to attach a pre-
cise meaning to the notion of mathematical 
“depth.” He argues that one proposition is 
deeper than another if its proof requires 
stronger axioms. Time will tell if his sug-
gestion “catches on.”

The early chapters of Reverse 
Mathematics summarize 19th-century 
efforts to place mathematics on a firm 
foundation, beginning with David Hilbert’s 
elimination of the gaps in Euclid and 
including the axiomatic treatment of alge-
bra and arithmetic by Richard Dedekind, 
Giuseppe Peano, and others. Gottlob Frege 
believed for a time that he had answered 
all remaining questions on the basis of 
Georg Cantor’s set theory. But Russell’s 
paradox derailed that approach (before 
Frege’s book even published) by showing 
that the seemingly simple concept of a set 
is in fact elusive.

Students of reverse mathematics focus on 
three recently-identified axiom systems—
designated RCA WKL ACA

0 0 0
Ì Ì —that 

differ only in the sets they pre-
sume to classify. The symbol 
Ì indicates that each system 
includes all sets recognized by 
the preceding system, in addi-
tion to others. An effort is underway to devise 
a “constructible mathematics” (particularly 
an analysis) that recognizes only computable 
numbers and functions 
that are computable 
in the sense that f x( ) 
is computable for any 
computable x.

Alan Turing was 
apparently the first 
(in 1936) to define 
the term “computable 
number” and demon-
strate that some num-
bers are not comput-
able. By the time he 
did so, Alonzo Church 
had already introduced 
a somewhat different 
notion of computabili-
ty—without employing 
the term—that turned 
out to be equivalent to 
Turing’s explanation. 
Furthermore, Emil 
Post had proposed yet 
another definition sev-
eral years earlier (in 
1924) but refrained from publishing it for 
fear of having failed to capture the full 
meaning of the computability concept. It 
was not until the 1940s that the trio reached 
agreement and fairly distinguished that 
which is computable from that which is not.
RCA

0
,  WKL

0
,  and ACA0  all consist 

of the Zermelo-Fraenkel (ZF) axioms of set 

theory, augmented by a single set existence 
axiom. Thus, writes Stillwell, the ZF axi-
oms form a base foundational system that 

may be augmented in multiple 
ways. The situation is similar 
to one prevalent in geometry, 
where the axioms of absolute 
geometry (those of Euclidean 

geometry minus the parallel axiom) form a 
base system. One can enhance this system 
with different approaches to yield the various 

Euclidean and non-
Euclidean geometries. 
The base system suf-
fices to demonstrate 
the logical equiva-
lence of various prop-
ositions of Euclidean 
geometry—such as 
the Pythagorean theo-
rem, the existence of 
similar triangles and 
triangles of arbitrari-
ly large area, and so 
on—without proof. 
It is likewise simi-
lar to the situation in 
set theory, where the 
ZF system can prove 
Zorn’s lemma, the 
Hausdorff maximal 
principle, the well-
ordering principle, 
and the axiom of 
choice equivalent to 
one another in the 

sense that either all are true or all are false, 
without being able to decide which.

Reverse mathematics, which is largely 
the work of Stephen Simpson and Harvey 
Friedman, is often concerned with finding 
the “right axioms” for proving a given theo-
rem, i.e., the weakest system from which 
one can deduce the theorem in question. 
Stillwell quotes Friedman to the effect that, 
“when a theorem is proved from the right 
axioms, the axioms can [as in the foregoing 
examples] be proved from the theorem.”

The set existence axiom for RCA
0

 is 
nothing but the set of Turing-computable 
numbers, together with subsets thereof. 
But that is not rich enough to prove 
Bolzano-Weierstrass, Heine-Borel, and 
other fundamental theorems of analysis, 
which require more sets for proof.

Reverse mathematics makes essential 
use of a lemma proven in 1927 by Dénes 
König, the strong form of which asserts 
that a finitely branching rooted tree with 
infinitely many vertices contains an infinite 
path. The proof is almost immediate in that 
if, for some natural number𝑛n,  all of the 
sub-trees separated from the root by a path 
of exactly n  edges contained only finitely 
many vertices, then the tree itself would 
contain only finitely many vertices. The 
weak form of König’s lemma is merely 
restriction of the strong form to binary 
trees. The set existence axiom for WKL0  
expands the notion of “computable num-
ber” to include any real number contained 
in a convergent sequence of nested inter-
vals with Turing-computable end points.

The focus on nested intervals is impor-
tant because bounded sets of WKL0-com-
putable numbers need not have WKL0

-computable upper bounds. Indeed, Stillwell 
exhibits a bounded and increasing sequence 
of such numbers with no WKL0-comput-
able upper bound. A useful consequence 
of the preceding definition is the ability—
given WKL0-computable a, b, and f , such 
that f a f b( ) ( )<0—to solve the equation 
f x( )= 0 by the bisection method for a 
WKL

0-computable x. Needless to say, such 
a computation charts an infinite path through 
the complete (unpruned) binary tree.

One can deduce most of the basic theo-
rems of analysis from the WKL0 axi-
oms, with the possibly surprising excep-
tion (given its similarity to Heine-Borel) 
of Bolzano-Weierstrass. That theorem 
requires the strong form of König’s lemma, 
which follows from the set existence axiom 
for ACA

0
,  namely

Nemirovski is a member of the U.S. 
National Academy of Engineering and the 
American Academy of Arts and Sciences. 
He is a recipient of the Fulkerson Prize of 
the Mathematical Optimization Society 
(MOS) and the AMS, the George B. 
Dantzig Prize of the MOS and SIAM, and 
the John von Neumann Theory Prize of the 
Institute for Operations Research and the 
Management Sciences.

“I am deeply honoured and grateful to 
receive the 2019 Norbert Wiener Prize — a 
distinction I never dreamt of,” Nemirovski 
said. “I have been fortunate to be taught by 
brilliant mathematicians at the Mechanical 
and Mathematical Faculty of Moscow 
University, where I was mentored by 
Georgi Shilov. I also had the honour and 
privilege of collaborating with outstanding 
colleagues like Yurii Nesterov, Aharon 
Ben-Tal, and Anatoli Louditski.”

“I always thought that the key word in 
‘applied mathematics’ was ‘mathemat-
ics,’” he added. “Even when all we 
need at the end of the day is a number, I 
believe that what matters most are rigor-
ous results on how fast this number can 
be found and how accurate it is, which 
poses challenging mathematical prob-
lems. I am happy to see how my research 
area—convex optimization—thrives due 
to the efforts of new generations of 
researchers, and how rapidly it extends 
the scope of its applications.”

For more details about the recipi-
ents of the 2019 Norbert Wiener Prize in 
Applied Mathematics, please view the Joint 
Mathematics Meetings 2019 prize booklet.1

1 http://jointmathematicsmeetings.org/
meetings/national/jmm2019/prizebook_2019_
web_final.pdf

Reverse Mathematics: Proofs from the 
Inside Out. By John Stillwell. Courtesy of 
Princeton University Press.

BOOK REVIEW
By James Case

Norbert Wiener Prize
Continued from page 3

See New Mathematical Field on page 6
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The Vinous Shock: How to 
Open a Bottle with a Book
One evening during my undergraduate 

days, my fellow math majors and I 
gathered for a party. We brought along 
some wine, but quickly realized that there 
was no corkscrew in the apartment. Of 
course, we could have just pushed the 
cork in, but a more experienced friend 
showed us a better way. Pulling 
a volume of Lenin’s collected 
works—for this was back in 
the USSR—from a bookshelf, 
he placed the tome against the 
wall, and with a gliding hori-
zontal motion smacked the bot-
tom of the bottle into the book (see Figure 
1). Amazingly, the cork slowly inched out 
with each repeated impact, to the point 
where we could pull it out by hand.

In an ironic twist, the very economic 
policies advocated in the book caused the 
shortage of corkscrews and thus the opus’s 
desecration. This was the only time, I am 
sure, that the book had a positive impact 
— pun intended.

Turning from history to science, it is 
natural to wonder what pushed the cork 
out. I originally guessed that the cumu-
lative jet was responsible. Such a jet is 

created if one releases a test tube with 
water, held vertically, a few centimeters 
above a tabletop; as the tube strikes the 
table, a jet of water shoots up and hits 
the ceiling. Shaped charges utilize the 
same phenomenon to puncture armor. The 
velocity of such jets can reach speeds of 
over 10km/sec.  I initially assumed that 
a similarly-generated jet hit the cork and 
pushed it out, but later realized that this 
explanation misses the mark. A much 
more likely mechanism, shown in Figure 
1, consists of three stages:

1. The bottle accelerates towards the 
book while the wine is driven back; the air 
thus gathers in the forward position.

2. Upon impact, the wine keeps moving 
due to inertia, opening a vacuum bubble near 
the cork and compressing the air on the right.

3. The compressed air rebounds the 
wine back into the cork. The 
vacuum bubble collapses 
but the incompressible wine 
cannot stop instantaneously, 
thus hitting the cork like a 
steel hammer.

The cork is therefore ham-
mered from the inside out! In other words, 
it acts as a shock absorber, absorbing the 
shock by inching out a bit. A similar effect 
of cavitation can damage boat propellers; 
vacuum bubbles created by rapidly-moving 
propellers collapse and generate hydraulic 
shocks, and the propeller’s surface may act 
as a shock absorber, absorbing the shocks 
by pitting its surface.

We can estimate the distance by which 
the cork inches out with minimal informa-
tion. In the final analysis, the kinetic energy 
imparted to the wine by hand is spent drag-
ging the cork outwards by distance x  to be 

determined, plus the energy of 
sloshing waves, etc.:

    mv Fx E
2

2
= +

other
.

Here, v  is the bottle’s speed prior 
to impact, m  is the wine’s mass, 
and F  is the frictional force 
needed to drag the cork. Ignoring 
the last term, we obtain

         
x
mv
F

=
2

2
;

this is an upper bound on the 
distance that the cork travels, 
since some energy is wasted as 
E

other
.  Taking the wine mass as 

m = 0 5. kg,  the impact speed 
as v= ⋅2 m/sec,  and the force 
required to move the cork as 
F n=100 ,  (about 20 pounds), 
we ultimately get

            
x =1cm.

The net result of the three-stage 
process is equivalent to hitting the cork with 
a hammer of mass m  with speed v  from 
the inside, assuming that E

other
 is neglected.

Were it not for the cork’s ability to 
absorb the vinous shock, the bottle’s neck 
would likely shatter. I did not get around to 
confirming this with rigidly-sealed bottles, 
such as those with beer caps, nor would I 
recommend doing so to anyone not wearing 
eye and hand protection.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

Figure 1. The cork gets hammered by the wine. Figure 
courtesy of Mark Levi.

MATHEMATICAL 
CURIOSITIES
By Mark Levi

            ∃ ∈ ⇔X n X n( ( )),j  

j  being any formula from a specified class 
of formulae constructed from the following:
   
       variables x y z X Y Z: , , , ..., , , ,...

                constants a b c: , , , ...
         
        function symbols f g h: , , , ...
       
predicate symbols P Q R: , , , ... 

     logic symbols : , ,~, , , , ,∨ ∧ ⇒ ⇔ ∀ ∃
 
together with commas and parentheses, 
and subject to certain restrictions on the 

use of quantifiers "  and $.  Several such 
proofs are carried out in tutorial detail in 
the latter chapters of Reverse Mathematics. 
According to Stillwell, logicians currently 
recognize the “big five” axiom systems, of 
which RCA WKL ACA

0 0 0
Ì Ì  are merely 

the simplest three. He primarily confines 
his exposition to these three because they 
appear to cover most of what concerns 
working mathematicians.

All in all, Stillwell has written a very 
readable book on a little-known subject of 
at least peripheral interest to every math-
ematician. It would be interesting to know 
what further developments he foresees.

James Case writes from Baltimore, 
Maryland.

New Mathematical Field
Continued from page 5
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A Solution to the 3x + 1 Problem
I believe I have solved this very difficult prob-

lem, which asks for a proof that the 3 1x +  func-
tion always returns 1 as value. In more than two 
years, I have received not one claim of an error 
from visitors to the online paper. It is reasonable 
to assume that several hundred mathematicians 
have viewed the paper, since that is the increase 
in the number of visits following classified ads 
(like this one) in mathematical publications.

But because of the difficulty of the Problem and 
the fact that I am not an academic mathematician 
(my degree is in computer science, and for most of 
my career I have been a researcher in the computer 
industry), no journal has been willing to consider 
the paper. So it appears that my only option is to 
continue to call attention to it via ads like this one.

The paper is titled “A Solution to the 3 1x +  
Problem” and is available on occampress.com. 
Another paper on occampress.com, titled “The 
Remarkably Simple Structure of the 3 1x +  
Function,” is devoted exclusively to setting forth 
the very simple structure that I discovered under-
lying the function. My solution to the Problem is 
based on this structure.

— Peter Schorer, peteschorer@gmail.com 

Call for Nominations for                 
the 2019 Ostrowski Prize

The aim of the Ostrowski Foundation is to 
promote the mathematical sciences. Every second 
year it provides a prize for recent outstanding 
achievements in pure mathematics and the foun-
dations of numerical mathematics. The value of 
the prize for 2019 is 100,000 Swiss francs.

The prize has been awarded every two years 
since 1989. The most recent winners are Oded 
Schramm in 2007; Sorin Popa in 2009; Ib 
Madsen, David Preiss and Kannan Soundararajan 
in 2011; Yitang Zhang in 2013; Peter Scholze in 
2015; and Akshay Venkatesh in 2017.

See https://www.ostrowski.ch/index_e.php 
for the complete list and further details.

The jury invites nominations for candidates for 
the 2019 Ostrowski Prize. Nominations should 
include a CV of the candidate, a letter of nomina-
tion, and two to three letters of reference.

The chair of the jury for 2019 is Marcus 
Grote of the University of Basel, Switzerland. 
Nominations should be sent to marcus.grote@
unibas.ch by May 31, 2019.

of Accenture LLP. Although I am techni-
cally a senior data scientist, my work for 
the past eight years has covered everything 
from predictive analytics (forecasting and 
predictive modeling) and large simulations 
to exploratory data analysis on very large 
(1+ terabyte) datasets. This rather serpen-
tine career path has yielded the following 
insights, which I will share primarily for the 
benefit of those who are just beginning their 
trek beyond the academic world:

1. Listen more than you speak. You 
already know that you are intelligent and 
learned; what you still need to learn is 
everything else. I say this with tongue only 
somewhat firmly in cheek.

2. As with any challenge, the greatest 
difficulty is knowing how, when, where, 
and to whom to ask the right questions. 
In both research and industry, it is much 
easier to address a well-posed rather than 
an ill-posed question. Moreover, what-
ever solution you devise will be that much 
easier to explain and defend since the cor-
rect question essentially becomes its own 
evaluative rubric.

3. Always work to increase and extend 
your command of English (or whatever 
your business language may be). Few things 
can derail an otherwise splendid work prod-

uct, analysis, or result faster and more 
thoroughly than an inability to express its 
meaning to someone who matters.

4. Teamwork is essential, especially in 
the industrial sector. I can recall very few 
colleagues over my 36+ years in industry 
who have “gone it alone” and succeeded. 
Moreover, the work becomes much more 
rewarding with an excellent team (I speak 
from experience). It is great to share suc-
cesses and commiserate failures with others.

5. Be generous but humble with your 
own knowledge and experience. I have had 
countless mentors over the years and am 
extremely grateful to all of them! I have 
also had the signal honor of mentoring a 
few people along the way. It’s quite a rush!

All of this, combined with the vari-
ous quisquilia of industrial mathematics at 
large, prove my initial proposition: I am a 
common mathematician.

How about you? Are you doing interest-
ing work, or do you have a unique career 
trajectory? Write to us at sinews@siam.
org! We may publish your account in an 
upcoming issue.

Kevin Gillette is an analytics principal 
for Accenture Federal Services. He can 
be reached at kevin.k.gillette@accen-
turefederal.com.

Ex Numeris
Continued from page 4

Weinan E of Princeton University is the 
2019 recipient of the Peter Henrici 

Prize. He is being recognized for break-
through contributions in various fields of 
applied mathematics and 
scientific computing, par-
ticularly nonlinear stochas-
tic (partial) differential 
equations (PDEs), com-
putational fluid dynamics, 
computational chemistry, 
and machine learning. E’s 
scientific work has led to 
the resolution of many 
long-standing scientific 
problems. His signature 
achievements include 
novel mathematical and 
computational results in 
stochastic differential 
equations; design of effi-
cient algorithms to com-
pute multiscale and multiphysics problems, 
particularly those arising in fluid dynamics 
and chemistry; and his recent pioneering 
work on the application of deep learning 
techniques to scientific computing.

Weinan E to Receive the 2019 Peter Henrici Prize
Peter Henrici—whom the prize honors—

was a Swiss numerical analyst and teacher at 
the Eidgenössische Technische Hochschule 
Zürich (ETH Zurich) for 25 years. The 

award is given by SIAM 
and ETH Zürich for con-
tributions to applied and 
numerical analysis and/
or exposition appropriate 
for applied mathematics 
and scientific computing.

E is currently a pro-
fessor in the Department 
of Mathematics and the 
Program in Applied 
and Computational 
Mathematics at 
Princeton. He received 
his Ph.D. from the 
University of California, 
Los Angeles in 1989, 
after which he held vis-

iting positions at New York University 
(NYU) and the Institute for Advanced 
Study. He was a member of the faculty of 
NYU’s Courant Institute of Mathematical 
Sciences from 1994 to 1999.

E has worked in a wide range of areas, 
including homogenization theory, compu-
tational fluid dynamics, PDEs, stochastic 
PDEs, weak Kolmogorov-Arnold-Moser 
theory, soft condensed matter physics, com-
putational chemistry, and machine learning. 
The main themes of his work have been 
applied analysis and multiscale modeling.

E was awarded the Collatz Prize of the 
International Council for Industrial and 
Applied Mathematics in 2003, and SIAM’s 
Ralph E. Kleinman Prize and Theodore von 
Kármán Prize in 2009 and 2014 respective-
ly. He became a fellow of the Institute of 
Physics in 2005, an inaugural SIAM Fellow 
in 2009, and a fellow of the American 
Mathematical Society in 2012. He was 
also elected as a member of the Chinese 
Academy of Sciences in 2011. 

E will present his prize lecture at the 
9th International Congress on Industrial 
and Applied Mathematics (ICIAM 2019), 
to be held in Valencia, Spain, from July 
15th-19th, 2019.

Peter Henrici Prize Lecture: Machine 
Learning and Multiscale Modeling 
Monday, July 15, 2019, 7:15 PM

Modern machine learning has had 
remarkable success in a variety of artifi-

cial intelligence applications and is poised 
to fundamentally change the way we 
perform physical modeling. In his talk, 
Weinan E will offer an overview of some 
of this exciting area’s important theoreti-
cal and practical issues.

The first part of E’s lecture will focus 
on the following question: How can mod-
ern machine learning tools help build 
reliable and practical physical models? 
This section will address two topics: 
development of machine learning models 
that satisfy physical constraints, and the 
integration of machine learning and mul-
tiscale modeling.

The second portion of the talk will cover 
the mathematical foundation of modern 
machine learning. Serious challenges arise 
because the underlying dimensionality is 
high and neural network models are non-
convex and highly over-parametrized. E 
will review the mathematical theory that 
has emerged from exploration of these 
issues. He will specifically discuss the 
representation of high-dimensional func-
tions, optimal a priori estimates of the 
generalization error for neural networks, 
and gradient decent dynamics.

We hope to see you in Valencia!

Weinan E of Princeton University.

Application of machine learning to multiscale modeling. Deep Potential–Smooth Edition 
(DeepPot-SE) is an end-to-end machine learning-based potential energy surface (PES) model 
capable of efficiently representing the PES of a range of systems with the accuracy of ab initio 
quantum mechanics models. DeepPot-SE is extensive and continuously differentiable, scales 
linearly with system size, and preserves all of the system’s natural symmetries. It also char-
acterizes finite and extended systems, such as organic molecules, metals, semiconductors, 
and insulators with high fidelity — as seen here. Bulk systems, which contain many different 
phases or atomic components, present more challenges. The figure depicts two types of sys-
tems for the dataset and results obtained from both DeepPot-SE and deep potential molecular 
dynamics methods. Image courtesy of Weinan E.

We are excited to announce the launch of our latest journal, the SIAM Journal on 
Mathematics of Data Science (SIMODS), which began publishing its first batch of 
articles on February 12th! The journal advances mathematical, statistical, and compu-
tational methods in the context of data and information sciences. SIAM invites papers 
that present significant advances in this context, including applications to science, 
engineering, business, and medicine.

Read an introduction to SIMODS by editor-in-chief Tammy Kolda,1 and check out 
the 10 excellent papers2 published in the journal’s first issue. A Q&A with Madeleine 
Udell, one of the first SIMODS authors, is also available on page 8 of this issue. 

All articles are freely accessible during the initial promotion through 2019. Learn 
more3 and sign up for SIMODS email alerts.4 

1 https://epubs.siam.org/doi/10.1137/19N974701
2 https://epubs.siam.org/toc/sjmdaq/1/1
3 https://www.siam.org/Publications/Journals/SIAM-Journal-on-Mathematics-of-
Data-Science-SIMODS
4 https://journals.siam.org/eFpzCO
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By Katya Scheinberg

The National Science Foundation’s 
(NSF) TRIPODS—Transdisciplinary 

Research in Principles of Data Science—
program is part of an effort towards 
“Harnessing the Data Revolution,” one of 
the NSF’s “10 Big Ideas” of the decade. 
The program aims to bring together the-
oretical computer scientists, mathemati-
cians, and statisticians to develop math-
ematical foundations for this aptly-named 
revolution. Several of the 12 TRIPODS-
supported teams focus their research on 
novel continuous optimization algorithms, 
which lie at the core of most foundational 
data science topics. In its simplest and 
most abstract form, we can state the opti-
mization problem as

                    min ( ),
x X
f x

Î

where f  is assumed to be continuous but 
may or may not be smooth and/or convex.

Optimization is by no means a new field. 
It underwent significant development—both 
in theory and practice—during the 1980s and 
1990s, and by the end of the 20th century it 
was seemingly well understood. However, 
the “Big Data Revolution” presents new opti-
mization challenges for two main reasons: 
the massive amounts of data that must be 
utilized and the inherent inexactness of this 
data. Most traditional methods are unable to 
handle these new applications and must be 
redesigned. In particular, researchers have 
developed traditional methods under the 
assumption that we can compute quantities 
f x( ), Ñf x( ),  and possibly Ñ2f x( )  exactly 
or sufficiently accurately. Consequently, we 
can compute steps of optimization algo-
rithms, such as the gradient descent step 
x x f xk k

k
k+ = − ∇1 a ( ) or the Newton step 

x x f x f xk k
k

k k+ −= − ∇ ∇1 2 1a [ ( )] ( ),  either 
exactly or with sufficient (deterministic) 
accuracy. When handling large and inac-
curate data, the exact function f x( )  may 
be unknown or simply too expensive to 

compute via deterministic methods. Thus, 
the new optimization paradigm focuses on 
methods where at least some of this infor-
mation is computed inexactly and randomly. 
For instance, a stochastic estimate gk  may 
replace the gradient Ñf x k( ) in a gradi-
ent descent method. Likewise, employment 
of randomized linear algebra techniques 
can compute an approximate estimate of 
Ñ2f x k( )  or [ ( )]∇ −2 1f x k  for the corre-
sponding Newton step.

Foundational research in stochastic 
optimization is meant to define general 
conditions on the inexact random informa-
tion that leads to convergent algorithms, 
thus enhancing our understanding of when 
and how one can apply these algorithms. 
For example, consider stochastic gradient 
descent (SGD)—the most popular opti-
mization algorithm for machine learning 
models—which takes steps of the form 
x x gk k

k
k+ = −1 a , where gk  is an unbiased 

random estimate of Ñf x k( ).  If gk  is read-
ily available, SGD can be very efficient 
and computationally inexpensive, which is 
the case with many popular machine learn-
ing models like logistic regression and 
neural networks. On the other hand, some 
very natural functions in machine learn-
ing—such as the “zero-one loss,” which 
measures a predictor’s error rate—do not 
allow direct application of SGD because 
they lack useful unbiased estimates of 
Ñf x k( ). 1 While optimizing the zero-one 
loss may be a learning algorithm’s true 
goal, a surrogate loss function for which 
useful gradient estimates exist is often 
optimized instead. Yet if we change the 
condition on the gradient estimates, we 
can develop convergent optimization algo-
rithms for the zero-one loss and other 
similar loss functions. For example, we 
may consider the condition

        E[ ] ( )g f xk k
k

−∇ ≤Θ

1  Since sample gradients of this function 
are zero almost everywhere.

Knowing What to Know in Stochastic Optimization
with a suitable choice of Q

k
,  which 

relaxes the requirement on the unbiased-
ness of gk and allows its computation 
by some gradient approximation scheme 
(e.g., finite differences).

SGD has several drawbacks: it might not 
be robust because of the effect of the vari-
ance in gk ,  it is heavily dependent on the 
choice of the step-size sequence ak

,  and it 
does not account for the curvature of f x( ). 
However, imposing stronger conditions on 
gk  can remedy these issues. In particular, 
we can assume that gk  is a sufficiently 
accurate estimate of Ñf x k( )  with some 
probability, thus controlling gk ¢’s variance. 
More generally, we can consider the fol-
lowing set of conditions on the estimates 
of the function values f

k
,  the gradient gk , 

and the Hessian Hk:

  
           

| ( )|f f x
k

k
k

− ≤Θ0

     (1)
        

g f xk k
k

−∇ ≤( ) Θ1

 
     
H f xk k

k
−∇ ≤2 2( ) ,Θ

which should hold with some adequately 
high probability p  for a suitable choice of 
Θ
k
i i, , , .= 0 1 2
As a result—and given appropriate 

choices of p  and sequences Q
k
i ,—we are 

able to construct stochastic algorithms 
with similar behavior to classical deter-
ministic algorithms, such as line search and 
trust-region methods. Such methods can 
perform line search, utilize second-order 
information, and display favorable conver-
gence properties without the prohibitive 
expense of computing deterministic infor-
mation about f x( ), as occurs with SGD. 
While SGD has a known convergence rate, 
defined as the expected accuracy achieved 
after a certain number of steps, the meth-
ods based on (1) have both better expected 
convergence rates and expected complex-
ity bounds, defined as the bounds on the 
number of iterations until desired accuracy 
is reached. Moreover, these bounds hold 

with high probability [1-4]. One interesting 
and important observation from the con-
vergence analysis that uses (1) is that the 
quantities Q

k
i  are closely connected with 

the accuracy achieved by the algorithm 
at iteration k, which indicates a tendency 
to adaptively decrease as the algorithm 
converges.

 Analysis also shows that Θk

′0’s rate of 
decrease is faster than that of Q

k
1,  which 

is in turn faster than Q
k
2. Thus, getting 

accurate function value estimates is most 
important; gradient estimates can be some-
what less accurate and Hessian estimates 
are allowed the highest amount of error. 
These realizations will likely lead to new 
algorithms that can utilize novel random-
ization techniques. We should expect to 
see interesting developments in the area of 
stochastic optimization in the near future.
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A paper titled “Why Are Big Data 
Matrices Approximately Low 

Rank?,”1 by Madeleine Udell and Alex 
Townsend (both of Cornell University), 
appears in the first edition of the SIAM 
Journal on Mathematics of Data Science 
(SIMODS).2 Rachel Ward (University of 
Texas at Austin), the review editor for this 
paper, was struck by the work’s original-
ity and potential for large impact in the 
field of data science. “Madeleine and 
Alex were motivated by the observation 
that low-rank matrices in applications 
are everywhere,” she notes. “However, 
instead of going down the ‘usual’ route 
of improving or generalizing one of the 
many existing methods for low-rank 
matrix analysis, they took a different path 
and asked the following question: Why 
are all of these matrices low rank? What 
commonalities could the processes gener-
ating these datasets share?”

Rachel had the opportunity to chat with 
Madeleine to learn about how the paper 
came to be, what inspires and motivates 
her research more broadly, and what lies 
ahead in her future career.

Rachel: What is your scientific background 
and the general focus of your research?

Madeleine: My undergraduate training 
was in mathematics and physics, followed 
by a Ph.D. in computational and math-
ematical engineering. My general aim is to 
find structure in high-dimensional data and 
use that structure to design more efficient 

1 https://epubs.siam.org/doi/10.1137/
18M1183480

2 https://epubs.siam.org/journal/sjmdaq

algorithms and answer questions about the 
data. Recently I’ve been focusing on low-
rank structure. We’ve used it to design low-
memory optimization methods, automate 
hyperparameter search in machine learn-
ing, control for latent variables in causal 
inference, understand medical records and 
survey data, and more.

Rachel: What inspired the research in 
your paper and how did your collaborators 
come together?

Madeleine: Low rank 
matrices are all around 
us! In my own research, 
I’ve encountered low-
rank data everywhere 
from traditional scientific 
computing applications 
(combustion simulations 
and weather data) to 
finance (environmental, 
health, and governance 
indicators), social sci-
ence (survey data), and 
medicine (hospitaliza-
tion records). At first it 
seemed lucky, but even-
tually it began to look 
suspicious. Why are all of these matrices 
low rank? I was inspired by a talk that 
Christina Lee Yu presented at Cornell.  
She demonstrated how to perform col-
laborative filtering when matrix entries 
are given by differentiable functions of 
latent parameters. I suspected that a simi-
lar assumption would in fact be enough 
to show that the matrix was low rank. 
Together with Alex, who had explored 

Q&A with SIMODS Author Madeleine Udell
comparable phenomena in mathematics, 
we set out to understand the origin of low 
rank in data science.

Rachel: What is the future direction of 
this work?

Madeleine: We’re now looking at how 
to exploit low-rank structure to enable fast, 
memory-efficient optimization.

Rachel: How would you explain the main 
findings of your paper to non-science-mind-

ed family and friends?
Madeleine: People 

are very complicated. 
Questions we can ask 
may be very compli-
cated too. But suppose 
a function exists that 
takes everything there is 
to know about a person, 
and everything there is 
to know about a ques-
tion, and returns that 
person’s answer to that 
question. If that func-
tion is not too crazy, 
then it turns out that 
knowing just a few piec-
es of information about 

the person and the question would suf-
fice to predict their answers. In fact, the 
amount of information we need to know 
grows as the log of the number of people 
and number of questions.

Rachel: Why is SIMODS a good home 
for your work?

Madeleine: Our paper is quite squarely 
on the mathematics of data science. We use 
fundamental (and simple!) mathematical 

ideas to explain a commonality in a very 
wide variety of datasets arising in “data 
science” settings.

Rachel: Who are your role models in the 
field? What qualities do you hope to emulate?

Madeleine: I’d say my biggest role 
model is my Ph.D. advisor, Stephen Boyd 
(Stanford University). I admire his vision 
in pushing forward the full stack of inno-
vations to enable the success of convex 
optimization, from new algorithms and 
software packages to modeling tools and an 
abundance of surprising applications. As a 
result, scientists in a wide variety of fields 
can now understand and use these tools, 
which drives future work in more areas 
than one person can possibly touch. This 
kind of research agenda has three pillars: 
identification of applications that matter, 
improvement of efficiency and reliability, 
and prioritization of clarity (in writing) or 
ease of use (in software).

Madeleine Udell is an assistant profes-
sor of operations research and informa-
tion engineering and a Richard and Sybil 
Smith Sesquicentennial Fellow at Cornell 
University. She studies optimization and 
machine learning for large-scale data anal-
ysis and control. Madeleine completed her 
Ph.D. in computational and mathemati-
cal engineering at Stanford University in 
2015 under the supervision of Stephen 
Boyd, and fulfilled a one-year postdoctoral 
fellowship—hosted by Joel Tropp—at the 
California Institute of Technology’s Center 
for the Mathematics of Information. She 
received a B.S. in mathematics and physics 
from Yale University.

Madeleine Udell of Cornell University.


