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Summary
Vironix Health Inc is an AI-driven software-as-a-service (SaaS) com-
pany focused on early detection and remote management of chronic ill-
nesses, including chronic kidney disease (CKD). To support predictive
modeling of CKD progression, Vironix has implemented machine learn-
ing models for generating synthetic electronic health records (EHRs)
that supplement real-world data. Ensuring the quality of this synthetic
data is essential for maintaining the fidelity of downstream predictive
models.
To evaluate synthetic data quality, Vironix has employed blinded clin-
ician assessments of anonymized patient profiles drawn from both real
and synthetic datasets. However, these evaluations often exhibit large
variance due to differences in clinician background and experiences. In
this study, we propose a refined clinician evaluation framework that
incorporates a new study design, standardized metrics (including Clin-
ician and Patient-Based Weighting), and statistical measures such as
Maximum Mean Discrepancy (MMD). We also introduce normaliza-
tion methods, leveraging Generative Adversarial Networks (GAN) and
Gaussian Mixture Models (GMM) applied to proxy and existing CKD
datasets, to account for clinician rating variability driven by regional
and experiential factors.
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1 Introduction

Vironix is an industry leader in the design and implementation of AI-based products
for monitoring the status and progression of chronic diseases. Their approach focuses
on the collaboration between three distinct parties: individual patients, AI, and medical
professionals. Through the Vironix virtual platform, patients provide health information
and updates to a machine-learned program that advises both patients and their chosen
physicians. Integration of these three modes in a single pipeline allows for finer data
collection, more reliable and personalized medical advice, more accurate anticipation of
disease progression, and improved response times when preventative measures are still
available. Top-quality AI is critical to the proper functioning of the Vironix project, and
by extension to the personal health of Vironix’s clients and users.

Substantial quantities of data are necessary for the training of effective AI. In general
settings, these requirements can surpass what is available, but the challenge is particularly
acute in medicine. Established legal protections of privacy and personal data add a ques-
tion of accessibility to the matter of available data volume. Adapting to these challenges,
Vironix developed a process for generating synthetic data. This is used to supplement the
pool of actual patient data. The combined pool is then sufficiently expansive for training
AI by standard machine-learning methods.

For credibility, synthetic data should be validated by clinicians. That is, though the
results of Vironix’s generative algorithm perform well with respect to statistical compar-
ison with real data, evaluation of practicing medical professionals is considered the most
effective standard for AI in medicine. This is in part because humans are still believed to
be the best assessors of medical condition. Given the results of their models, Vironix sus-
pects this is especially true of unusual or outstanding clinical phenotypes. Moreover, the
general public has more trust in clinical opinions than AI [23]. Consequently, clinicians’
endorsement of Vironix’s products will be important to their widespread adoption.

To better understand the clinical evaluation of synthetic data, Vironix appealed to
MPI 2025 for a mathematical investigation. For concreteness, they proposed focusing on
chronic kidney disease (CKD) and provided some survey data. The guiding inquiries:

• What factors contribute to clinicians’ evaluation of data veracity?

• Given such results, how could the quality of synthetic data be improved?

2 Overview of Synthetic Data Generation

High-quality medical data is critical for healthcare-related research. Unfortunately for
said research, the highly sensitive nature of medical data often precludes its public dis-
tribution. The standards for protection of such personal data fall under the regulations of
the Health Insurance Portability and Accountability Act (HIPAA) in the U.S. and Gen-
eral Data Protection Regulation (GDPR) in the EU. Hence, researchers have designed
various methods of producing quality synthetic data to compensate for the scarcity of
patient data. Generally, synthetic data should have the same structural and statistical
characteristics as the real data. Though there is no universally accepted evaluation met-
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rics for synthetic data, there are some quantitative and qualitative metrics for assessing
its quality. In terms of quantitative criteria, Naseer et al [20] proposed investigation of

(i) whether the synthetic data have the same marginal distributions as the real data,

(ii) whether the correlations in synthetic datasets resemble the real datasets,

(iii) both (i) and (ii) in combination, and

(iv) the usefulness of the synthetic data for subsequent machine learning assignments.

Multiple methods are available to satisfy these inquiries. One common tool, Maxi-
mum Mean Discrepancy (MMD) [26, 28] is a distance-based approach. MMD compares
the overall similarity of two distributions by first embedding the distributions into a
Hilbert space and then computing their distance in that space. Other metrics for syn-
thetic data evaluation include α-Precision, β-Recall, and authenticity [2]. Roughly speak-
ing, α-Precision tests whether synthetic data matches the most typical real data, while
β-Recall tests whether the most typical synthetic data resembles real data; authenticity
simply tests whether a synthetic model truly generates ‘new’ samples. Naseer et al [20]
used three methods to compare real and synthetic data. The first involved analyzing
the relative distributions of real and synthetic data via k-means clustering, as quanti-
fied by a log-cluster metric. The second method, so-called pairwise correlation difference
(PCD), compares feature correlations within synthetic data to those within real data, as
measured by the Frobenius distance. The third method was synthetic ranking agreement
(SRA), which use the area under the receiver operating characteristic curve (AUROC)
to compute the probability of agreement between experiments conducted with synthetic
data and those conducted with real data. They also used multiple machine learning
techniques, including logistic regression, random forests, and Gaussian-Naive-Bayes to
compare real data and synthetic data.

When possible, blinded clinician evaluations are a common method of qualitatively
assessing synthetic data. However, this method can be biased by numerous factors, in-
cluding the background, experiences, and demographics of clinicians. We detail more
drawbacks at the end of the next section.

Murtaza et al. [19] summarized the methods used to generate synthetic data into 3
categories: (1) knowledge-driven, (2) data-driven and (3) hybrid methods. Knowledge-
driven methods such as structural methods (patient data definition language document)
and behavioral methods (state transition machines like Synthea) source from public in-
formation such as human experts or academic research. Data-driven methods derive the
truth from the limited real patient data available. Such methods include mixture models,
copulas, Monte Carlo, and Bayesian network as well as machine learning based synthetic
medical data generation such as generative adversarial networks (GANs), neural net-
works, autoencoders, and decision trees. Hybrid methods combine knowledge-driven and
data-driven techniques, allowing researchers to understand the basic structure of real
data with reinforcement from expert knowledge.
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3 Chronic Kidney Disease (CKD)

For the problem presented at the workshop, Vironix asked participants to focus on chronic
kidney disease. CKD affects more than 10% of the global adult population worldwide [27].
Decreased kidney function characterizes the disease, usually quantified through estimated
glomerular filtration rate (eGFR) [15, 17]. CKD is classified into Stages 1–5 based on
biomarkers such as eGFR, with higher eGFR values corresponding to earlier stages of
the disease [31].

One important, commonly used indicator of the stage is the kidney failure risk equation
(KFRE). There are two levels of complication: the first is the four-variable KFRE, which
includes the following pieces of data:

• age

• gender

• estimated globular filtration rate (eGFR)

• urine albumin-creatinine ratio (UACR)

The second is an eight-variable KFRE which includes the data above as well as four
serum compound levels.

Other biomarkers include albuminuria, serum potassium and creatinine levels, urine
protein creatinine ratio (UPCR), and more [15]. There are inverse relationships between
eGFR and serum creatinine as well as serum creatinine and hemoglobin, but there is a
positive relationship between serum creatinine and UPCR. Diabetes and hypertension
are common comorbidities and may even be causes of the disease.

Despite biomarkers like eGFR, identification of patients with CKD is difficult and a
physician’s own lived experiences play an important role. In the U.S., African-American
patients tend to cluster around a few physicians [3]. According to Bach et al. [3], the
physicians who treat black patients are less likely to be board certified and report that
they are less able to provide quality care to their patients than those who treat white pa-
tients. Further, minorities whose primary language is not English tend to cluster around
only a few primary care physician practices [24]. To complicate matters, Vaidya and
Aeddula found in a recent study [30] that CKD diagnosed by primary care physicians
tends to present differently than CKD diagnosed by nephrologists.

Health inequities play a major role in the development and progression of CKD. In the
U.S., African Americans are much more likely to develop CKD [14] and progress to end-
stage renal disease faster than white Americans [15, 21]. Further, socioeconomic status
(SES) is highly intertwined with race; low SES (determined by income, education, and
occupation) corresponds to poorer prognosis for patients [22]. Low- and middle-income
families may not be able to visit a nephrologist or access dialysis centers or renal trans-
plants, and thus do not receive adequate treatment for the disease [25]. Black, Hispanic,
and Asian patients were more likely to present with diabetes and severe albuminuria and
were younger on average than white patients in a study conducted by Chu et al. [5].
Moreover, CKD has been shown to progress faster in Black and Hispanic patients [11].
Individual (such as health literacy, insurance, risk perception) and community (such as
racial segregation and neighborhood poverty) SES factors influence patients’ access to
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physicians, willingness to receive treatment, and quality of treatment, thus influencing
CKD progression and prognosis [22]. These factors influence a physician’s disposition to
diagnose patients with CKD, their perceived severity of the disease, and the proposed
treatment plan.

4 Chronic Kidney Disease Data from Hong et al. [10]

Research by Hong et al. [10] set the groundwork for a preliminary analysis of the im-
portant indicators of CKD. Their data on hospital admissions was used to construct a
rich dataset of 29,714 CKD patients, characterized by 41 numerical and 7 categorical
variables. Some of these variables were also included in patient profiles provided in the
Vironix survey to practicing clinicians. These included creatinine, hemoglobin, albumin,
age, and gender. Table A 1 in the appendix describes the variables related to CKD most
pertinent to this project.
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Figure 1. Correlations of some important variables.

This data allowed for an independent investigation of CKD indicators. Figure 1 il-
lustrates correlations between variables that are markers of kidney function, whose re-
lationships can reveal patterns of renal impairment. Out of 29,714 patients, 5,532 had
recorded the median value of their eGFR. These were split into two equal populations,
one whose median eGFR is higher than the mean of the population’s median eGFR and
one with eGFR lower than the mean of the population’s median eGFR. The was used
to train “virtual clinician” models. Based on earlier research regarding primary indica-
tors of CKD (Section 3), the models also included variables such as albumin, creatinine,
hemoglobin and blood urea nitrogen. Random Forest outperformed Logistic Regression
and Neural Networks in both the high and low eGFR cases, achieving an accuracy score
of over 90% (see Fig. 2.)
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Figure 2. Classifier Accuracy by eGFR Group [10].

5 Iimori et al. [12] – Simulated Events, Synthetic Classification

The Iimori et al. [12] study concerns prognosis of CKD. To complement their study,
they provided a dataset of anonymized patients longitudinal profiles of eGFR, among a
collection of other biomarkers and demographic information.

Motivated by work in progress by Vironix, we are interested in evaluating questions
of physician bias, regional differences, synthetic data generation, and other issues, in the
context of this data.

The Iimori dataset provides medical information for 1138 new stage 2–5 CKD patients
in the Tokyo metropolitan region. Each patient’s age, gender, body mass index, serum
hemoglobin, albuminuria, and urine creatinine levels at the time of their first visit were
recorded. Other factors provided in the dataset include urine protein-to-creatinine ratio
(UPCR), comorbidities (hypertension, diabetes, and cardiovascular disease), and use of
RAAS inhibitors, calcium channel blockers, or diuretics. The dataset also provides eGFR
measurements every 6 months over 3 years or until the patient is excluded from the study
due to death or their eGFR measurement reaching less than 50% of their original eGFR
measurement.

Figure 3 illustrates ad-hoc tools we developed to “inject” rare patient trajectories into
time series for the downstream goal of better sampling potentially rare events in the
synthetic data generation process. One type of rare event is introduction of acute kid-
ney injury (AKI) which, following discussions, is a post-hoc-defined trajectory of eGFR
characterized by a sharp drop followed by a return to “normal” behavior. Another type
of rare event is a permanent drop after one time point.

With the Iimori dataset, we investigate a type of physician bias based on localized
exposure to a global distribution. Therefore, we perform a conceptual experiment with
synthetic physicians. Figure 4 illustrates the results. Addressing a hypothesis of physi-
cian differences in evaluation of realism of data which is based on regional/professional
differences is performed with physicians who are essentially trained on subsets of the
same data sampled from different regions in the patient space; see sections 7 and 9 for
further discussion.
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Figure 3. Illustration of an eGFR trajectory over three years from the Iimori dataset
([12]) and two types of forced events. Left: for each timepoint, with probability p, a one-
time multiplicative drop is applied to the original eGFR value, aiming to simulate an
acute kidney injury (AKI) event. Right: for each timepoint, with probability p, all values
past that point are scaled multiplicatively, simulating a permanent acute drop.

Figure 4. “Physicians” trained on subsets of the data based on Euclidean distance of a
6-dimensional feature space (age, eGFR, eGFR (last visit), slope, observational duration,
Cr). Each physician fits a Gaussian distribution to its data, sampled in within a radius of
its center (red dot) in the feature space; then is asked to score new data points globally
for realism. Data scored below a threshold (blue) are flagged synthetic; those above the
threshold (yellow) are accepted as real. Note: PCA projection is for illustration purposes
only.

First, for each of the n physicians (indexed by j), physician centers c(j) in patient
parameter space are sampled based on a K-Means clustering, to simplify the task of
selecting reasonable choices.1 Then, a radius r is chosen, and a physician sees one of
m patients xi ∈ R6 if ||xi − c(j)||2 < r. Then, the collection of data Sj = {xi : ||xi −
c(j)||2 < r, i = 1, . . . ,m} is used to fit a multivariate Gaussian distribution to Sj . With
the physician trained, the sample mean and covariance µi and Σi are used with new

1 Another low-effort choice would be centering a physician at one of the data points, for
example.



Analysis of Clinician Evaluation of Synthetic Chronic Kidney Disease Data 9
Table 1. Description of Data Fields in Vironix’s Clinician Survey

Category Variable (Description)

Demographic Data Age (years)
Gender (male/female)

One-time (Initial) Measurements Body mass index (BMI, kg/m2)
Hemoglobin (Hb, g/dL)
Albumin (Alb, g/dL)
Creatinine (Cr, mg/dL)
Urine protein to creatinine ratio (UPCR, mg/g)

Longitudinal Measurement eGFR (estimated glomerular filtration rate,
measured every 6 months for 3 years, mL/min/1.73m2)

data x to compute a log-likelihood s(x; µj ,Σj) : R6 → R and is classified synthetic if
s(x; µj ,Σj) < t for a pre-defined threshold t. In Figure 4, this is implemented with three
physicians. Their log-likelihoods for each patient (color, blue to yellow) illustrate that
patients near the mode of the physicians’ Gaussian models are accepted as real; those far
away are called synthetic. We explore extensions of this for more sophisticated machine
learning discriminators in section .

6 Clinician Survey

As part of their vetting process, Vironix appealed to a collection of clinicians through a
survey. In the interest of establishing a mathematical framework, n clinicians (indexed
by j) were presented with the same set of m records (indexed by i). In the particular case
under study, m = 25 and n = 5. The records contain a mixture of real and synthetic data;
the record fields are listed in Tab. 1. Clinicians do not know m a priori, and the records
are presented in randomized order. In this qualitative realism evaluation, the clinicians
are asked three questions:

(1) Does this patient follow a realistic CKD trajectory? [Yes/No]

(2) On a scale from 1 (least) to 5 (most), how likely do you think it is that this is a
real patient?

(3) On a scale from 1 (least common) to 5 (most common), how common would you say
this patient trajectory is among those being measured for chronic kidney disease
(CKD)?

We initially focus on question #1. Since all the synthetic data statistically “represents
a real patient”, the clinician should answer “Yes” to question #1 for every case. We think
this is a potential source of error and bias, as discussed in §12.

For reasons that will become clear in later sections, it is more mathematically conve-
nient to analyze the number of times the clinicians reject a record. Therefore, we define
the rejection decision rij as follows:

rij =

{
1, if clinician j answers “No” to question 1 for record i,
0, otherwise.

(6.1)
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Table 2. Possible results of question #1.

Actual Data Type
rij Synthetic Real

1 data unconvincing real data unrecognized
0 data convincing real data recognized

Given the rejection decisions, we can then construct the unweighted rejection score ui for
record i:

ui =
1

n

n∑
j=1

rij (6.2)

Hence ui ∈ [0, 1]. The goal state for “real” data (real patients or synthetic patients drawn
from the distribution) would be ui = 0 while the goal state for “fake” data (synthetic
data not drawn from the distribution) would be ui = 1. (In the particular case under
study, all records are drawn from the distributions, so the goal is for ui = 0 for all i.)

These scores can be combined into an unweighted rejection vector u ∈ Rm:

u =
1

n
R1n, (6.3)

where R ∈ Rm×n is the matrix of rejection decisions and 1n is the n-dimensional vector
of all ones. Again, given the experimental design for this project, the goal is to drive u

to 0.
For the entire data set, there are four possible outcomes, as shown in Tab. 2. Even

though it is problematic that a doctor would incorrectly identify real patient data as
synthetic (upper right of table), it is superfluous to our purpose here. Since we are
concerned only with the identification of synthetic data, we focus most of our efforts on
the identification of the synthetic data cases presented.

In particular, we would like to understand why synthetic data which is statistically
indistinguishable from real patient data is being flagged by the practitioner. Is there
something in the clinician’s background which makes them unfamiliar with patients with
the synthetic data profile?

To address this question, we first compare the answers to questions #2 and #3, as
shown in Fig. 5. At left are the results for all the data, while at right are the results only
for the synthetic data. The positive relationship shows that clinicians are more likely
to accept the synthetic data as real if they rate the data as “common”. In other words,
synthetic data is accepted as real if it comports with the clinician’s experience.

One more interesting point: note that the bubble for (5,5) is noticeably smaller for the
synthetic data than the total data set. In other words, clinicians are very likely to give 5
ratings (high confidence/very common) to real patient data.

There is nuance in these observations. For instance, clinicians may classify trajectories
as real or fake dependent purely on whether said trajectories are similar or dissimilar
to the clinicians’ personal experience. In this case, perceived veracity would be highly
dependent on environment factors regarding a clinician’s practice, including local geogra-
phy, culture, and clientele. To some extent, such simplification of the diagnostic process
might be seen as a shortcoming of the clinician, a ‘bad’ bias. On the other hand, it may
be that clinicians are better able to distinguish real from fake data when the trajectory is
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Figure 5. Bubble plot of ratings for question #3 vs. question #2. Size of bubble indicates
number of responses.

Table 3. Question #3 means for various populations.
All Patients Synthetic Patients

rij N Q3 Mean N Q3 Mean

0 92 3.80 73 3.78
1 31 1.65 15 1.6

similar to those observed in their practice. In this second case, personal experience influ-
ences a clinician’s likelihood of identifying data correctly, but does not itself determine
the decision. This might be interpreted as a ‘good’ bias. Both scenarios could lead to an
observed correlation between supposed banality of a trajectory and perceived veracity.
Proxy models were developed to explore each possibility (Section 9).

Given that the bubble plot seems to indicate a positive relationship between data com-
monness and acceptability, in Tab. 3 we examine the mean of question #3 for accepted
and rejected data. Conclusions of interest:

• The mean of question #3 is much larger for accepted data than rejected data. This
result holds for both synthetic patients and all patients.

• The actual means vary very little between the synthetic and all data in each group.

• The rejection rate for synthetic data is 17% (15/73). However, the rejection rate for
real data is much higher: 46% (16/35). This reinforces the idea that the problem
is not whether the data is synthetic or not: rather, it is how it conforms to the
clinician’s experience.

The tests listed above will help answer the question of whether uncommon data is more
likely to be rejected by a practitioner. However, it is silent on the question of why. Is
there something in the records that would cause the record to be rejected?

So as probed in question 3, the question is whether these characteristics are common
to a clinician’s practice, and if not, will they accept the data anyway?
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7 Weighting for Clinician Experience

Illustration of Distributions
Population

Clinician A

Clinician B

Figure 6. Sketch of effect of clinician experience on variable interpretation. IMPOR-
TANT: This is simply an illustration, and does not represent the actual distributions.

To understand how a clinician’s experience might affect their acceptance of synthetic
data, consider the situation diagrammed in Fig. 6. In blue is a sketch of how a typical
biomarker or other variable distribution might look in the general population of late-
stage CKD patients. (IMPORTANT: This is only an illustration, and should not be
considered to be indicative of any true distribution.) In red and green are hypothesized
distributions of the same variable for late-stage CKD patients seen by clinicians A and
B, respectively.

Given clinician A’s experience, they will readily recognize late-stage CKD patients
whose parameter values lie in the first peak of the distribution, but would be more un-
familiar with the patients exhibiting the values at right. Hence synthetic data exhibiting
such values may be rejected as not representing real patient data. Similarly, clinician B
would be more likely to accept patient data in the right portion of the distribution than
the left.
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7.1 Patient-based Weighting

To formalize this problem, let P (x) be the number of identified CKD patients as a
function of some underlying set of biomarker values x. For the purposes of this study,
x may consist of some subset of the fields listed in Tab. 1, perhaps supplemented with
some transformation of the data (as described below).

Moreover, let Pj(x) be the number of such patients treated by clinician j. If we make
the (hefty) assumption that each patient is treated by exactly one clinician, we have that

P (x) =

n∑
j=1

Pj(x), wj(x) =
Pj(x)

P (x)
. (7.1)

Here wj(x), which we shall call the weight, is just the fraction of all patients with char-
acteristic value x that are seen by clinician j.

However, we must be careful when defining the variable x. For continuous variables
(such as the lab results), the number of data points is too small to use continuous vari-
ables. Therefore, we would want to bin the quantitative variables into a histogram as in
Fig. 6.

Given the weights, we may create a patient-weighted rejection score pi for record i:

pi =

n∑
j=1

rijwj(xi), (7.2)

where xi is the value of x for record i. Note that (6.2) is a special case of (7.2) where all
the weights are 1/n. Hence pi ∈ [0, 1], and again the goal for this study is to have pi = 0.

What is the advantage to this weighting? Consider two clinicians: A and B. A sees
many of the patients with profile xi, and hence has a high weight, while B does not and
hence they have a low weight. If B rejects record i, we can discount their opinion because
they have little familiarity with that profile. Hence it will not count much towards the
rejection score. On the other hand, if A rejects record i, that will carry much more weight
since they see many of the patients with that profile.

The score for each record can be generalized into a vector p:

p = diag(RW ), W ∈ Rn×m, wji = wj(xi). (7.3)

7.2 Clinician-based Weighting

The weighting approach described above has objective merit, as it compares the local
experiences of each clinician to the characteristic of patients as a whole. However, it still
requires knowing characteristics of the entire population of CKD patients. In addition,
remember that we are surveying individual clinicians for their conclusions based upon
their own local experience. Therefore, we may devise a different weighting system that
takes into account how familiar a record is to a clinician’s particular experience.

Let Tj be the total number of CKD patients seen by clinician j, and then define

fj(x) =
Pj(x)

Tj
. (7.4)
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Here fj(x), which we shall call the patient fraction, is just the fraction of patients seen
by clinician j with characteristic value x.

Given the fractions, we may create a clinician-weighted rejection score ci for record i:

ci =

n∑
j=1

rijw
∗
j (xi), w∗

j (xi) =
fj(xi)∑
j fj(xi)

. (7.5)

Here the new weights w∗ are defined such that they sum to 1, which keeps ci ∈ [0, 1],
and again the goal for this study is to have ci = 0.

What is the advantage to this weighting? Consider two clinicians: A and B. Most of
the patients A sees have profile xi, and hence A has a high weight. In contrast, few of the
patients A sees have profile xi, and hence B has a low weight. If B rejects record i, we
can discount their opinion because they have little familiarity with that profile. Hence it
will not count much towards the rejection score. On the other hand, if A rejects record
i, that will carry much more weight since they are more likely to see such patients.

The score for each record can be generalized into a vector c:

c = diag(RW ∗), W ∗ ∈ Rn×m, w∗
ji = w∗

j (xi). (7.6)

This framework would allow a description and comparison between weighting schemes,
algorithms for discovering/updating weightings based on streaming information xi, among
other applications. We leave further development to possible future work.

8 Data Inference

It may be possible to obtain the medical records corresponding to each clinician partic-
ipating in the survey, which would allow the computations in §7.2 to be made directly.
This couldn’t happen on the timescale of the workshop, so instead we work to infer
something about their patient populations by comparing the clinical characteristics of
accepted and rejected synthetic patients.

We begin by examining the final eGFR value of the patients; the results are shown
in Tab. 4. We present the mean of the final eGFR values for patient data that each
clinician accepted or rejected. We see a clear pattern: clinicians 1 and 3 accepted data
with much lower eGFR values than those they rejected; the remaining three had much
smaller deviations between the accepted and rejected data (with clinician 2 rejecting
patients with higher final eGFR values). Note also that clinicians 2 and 4 identified every
synthetic patient as real.

The results in Tab. 4 are consistent with the fact that progression of CKD is more
correlated with decreases in eGFR over time, rather than with a particular eGFR value,
consistent with what Levey et al. [16] determined in their research in 2003. Hence we
now define the following quantity:

x =
∆(eGFR)

∆t
, (8.1)

where the values are taken from the beginning and end of the data collection period.
(We use x to indicate that it is a one-dimensional illustration of the x variable defined
in §7.1.)



Analysis of Clinician Evaluation of Synthetic Chronic Kidney Disease Data 15
Table 4. Mean final eGFR value for various populations. n/a represents no patients in
this category.

rij
All Patients Synthetic Patients

Clinician Y N Y N

1 15.70 35.75 14.22 37.81
2 27.15 24.43 24.71 n/a
3 26.48 28.00 23.38 28.60
4 26.88 28.20 24.71 n/a
5 24.24 32.64 20.46 39.57

Table 5. x for various populations (value/year). n/a represents no patients in this cate-
gory.

rij
All Patients Synthetic Patients

Clinician 0 1 0 1

1 −4.72 −0.70 −4.96 −0.05
2 −2.83 1.76 −2.78 n/a
3 −3.50 0.14 −3.40 −0.91
4 −2.71 3.43 −2.78 n/a
5 −3.98 0.76 −3.74 0.60

These results are shown in Tab. 5, and they are much clearer. Each clinician was much
more likely to accept data which exhibited a large decrease in eGFR (which is indeed
correlated with later-state CKD). They rejected data that didn’t have large decreases,
or even increased. Interestingly, four of the five data records that had increases were real
patient data, which is why in the latter column two clinicians didn’t reject any of the
synthetic patients.

9 Specialty Differences

Another explanation for the discrepancy in clinician evaluations would be their area of
training. It has been found that certified nephrologists are more skilled at identifying
CKD than primary care doctors [30]. Relatedly, if a clinician sees CKD patients present-
ing a certain type of profile, how skilled will they be at identifying CKD patients not
presenting that profile?

9.1 Proxy A: Commonness of Data

Unfortunately, we do not know the clinicians’ background. However, we do know how
common they rated each patient’s profile. The hypothesis here would be that the more
common they rate the patient profile, the more likely they are to correctly distinguish if
it is real or synthetic. Given the small number of clinicians surveyed it is hard to draw
any firm conclusions, but in Fig. 7 we analyze how accurate the clinician is at determining
between real and synthetic data. We plot the percentage of records of each type (real
and synthetic) classified correctly vs. the results of question #3 indicating commonness of
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the data. Green bars indicate correctly identified data, while red bars indicate incorrectly
identified data. Dark colors are accepted data; light are rejected data.

We begin by examining the real data, at left of each cluster. For low numbers for
question #3, the data is uncommon and hence suspect. Hence most real data is flagged
as fake (light red). However, for scores of 3 and above, each real data has been accepted
(dark green). For the synthetic data, the trend is reversed. For low numbers of question
#3, the suspicion about the data leads to correct interpretation of most of the synthetic
data (light green). As the numbers increase, the clinicians trust the synthetic data as
well, leading to acceptance but misidentification (dark red).
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Figure 7. Accuracy of determination vs. commonness score. Here green means correctly
identified, red means incorrectly identified. Dark means accepted; light means rejected.

9.2 Proxy B: the Boot Approach

Though it may not be possible for the group to obtain the certifications of the clinicians
participating in the study, we may model similar situations in the hopes of gaining
insight into our current problem. In particular, we use clothing classifications stored in
the Fashion MNIST database [32]. Fashion MNIST is a database containing images of
various types of clothing, which we treat as analogous to the various types of patients a
clinician sees. For this dataset we must also develop synthetic clinicians that will evaluate
the data. For this we use what is known as a discriminator network. This is a neural
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network that is trained by providing it with real and fake data; its objective when training
is to correctly discriminate between real and fake data.

We note that this type of synthetic clinician has some important differences from the
Gaussian mixture model used in §5, due to what the neural network is optimizing. The
more data that the discriminator is trained on, the better it will be at correctly classifying
real vs. fake data. That means no matter how realistic your synthetic data generation
is, if the discriminator is trained equally it will still correctly identify the generated and
real data. We think of this type of virtual clinician as like a jeweler. The more diamonds,
both real and fake, a jeweler has seen (i.e., their history is the training set) the more
likely they are to correctly identify new (test set) diamonds. We believe that the same
will also hold for clinicians to some extent - that is, a nephrologist who has seen many
patient profiles before will likely be better at correctly discriminating between real and
synthetic patients compared to a specialist in another discipline that has seen far fewer
CDK patients.

If a discriminator agent is trained with a focus on identifying a particular type of
clothing (for instance, a boot), how skilled will it be at identifying other types of clothing,
that it has not seen before in its training data?

In particular, we trained three agents on the database:

• One discriminator was trained solely on a dataset of boots.

• Another discriminator was trained solely on a dataset of sandals.

• A third discriminator was trained on both boots and sandals.

We then asked all three agents to identify unseen test images of real and fake boots
and sandals in the database.

Figure 8. Real image discriminator confidence of the agents.
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As shown in Fig. 8, agents trained on one type of footwear identified that type in the
testing data with nearly 100% accuracy. They identified the other type of footwear with
much less accuracy (∼ 65− 75%). The agent trained on both types of footwear identified
both roughly equally (∼ 90%), with accuracy between the two limits of the singly-trained
agents.

We term the data on which a discriminator is trained its domain of expertise. Our
goal is to determine how, if we have access only to two individual experts with certain
domains of expertise, we can re-weight their answers based on the similarity of a new
test sample with the domain of expertise of each discriminator. We think that studying
this question also has generalizable benefits to many AI systems. In particular, we may
often have a situation in which AI models perform well on subsets of the dataset, and
it may be infeasible to train a model on all the data (i.e., due to computational or data
privacy constraints).

Figure 9 shows the Principal Component Analysis (PCA) projection of the latent space
of the fashion image data. Each point represents an encoded image. We see that the data
broadly clusters into boots (blue) and sandals (red): this is a visual representation of the
domain-of-expertise differences that may be observed between discriminators (clinicians).
When a new test image is provided, we place it in the same latent space (red dot), using for
example an autoencoder. This allows us to visualize where the new test point lies within
the domain of expertise of our trained discriminators. Our goal is to then reweight the
discriminators’ scores based on the distance the new data point is from their domain of
expertise.

Simply put, we place high weighting on a discriminator’s score if the new point is
close to ones it has previously seen, and less weighting the further away the test point
is from the discriminator’s domain of expertise. To classify a new image, we compute its
trajectory in the latent space and measure its distance from the mean trajectory of each
cluster. These distances are then normalized and used as weights for the agents, allowing
us to determine whether the new image is more likely to represent a boot or a sandal.

Translating our results to the medical context, since nephrologists are specially trained
to treat CKD, they should be better able to identify real/synthetic CKD patients, as
opposed to other types of clinicians. Hence we may be able to introduce an algorithm
that weights their rejection decisions more highly than nonspecialists. Unfortunately,
given the small number of clinicians in the study, it may not be possible to classify the
clinicians by specialty.

9.2.1 Nick-Nipuni weighting scheme

A simple weighting scheme that we applied to combine the two discriminator models
trained solely on one type of footwear (either boot or sandal), was what we termed the
Nick-Nipuni weighting scheme. This is a simple algorithm given by the following steps:

(1) Embed the new test data point into the same latent space as the training set.

(2) Calculate the distance between the test data point and the centroid of the domain
of expertise of each discriminator/model. In this case, as a first pass we simply used
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Figure 9. PCA projection of the autoencoder latent space with calculated centroids and
arrows showing the Euclidean distance to the random point.

Euclidean distance. These distances form a similarity score, i.e., how similar is a
test data point to the domain of expertise for a given discriminator.

(3) Based on the calculated distances, re-weight each discriminator,s score to get a new
‘weighted consensus’ score.
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Figure 10. We attempted to combine the scores of two expert discriminators trained
solely on either boots or sandals. Unfortunately, the simple Euclidean weighting scheme
did not prove successful.

As shown in Fig. 10, this simple approach of Euclidean re-weighting was not successful.
We do believe that given more time/thought this method could turn out to be useful in
combining discriminator scores. There are a number of areas why it may have failed and
potential areas for improvement.

• We used only Euclidean distance to calculate the similarity between new and train-
ing data. One could consider many other measures of similarity that are better
suited to high dimensional data, e.g., MMD.

• It may be beneficial to introduce a threshold: when a new data point is significantly
different from anything the discriminators have been trained on, we may not trust
any of their evaluations.

• We calculated the centroid of all the training data and then calculated the distance
from that. If the data is not simply clustered, this may not be a good measure to
use.

Another ultimate goal of this kind of approach is to introduce some measure of un-
certainty in the judgments of experts (be they synthetic or real). The similarity score
calculated between a test data point and the training data should somehow inform how
much we trust an answer from a given expert. If an expert has seen many data points
similar to the new one, we should place high trust in their opinion. However, if an expert
has not seen anything like what is shown, weather the data is real or fake, we should be
cautious about trusting their evaluation.
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9.3 Comparison Between Virtual Clinicians

We have so far considered two potential mathematical formulations of virtual clinicians:
Gaussian mixture models (§5) and discriminator networks (§9.2). Given the small num-
ber of actual clinicians, these techniques are helpful to test hypotheses about how a
cohort of clinicians (or experts in general) may respond when presented with the task of
distinguishing real and synthetic data.

We illustrate the key differences between these two types of virtual clinicians by per-
forming a numerical experiment as described below.

9.3.1 Iimori synthetic data generation

To compare how different virtual clinicians behave, we generate synthetic patient data
from the Iimori dataset using a GAN approach. The results of the data generation are
shown in Fig. 11.

Figure 11. Comparison of distribution for real CDK patient data (red) and synthetic
generated patient data (blue). Visually there is good similar between the real and syn-
thetic data.

9.3.2 Evaluation of virtual clinicians

Our goal is to evaluate the response of virtual clinicians as the quality of synthetic data
generation increases. Hence at each GAN training epoch of training we generate a set
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of synthetic patients. We then evaluate our synthetic clinicians by testing them on a
set of 100 real and 100 synthetic patient profiles, as shown in Fig. 12. As we train the
GAN data generator over more epochs, the data becomes more ’realistic’, as shown by a
decrease in the MMD between the synthetic and real data (blue line).

Figure 12. Comparison of the two types of virtual clinician we consider. On the x-axis is
number of training epochs on the y-axis is the fraction of synthetic data falsely classified
as real. As the number of training epochs increases the synthetic generated data becomes
more similar to the real data, this is shown by the MMD decreasing (blue line). As
the synthetic and real data becomes more similar the GMM clinician accepts a higher
proportion of the data as real. On the other hand the discriminator network is trained
in competition with the generator network. Thus as the data gets more realistic the
discriminator also gets more capable in distinguishing between real and synthetic data

To generate our virtual clinicans, we apply a Gaussian Mixture Model (GMM). GMMs
are one approach to clustering which seeks to describe a collection of data with the as-
sumption that it was sampled from one of a (usually small) number of Gaussian distri-
butions of unknown means and covariances. A key challenge for this space without prior
knowledge of the data generation process is inferring the appropriate number of clusters,
in addition to the problem of stably identifying the means and covariances themselves.
Like many unsupervised methods this has a long history of development of heuristics with
goals in mind, often addressing a tradeoff between generalizability and data explainabil-
ity; fewer centers may generalize but will typically struggle to adequately explain all data.
In the opposite extreme, describing the data as n gaussians with covariances Σ = εI, with
ε � 1 will fully describe all data but have no utility.

In our application, we apply the GMM framework with only mild by-hand tuning of
such parameters. For the clinician application, the hypothetical is as follows. The virtual
clinicians accept data as ‘real’ if it looks similar to what they have seen before. Hence
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as the synthetic data generator gets better it has an increased chance to fall within the
region the GMM thinks is likely to be real (red line). On the other hand, since the
discriminator clinician is trained in competition with the generator network, no matter
how similar the synthetic data is to the real data, the virtual clinicians are always able
to identify a significant number of synthetic patient profiles.

Unfortunately, due to the small number of real clinician evaluation we have, it is hard
to determine which source of more error is dominant. Most likely it is some combination
of the two: data that looks more similar to what clinicians have seen before is more likely
to be accepted as real, while experts who have seen more CDK patients will also be
better at classifying real and synthetic data. Ultimately, these kind of models can help
us understand these two different types of bias.

Figure 12 illustrates some results of this process applying a GMM as well as a GAN-
based process described above.

10 Interpolation considerations

When examining the data, we found several places where interpolation techniques might
be useful:

• We have m records with various values of xi. How can we then generate realistic
profiles for records with values different from that set of m records?

• If the data exhibits clusters clearly identified with a particular state or progression
of CKD, how do we characterize a cluster that is somehow “between” them? (See
Fig. 13.) Note these clusters can be in symptom space, variable space, behavioral
space, geographical location, or some combination of those.

10.1 Proxy C: the Bird Approach

In §9.2, we supposed that clinicians’ personal experience prepared them to accurately
distinguish real from fake when assessing trajectories common to their practice. This
advances the idea of weighing clinician opinions according to expertise. Unfortunately, it
is also possible clinicians believe data to be real simply because they have seen similar
trajectories before, without critical consideration of the many variables at play. In such
a case, clinician opinion is completely determined by their practical experience, which
depends on various external factors, including geography (see §3). Hence we require a
better understanding of the broad distribution of CKD to compensate for local clinician
bias.

This new model aims to understand the interplay between local and global distribu-
tions of CKD, as well as how such data is represented in clinicians’ 1-5 ‘commonness’
scores (Section 6). Though formulated separately from the boot model, it should be rec-
ognized that progressing between global statistics and regional experience is implicitly
key to both. In fact, successfully applying conclusions from the multi-clinician approach
in the boot model (recall Figure 8) would require knowing each clinician’s personal ex-
pertise, i.e., their local distribution of CKD trajectories. There is also a question of how
local CKD observations impact reported survey scores. After all, Vironix can detect local
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Figure 13. Schematic of data to be interpolated. Here records in the pink and blue regions
are given, and records in the green region are to be classified.

distributions only indirectly through these scores. Interpreting survey data requires un-
derstanding how to translate between global distributions, local distributions, and survey
scores.

To this end, we would like to use clinicians’ geographical locations as a proxy for
the subpopulation they treat. Unfortunately, privacy protections makes it very difficult
to access this sort of data, and hence we are forced to construct a proxy more. From
a mathematical perspective, this problems has similar mathematical structure to bird
population data, provided by the Cornell Lab of Ornithology through the eBird project
[8]. eBird provides birders a platform on which to report local bird sightings. This data
is compiled and contextualized by expert ornithologists. In particular, this results in an
empirical distribution of bird species across the globe and across avian annual cycles.

Bird data in hand, we propose a model connecting birdwatching to disease observation.
Consider the hypothetical placement of a birdwatcher within the continental United
States (taken as a subset of the global data available through eBird). This birdwatcher
is modeled as observing birds only within a local region, and their perception of bird
species abundance is founded on the personal experience of observing in that region.

Figure 14 illustrates an example with 20 birdwatchers, each assigned to a square re-
gion measuring 150 units per side. Each unit corresponds to an entry in the frequency
matrix and represents approximately 2.5 kilometers horizontally and 3.17 kilometers ver-
tically. In this model, the birdwatcher serves the same mathematical role as a clinician:
they report according to their personal, naturally constrained, experience. The various
bird species represent different patient trajectories. A birdwatcher’s (clinician’s) personal
impression of a bird’s (trajectory’s) prevalence determines their opinion of a particular
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Figure 14. (Left) Random placement of 20 birders with neighborhood radius of 75 units.
(Right) Two possible results of pruning that same collection to a disjoint subset.

bird’s (trajectory’s) likelihood of observation. To believe a hypothetical bird has been
observed (based on local experience!) is then equivalent to believing a presented CKD
trajectory is real. In this way, the reasoning behind a hypothetical birdwatcher’s decision
in the artificiality of a claimed observation is analogous to that of a clinician’s in deciding
the artificiality of patient trajectory. Essentially, the more frequently a birdwatcher sees
birds of a certain species relative to others, the more likely they are to expect sightings
of that species in the future. Similarly, a clinician who frequently encounters a certain
type of CDK may come to expect similar cases and therefore classify a synthetic CDK
as real.

To understand our birdwatcher model, and by extension the clinician data, we propose
three stages. For the following, the ‘global distribution’ is a distribution normalized over
the entire space of interest: the continental United States in the bird model. A ‘local
distribution’ is a distribution normalized to a subset of the parent space: the region
observed by a single birdwatcher in the bird model.

(1) From the known global distribution of birds, construct the local distribution for
each hypothetical birdwatcher. From this data, represent individual birdwatchers’
perception of relative abundance using a Likert scale. This will illuminate the mech-
anism by which global statistics determine survey scores.

(2) Given many local distributions, construct a plausible global distribution from which
they could have been drawn. This is sometimes called ‘the elephant problem’ after
the old parable. It has long been of general mathematical interest.

(3) Given the abundance ratings (on a Likert scale) of many birdwatchers, construct
a plausible global distribution within which those birdwatchers could exist. This
stage is the most relevant to Veronix, as it begins with the collected survey data
and informs a correction.

These goals are illustrated in the following figure:
It is emphasized that the ideal result of goal (1) is a transformation from the global
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Figure 15. Goals in analysis of bird model.

distribution to local abundance ratings, but that this method involves two steps, (1a)
and (1b), so that the local distribution serves as an intermediate calculation.

Note that the ultimate goal (3) is equivalent to resolving (2) and the additional trans-
formation (X) illustrated in the figure. This decomposition may be useful. We expect
solutions of (2) to be available in published literature, though time constraints precluded
our finding them during the workshop. Conversely, prior experience with probability re-
search suggests (X) to be the most intractable of the proposed goals. We circumvented
the challenge by choosing a singularly simple interpolation technique, but expect a more
efficient solution will involve significant investigation. For this reason, we focus on framing
our goals in terms of (1), (2), and (3).

Goal (1) was approached in a two-part sequence, so-called (1a) and (1b). The goal is
to apply knowledge of a global distribution to determine perceived abundance ratings.
A notion of local distribution is constructed as an intermediate, hence the proposed
decomposition. With respect to the project flow, this pairs (1a) with (2) and (1b) with
(X).

The method for constructing local distributions from global distributions in (1a) was
inspired by available clinical data. Although clinicians are aware of the number of cases
they diagnose, they are presumably ignorant of how those cases are distributed. For
example, a clinician might be expected to know that 120 instances of CKD were recently
observed in their practice without recognizing that most of these cases came from patients
living east of the clinic. This data is presumably available (many medical establishments
collect location data from their patients) but is not always processed or available for
immediate recall. As such, a clinician’s notion of ‘local distribution’ could reasonably
be reduced to a single count for each type of disease trajectory (e.g., high eGFR vs low
eGFR—see §4). To incorporate this assumption in the current model, birders are assumed
to know only the total count of any given bird in their respective regions. (1a) is therefore
resolved by integrating the eBird distributional data over a birder’s neighborhood and
reporting the counts.

For (1b), we seek to derive abundance ratings from local distributions. To match avail-
able survey data, these ratings follow the Likert Scale: scores take values from {1, 2, 3,
4, 5} with greater values corresponding to more frequent observation. Given a set of i



Analysis of Clinician Evaluation of Synthetic Chronic Kidney Disease Data 27
Table 6. Results for Goal 1 using a birder placed in northern Utah (UT) and southeast-
ern New Mexico (NM) with four species of bird under consideration.

Species (i) UT Ci UT Si NM Ci NM Si

Western Tanager 0.2512 2 0.0982 3
Mountain Bluebird 0.7444 interp.

=⇒ 5 0.2284 interp.
=⇒ 5

Western Bluebird 0.1429 2 0.0569 2
Eastern Bluebird 0 1 0.0073 1

bird counts for a particular birder, {Ci}mi=1, we begin by computing ratios

Ri =
Ci∑n

i=m Ck
,

so Ri is the fraction of total observations by the birder of bird i. Letting max and min
denote the indices of the maximal and minimal ratios, respectively, we assign the Likert
scores Smax = 5 and Smin = 1, and determine the cutoffs for different Likert scores
by interpolating the ratios and rounding. We chose linear interpolation for simplicity.
Table 6 displays the result for a pair of birders, one in northern Utah and the other new
southeastern New Mexico.

While this technically resolves (1b), the interpolation step leaves room for further
investigation. For instance, linear interpolation results in a distribution on 1-5 different
from that observed in the surveys. These surveys exhibited a roughly linear trend across
possible scores (Figure 5), but the method proposed here often results in a skew towards
lower values of 1 and 2. Logarithmic interpolation may be more appropriate for modeling
matching with the survey data.

On a positive note, the proposed method does capture some of the nuance in inter-
preting distributions from perceived abundance scores. In Table 6, the Western Tanager
is rated 2 by the UT birder and 3 by the NM birder. One might suppose that the NM
birder must see more Western Tanagers than the UT birder, but this is false. The UT
birder observes more birds in total, so the Western Tanager is only comparatively less
common. In view of the clinician problem, one might suspect that a UT clinician is less
likely to identify a ‘Western Tanager’ trajectory as real because they are relatively rare
in their personal practice. Simultaneously, the NM clinician might evaluate that same
trajectory as real despite actually observing fewer instances. Herein lies the challenge
of using (Likert) scaled local data to test global hypotheses: observers can report only
observations relative to their personal environment. This admits cases such as those in
Table 6, where different observers offer distinct perspectives and naïve conclusions fail.

To couple with (1b), consider goal (X): reconstruction of a local distribution from
abundance ratings. With only the given data, this inverse problem is not well-defined.
In fact, solutions are not unique. If a birder observes three birds, providing abundance
ratings {1, λ, 5}, the original bird counts (assuming linear interpolation) could be {1,
λ, 5}, {10, 10λ, 50} or even {α, αλ, 5α} for any positive, real α. To circumvent this
obstacle, we assume the total number of birds observed by each birdwatcher is known.
This is analogous to supposing clinicians can report their total number of CKD patients,
regardless of trajectory. In the case of CKD specialists, this might scale with the size
of their practice. While adding assumptions to a model is always frustrating, we hope
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Table 7. Results for Goal 3 using results (same experiment) of table 6.

Species (i) UT Si UT Ci NM Si NM Ci

Western Tanager 2 0.2277 3 0.1066
Mountain Bluebird 5 interp.−1

=⇒ 0.5692 5 interp.−1

=⇒ 0.1776
Western Bluebird 2 0.2277 2 0.0710
Eastern Bluebird 1 0.1138 1 0.0355

that such data is relatively easy to obtain (at least compared to acquiring the electronic
health records of an entire patient pool) so that the method is still relevant to Vironix.
In any case, this additional information allows reversion of abundance ratings to local
count information. From a set of Likert scores {Si}ni=1, we may calculate counts Ci using
the formula

Ci =

(
Si∑n
j=1 Sj

)
n∑

k=1

Ck.

Table 7 shows the results of this procedure when substituting the outputs of Table 6
back into the model.

The choice of interpolation plays an important role here as well. For instance, linear
interpolation from 1 to 5 artificially inflates the counts of rare birds while diminishing
that of common birds. To see this, note that, in Tables 6 and 7, the model fails to
recover the absence of Eastern Bluebirds in UT. Conversely, the prominence of Mountain
Bluebirds in UT is cut by nearly a quarter. Substituting the chosen method with linear
interpolation from 0 to 4 instead of 1 to 5 would have the opposite effect: artificially
lowering and raising the counts of rare and common birds, respectively. We suspect a
similar challenge would present itself pairing any interpolative approach with a discrete
ranking system. This may suggest the Liker scale to be an inappropriate survey choice if
mathematical modeling is the end goal.

All that remains is goal (2). To reiterate, we seek to solve the so-called ‘elephant prob-
lem’ of reconstructing a global distribution from local information. One of the challenges:
birder regions may overlap. This is a consequence of our uniformly random placement
of birders, an attempt to encode the lack of surveyor control over clinician location. As
a result, many methods presented in the literature do not immediately apply. Here we
propose our own approach to solving the problem, a procedure that sadly we failed to
completely implement in the time allotted to us.

Assume the provision of a collection of birdwatchers, their respective regions, and the
number of each kind of bird observed in each region.

(1) Repeatedly prune the collection of regions to find disjoint subcollections.

(2) For a given subcollection, construct a candidate global distribution.

(3) Repeat step (2) with other subcollections, and approximate the actual global dis-
tribution with a linear combination of the resulting distributions, ideally weighted
to account for the total number of birds represented by each subcollection.

Step (1) resolved the issue of intersection at the cost of data volume. This was suc-
cessfully implemented, and is illustrated in Figure 14.

Step (2) used the resulting disjoint collection to construct a candidate global distri-
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bution. As the method of construction, we chose a variant of two-dimensional linear
interpolation. Unfortunately, we struggled to define the problem, especially regarding
appropriate boundary conditions from which to base the interpolation. This step was
not completed before the end of the workshop. Visually, one could imagine interpolation
into the black space of Figure 14.

Step (3) was hoped to offset the loss of information in step (1). Though any single
disjoint cover would only cover a portion of the entire region, an aggregate collection of
covers should provide information almost everywhere. The notion of compensating for
reduced data with repeated sampling was inspired by Monte Carlo methods.

A different method may be more appropriate for step (2). Linear interpolation seemed
to falter due to poorly-defined boundary conditions. A Gaussian Mixing Model may be
more successful in that regard. The disjoint regions would be approximated as points with
a Gaussian fit to each birder. Step (3) would follow as planned. The workshop ended as
we attempted to pursue this route. Alternatively, methods from Bayesian statistics may
be applicable. The three-step procedure described above may be unnecessary in this case.
Our team was not familiar with Bayesian statistics at the outset of this project, so we
elected another route, but given the intuitive attraction of a method involving random
sampling, a statistical approach may be appropriate.

We attempted to apply Gaussian Mixture Models (GMMs) to reconstruct the global
dataset from local observations. However, due to significant differences between the bird-
watcher dataset and the datasets commonly used in the literature, as well as fundamental
differences in the underlying problem formulation, our approach did not yield satisfac-
tory results. The GMM-based reconstructions diverged considerably from the original
data and consistently underestimated bird counts in specific regions. These limitations
are likely attributable to both the conceptual mismatch and the limited time available
to fully understand and properly implement the GMM framework.

By developing methods to translate from global distributions to abundance scores and
abundance scores to local distributions, the bird model succeeded in reproducing phe-
nomena suspected from Vironix’s clinician surveys. The first goal illustrated the nuances
of using relative abundance to conclude the global distribution, and the third goal illus-
trated some of the inherent challenges in developing models from survey data. In both
cases, an optimal choice of interpolation method may significantly improve the compar-
ison to the clinician data.

Though the project was not completed, we are hopeful the design has potential. A
sampling approach to reconstructing global distributions satisfies mathematical instinct,
and has precedent in Monte Carlo methods and Bayesian statistics. Upon developing
this technique, Vironix could approximate global distributions of CKD trajectories from
survey data. This information could be used to correct clinicians’ biases when evaluating
real and synthetic patient profiles. In conjunction with the boot model, the bird model
provides a hopeful start to investigating the relationship between perceived ‘commonness’
and perceived veracity.
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11 Survey Redesign

Our discussions also led to suggestions about how to redesign the survey. First, it is
problematic that all the synthetic records presented to the clinicians are drawn from the
proper distribution. It is human nature that clinicians, presented with data from a health
data company, would expect that they are trying to be “tricked”, and would therefore
anticipate that some of the data would be fake.

As an analogy, consider the following hypothetical survey. OpenAI presents people with
25 real photographs, asking them to indicate which are real and which are generated with
AI. Given that OpenAI is an AI company, the survey takers would understandably be
biased to identify at least one photograph as AI-generated. Hence, even if a hypothetically
unbiased clinician might indeed achieve a rejection score of 0, an actual person might be
biased against doing so.

During the week, we vacillated between interpreting question #2 as “real patient” or
“real CKD patient”, and we suspect that the clinicians may have interpreted the question
in various ways as well. Therefore, we propose changing the questions somewhat for
increased clarity:

(1) On a scale from 1 (least common) to 5 (most common), how common is this EHR
in your practice?

(2) On a scale from 1 (least common) to 5 (most common), how common is this EHR
for CKD patients?

(3) On a scale from 1 (least) to 5 (most), how likely do you think it is that this is a
real patient?

(4) On a scale from 1 (least) to 5 (most), how likely do you think it is that this is a
real patient with CKD?

Note that we draw a distinction between treated patients and CKD patients. Then
if a clinician rejects an EHR is fake, we can distinguish between cases where the EHR
is perceived to be totally unrealistic (low on all questions) vs. those which seem not to
be indicative of CKD (low on even-numbered questions). This will also help distinguish
between the biases of different types of clinicians since they will see different types of
patients.

12 Conclusions and Discussions

Synthetic data offers significant advantages in clinical research, including accelerating
study timelines, increasing data accessibility and diversity, and preserving patient pri-
vacy. In this study, we assessed the quality of synthetic data through statistical fidelity
using the Maximum Mean Discrepancy (MMD) metric and clinical realism, evaluated
via blinded clinician assessments. A key contribution of our work is the proposal of nor-
malization strategies to account for variability in clinician ratings. This variability may
stem from differences in regional population exposure, clinical experience, and institu-
tional practice patterns, all of which can bias realism evaluations. However, a central
challenge we encountered was the lack of direct access to real patient data, necessitating
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the development of proxy evaluation methods. To address this, we proposed and tested
two distinct weighting approaches using surrogate datasets:

(1) The Nick-Nipuni method (applied to the Fashion MNIST dataset), where each
clinician is weighted based on their domain specialization and

(2) The Local Exposure method (using the Cornell Lab birdwatching dataset), where
weights reflect the relevance of each data point to the clinician’s experience.

We then applied both strategies to the Iimori synthetic CKD dataset, which con-
tains trajectory information of CKD patients. Here, we constructed two representative
synthetic clinicians one familiar with trajectories showing increasing eGFR values, and
another with decreasing eGFR profiles to simulate differential clinical exposure. These
findings support the development of more robust, context-aware evaluation frameworks
for synthetic clinical data, particularly when real data access is limited. Future work may
extend this by incorporating dynamic clinician modeling and broader patient trajectory
diversity.
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Nomenclature

Equation numbers where a variable is first defined is listed, if appropriate.

c: vector of clinician-weighted rejection scores (7.5).
fj : patient fraction (7.4).
i: record index.
j: clinician index.
m: number of records.
n: number of clinicians.

P (x): number of identified CKD patients with characteristic values x.
p: vector of patient-weighted rejection scores (7.2).
R: matrix of rejection decisions rij (6.1).
Tj : total number of patients seen by clinician j (7.4).
u: vector of unweighted rejection scores (6.2).
W : matrix of patient weights wj(xi) (7.1).
W ∗: matrix of clinician weights w∗

j (xi) (7.5).
x: vector of characteristic values (6.2).
1: vector of all ones (6.3).

Appendix A Appendix

Table A 1 lists many CKD-related variables clinicians may collect patient data for and
the units for each.
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Table A 1. Descriptions of CKD-related variables.
Variable Description

age Age (years)
gender Gender (male/female/other)
ethnicity Ethnicity
race Race
albumin_last Albumin, last recorded value (g/dL)
albumin_min Albumin, minimum value (g/dL)
albumin_max Albumin, maximum value (g/dL)
albumin_median Albumin, median value (g/dL)
hemoglobin_last Hemoglobin, last recorded value (g/dL)
hemoglobin_min Hemoglobin, minimum value (g/dL)
hemoglobin_max Hemoglobin, maximum value (g/dL)
hemoglobin_median Hemoglobin, median value (g/dL)
acrenlfail PMH: Acute and unspecified renal failure (yes/no)
kidnyrnlca PMH: Cancer of kidney and renal pelvis (yes/no)
nephritis PMH: Nephritis; nephrosis; renal sclerosis (yes/no)
otdxkidney PMH: Other diseases of kidney and ureters (yes/no)
bun_last Blood urea nitrogen (BUN), last recorded value (mg/dL)
bun/creatratio_last BUN/Creatinine ratio, last recorded value
creatinine_last Creatinine, last recorded value (mg/dL)
pocbun_last Point-of-care BUN, last recorded value (mg/dL)
poccreatinine_last Point-of-care creatinine, last recorded value (mg/dL)
bun_min BUN, minimum value (mg/dL)
bun/creatratio_min BUN/Creatinine ratio, minimum value
creatinine_min Creatinine, minimum value (mg/dL)
pocbun_min Point-of-care BUN, minimum value (mg/dL)
poccreatinine_min Point-of-care creatinine, minimum value (mg/dL)
bun_max BUN, maximum value (mg/dL)
bun/creatratio_max BUN/Creatinine ratio, maximum value
creatinine_max Creatinine, maximum value (mg/dL)
pocbun_max Point-of-care BUN, maximum value (mg/dL)
poccreatinine_max Point-of-care creatinine, maximum value (mg/dL)
bun_median BUN, median value (mg/dL)
bun/creatratio_median BUN/Creatinine ratio, median value
creatinine_median Creatinine, median value (mg/dL)
pocbun_median Point-of-care BUN, median value (mg/dL)
poccreatinine_median Point-of-care creatinine, median value (mg/dL)
egfr_last eGFR, last recorded value (mL/min/1.73m2)
egfr(nonafricanamerican)_last eGFR (non-African American), last value (mL/min/1.73m2)
egfr(aframer)_last eGFR (African American), last value (mL/min/1.73m2)
egfr_min eGFR, minimum value (mL/min/1.73m2)
egfr(nonafricanamerican)_min eGFR (non-African American), minimum value (mL/min/1.73m2)
egfr(aframer)_min eGFR (African American), minimum value (mL/min/1.73m2)
egfr_max eGFR, maximum value (mL/min/1.73m2)
egfr(nonafricanamerican)_max eGFR (non-African American), maximum value (mL/min/1.73m2)
egfr(aframer)_max eGFR (African American), maximum value (mL/min/1.73m2)
egfr_median eGFR, median value (mL/min/1.73m2)
egfr(nonafricanamerican)_median eGFR (non-African American), median value (mL/min/1.73m2)
egfr(aframer)_median eGFR (African American), median value (mL/min/1.73m2)
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