

# Quantum Communications and Networking: A Challenge for Mathematics/CS/Physics/Engineering

Mariam Kiran Quantum Communications and Networking (QIS) Computational Sciences and Engineering Division

ORNL is managed by UT-Battelle, LLC for the US Department of Energy





#### SIAM Quantum Intersections Convening Oct 2024

#### Outline

- Introduction
- DOE and Quantum Networking challenges
- Key Applications for Quantum Networks
- Other Examples for SIAM community engagement
- Takeaways



#### Engineering Challenges Al for Self-driving Networks – Wired, Wireless and (now) Quantum

- Deep Learning methods for Traffic prediction or Network optimization – Graph optimization problem
- Quantum Networks (QN) have both challenges fundamental physics and engineering (and maths)
  - Critical physics components to work
  - Engineering fiber infrastructure, real-world deployment
- QN is not a replacement for current internet (classical) networks, but along side
- Game changing capabilities for science discovery
- Access to testbed or simulations to develop QN









Skills: Theory & Experimentalist Physics, Computer Science, Mathematicians, Hardware engineers, Software code



### Quantum Networking at ORNL



*quantum/optic infrastructure (coexistence signals)* 

- DOE and Quantum
  - Upgraded Detectors with Quantum capabilities
  - Quantum Sensing: More precision measurements
  - Distributing quantum states through entanglement: Q Computers will need Q Networks to scale







# ORNL QLAN: the longest (300km) deployed dark fiber testbed in Lab Complex





#### Developing a Quantum Network Testbed for Research



- Deployed 400Gb fiber
- Demonstrating Quantum Key Distribution (QKD) in smart grids, over fiber and free space
- In-house development for Alice/Bob pairs for secure exchange (e.g. FPGA engineers)
- Squeezing: showing coexistence of quantum and optic signals
- Advancing state of art for networking, control plane, frequency modulation, splicing over channels, network standards (e.g. Internet Research Task Force)

#### Discrete and Continuous Variables



Poincare Sphere (qubit) Discrete Variable (DV): qubit

Examples: polarization, orbital angular momentum, time-bin



Continuous Variable (CV)

**Examples:** position-momentum, energy-time, Experiments with DV and CV for various applications



# Squeezing and Entanglement

- Squeezed light is a useful quantum resource with applications across QIS
- Squeezed light can coexist with classical networking signals without being corrupted by noise beyond some added insertion loss
- Distributed joint homodyne detection to enable measurements of two-mode squeezing across our campus network



🗶 OAK RIDGE

National Laboratory



Chapman et al., "Two-Mode Squeezing Over Optical Fiber Coexisting with Conventional Communications ." Optics Express, (2023)

#### Distributing Entanglement across Distance

- Select frequency channels to select rooms
- Alice entangled with Charlie or Dave
- Bob entangled with Charlie or Dave







#### How Far can Entanglement Travel?

| Examples                                                    | Distance |
|-------------------------------------------------------------|----------|
| Entanglement using trapped ion<br>(Hajdusek et al. ) (2023) | 50 km    |
| LANL/NIST (2007) QKD                                        | 148.7 km |
| Teleportation Free space<br>(Zeilenger et al.) (2012)       | 144 km   |
| China (Wei Pan et al.) (2021)                               | 4600 km  |

- Over long distance, photon loss increases
- Quantum repeaters use entanglement swapping for reliable transport over short distances





11

### Repeaters, Infrastructure, Protocols and more

- Impact of fiber quality, working with providers – Loss, fidelity
- Research needed:
  - Quantum memory
  - Splicing
  - Reducing loss (fiber)
  - New routing algorithms (graph problem)





# Investigating Satellite Communications

- New optimization algorithms in simulation; until we get satellite access
- Connecting (100 miles apart)
  - EPB Chattanooga
  - ORNL
  - Tennessee Tech
- Optimum number of satellites
  - 108 satellites provides 55.17% day coverage
  - 57.75% of entanglement distribution
  - Average fidelity of 0.96









M. Mohammed, et al., INDIS SC (2024)

## Quantum Key Distribution as a Key Application

- Distance limitation with QKD
  - Can extend distance with trusted classical relays (upgrade to repeaters later)
- Interest from banks, governments e.g. EU OpenQKD project



NK<sub>i</sub> – network/device keys

 $\mathbf{Q}\mathbf{K}_{\mathbf{i}}^{\mathbf{n}}$  – quantum keys for link n

 $\mathbf{M_{i}^{n}} = NK_{i} \bigoplus Qk_{i}^{n}$ 

"hop by hop method"

Energy Infrastructure: Use Case for Quantum Security Electrical substations: ideal sites for trusted relays

Performance requirements match current QKD capabilities

dea



UNIVERSITÉ

PSNC

ÖAW

#### Cybersecurity Challenges and Research Gaps

- It is not clear how to standardize quantum security
  - Cannot use standard cryptography certification approach
  - Regulatory approval for critical infrastructure is an open question
- Secure time distribution
- How do we best use Quantum Random Numbers
- Quantum Key Distribution, Quantum Secret Sharing, and Quantum Digital Signatures experimental demonstrations
- Photonic-Electronic integration



#### Quantum Sensors as a Key Application

- Quantum Sensors connected over Quantum network
- Qubits converted to photons by frequency modulation or transducer. Need a classical network underneath
- Transducers has shown success up to 60% of successful conversion by Google.
  - New materials can help build better transducers
  - Deep Reinforcement Learning for optimal control or improved conversion efficiency for transducers



#### SIMULATION PARAMETERS

- $\delta_1 microwave resonator damping rate P_1 \\ \delta_2 optical cavity damping rate P_2$ 
  - rate  $P_1$  microwave resonator parameters  $P_2$  optical cavity parameters
- $\delta_m mechanical\ resonator\ damping\ rate \quad P_m mechanical\ resonator\ parameters$

Proctor et al. Physical Review Letters 2017

Metcalf et al. Optica, 2022





### Other SIAM applications: State estimation

- Bayesian quantum state estimation to help
  - Quantum uncertainty
  - Estimates under conditions
  - Reduce MSE



- Important to improve quality<sup>NISQ hardware</sup> of hardware being produced
- Novel ways of using ML or prior knowledge to help 'train' states and produce better design





# AI for Error Minimization or Drift control

**Task:** Learn the input error, which is unknown and drifting slowly, and then correct the error.



- Reinforcement Learning control to help improve state preparation or more complex cases like entanglement
- Simulation-based to practical demonstration







#### Key Takeaways



#### General Applications for Quantum Networks

| Application                                 | Description                                                                        |
|---------------------------------------------|------------------------------------------------------------------------------------|
| Quantum Key Distribution*                   | Entangled photons used to securely share encryption keys                           |
| Quantum sensing                             | Measure magnetic fields over large distances with high precision                   |
| Secure Cloud Computing or 'Central Servers' | Secure access to quantum computers in the cloud                                    |
| Distributed Quantum Computation             | Distributed quantum processing across geographically distributed quantum computers |

\*Current implementations Hardware developments turn-key installs



#### Testbeds being developed across USA

| Testbed                                                                              | Authors                                                            |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| EPB Quantum Network (deployed and in operation)                                      | EPB Chattanooga, Tennessee                                         |
| Oak Ridge Quantum Network Testbed                                                    | <u>Oak Ridge National Lab, Tennessee</u>                           |
| Center for Quantum Networks (CQN)                                                    | Tuscon, Arizona                                                    |
| Boston- Area Quantum Network<br>(BARQNET)                                            | MIT, Harvard, et al.                                               |
| MIT quantum Network testbed                                                          | Boston                                                             |
| Chicago Quantum Exchange (CQE)                                                       | Chicago, Illinois                                                  |
| Quantum Application Network testbed for Novel<br>Entanglement Technology (QUANT-NET) | LBNL                                                               |
| AFRL Quantum Network                                                                 | Rome, NY                                                           |
| NYSQIT Stony Brook                                                                   | BNL                                                                |
| NICT Quantum Network                                                                 | National Institute of Information and<br>Communications Technology |
| DC-Qnet                                                                              | Washington DC                                                      |
| Los Alamos Quantum network                                                           | LANL                                                               |
| QuDIT                                                                                | LLNL                                                               |



#### Simulation toolkits for Research (examples)

|          | language       | Protocol supported                                                                                |
|----------|----------------|---------------------------------------------------------------------------------------------------|
| Quisp    | C++            | Quantum repeaters, memories,<br>QEC                                                               |
| Sequence | python         | QKD, Entanglement<br>management, routing                                                          |
| QuNetsim | python         | No repeaters yet, Model<br>network, transport layers,<br>Routing experiments                      |
| Netsquid | python         | Nitrogen vacancy centers in<br>diamond<br>repeater chains, support for<br>Netconf, Quantum Switch |
| SimQN    | python, C/ C++ | QKD, entanglement, routing                                                                        |



# Quantum Networks <u>are essential for Progress</u> in Quantum Computers

- Examples of multiple skills working together
- Patience to listen and understand each other
- Dialogue, internships at labs (SULI, GRO), gain experience
- Open positions at ORNL, Please apply or reach out!

Email: <kiranm@ornl.gov>



• Extra slides





CAK RIDGE

•Overview of the field of quantum

Bayesian estimation of state recontruction, maths for simulation
Linear optical circuit optimization for frequency processor
Maths to do gate decomposition... matrix- how we can do this in operations to get thing to do...

