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Abstract. This paper develops the process of using Richardson Extrapolation to improve the
Kernel Density Estimation method, resulting in a more accurate (lower Mean Squared Error) esti-
mate of a probability density function for a distribution of data in Rd given a set of data from the
distribution. The method of Richardson Extrapolation is explained, showing how to fix conditioning
issues that arise with higher-order extrapolations. Then, it is shown why higher-order estimators
do not always provide the best estimate, and it is discussed how to choose the optimal order of the
estimate. It is shown that given n one-dimensional data points, it is possible to estimate the prob-
ability density function with a mean squared error value on the order of only n−1

√
ln(n). Finally,

this paper introduces a possible direction of future research that could further minimize the mean
squared error.
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1. Introduction. The Kernel Density Estimator (KDE) is a non-parametric
method of estimating the underlying probability density function of some unknown
distribution given a sample of data from that distribution. The KDE always yields
a smooth function, and the fact that it is non-parametric means the estimated prob-
ability density function can take any shape, whether bimodal, sinusoidal, normal, or
any other shape [7].

Research on Kernel Density Estimation has gained popularity since early papers
on the subject by Rosenblatt (1956) [3], Whittle (1958) [8], and Parzen (1962) [2].
This research has a variety of applications in data collection, especially as we consider
higher-dimensional data and the limits of accuracy we can get to even with these more
elusive probability density functions. Cacoullos (1966) first considered multivariate
density estimation [1]. Much literature has been dedicated to improving the speed
and accuracy of the method, such as a paper by Yang (2003) that demonstrates how
a computer can run the algorithm in a more efficient manner through the fast Gauss
transform [9]. However, no recent work has significantly increased the accuracy of the
algorithm in a consistent and general manner.

The KDE of a sample X1, X2, X3, ..., Xn ∈ Rd of data of size n from an unknown
distribution P with twice-differentiable probability density function p(x), using the
Gaussian kernel, is given by

p̂n(x) =
1

nhd

n∑
i=1

e−(||x−Xi||/h)2/2

(2π)d/2
,

where p̂n(x) is the estimated probability density function at point x and h is the
bandwidth parameter that determines the amount of smoothing of the data [7]. The
value of h is generally small. Note that various kernels can be used for KDE, but in
this paper we only consider the Gaussian kernel. The KDE turns each data point into
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a smooth Gaussian bump and adds up all of these bumps to get a smooth estimated
probability density function.

This estimate is approximately equal to the actual probability density function p
plus some error which decreases with larger values of n. This paper uses the mean
squared error (MSE) value as an indicator of error. For one-dimensional data sets (i.e.
d = 1), Whittle showed that the MSE cannot decrease faster than n−1 [8], whereas
we can easily make the error decrease like n−4/5, as explained by Scott (1980) [6] and
as will be shown in section 2. For the general case with d-dimensional data, the error
will instead not be able to decrease faster than n−1/2 for large values of d, but we will
show that a decrease proportional to n−4/4+d can be attained rather easily.

In this paper, we first show the calculations for the MSE in section 2. Then, in
section 3, we expand on this using Richardson Extrapolation to determine a better
estimate that gives us a lower error. In section 4, we show how to continue this
method and surpass obstacles that rise up against Richardson Extrapolation. Finally,
in section 5, we obtain our results and discuss the limitations of this approach, and in
section 6 and section 7, we summarize what we gain by using this method and explore
a possible direction for future research.

We now turn to a detailed derivation of the bias, variance, and expected mean
squared error of the estimator which will be needed in section 3.

2. Bias, Variance, and Mean Squared Error. The kernel density estima-
tor of a probability density function deviates from the actual underlying probability
density function by a certain error. Our measure of error is the mean squared error,
which we calculate in this section. These calculations are standard, as in Rosenblatt
[3], but they form the basis for later parts of this paper.

2.1. Bias. We begin with this statement regarding the bias of the kernel density
estimator:

Theorem 2.1. Given a (2k)-times differentiable probability density function p(x)
with bounded derivatives of order 2k, if the random data X1, ..., Xn sampled from
p(x) are independent and identically distributed (IID), the bias of the kernel density
estimator for p(x) is

E[p̂n(x)]− p(x) = m2(x)h2 +m4(x)h4 + ...+m2k(x)h2k.

Proof. We start with this statement, coming directly from the definition of KDE:

E[p̂n(x)] = E

[
1

nhd

n∑
i=1

e−(||x−Xi||/h)2/2

(2π)d/2

]
.

We assumed that the data X1, ..., Xn are independent and identically distributed, so
that since this is an expectation value, we can replace Xi with X1 (or any single X
value) in this expression.

E[p̂n(x)] = E

[
1

nhd

n∑
i=1

e−(||x−X1||/h)2/2

(2π)d/2

]
.

Now, within the sum, there is no dependence on i, so we can replace the sum with
n times the addend. Then, the n cancels with the n in front of the sum, so we get

E[p̂n(x)] = E

[
1

hd
e−(||x−X1||/h)2/2

(2π)d/2

]
.
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Noting that X1 is our variable here (rather than x or h, which are fixed), we replace
X1 with y in our expression to avoid confusion. We now turn this expectation value
into an integral with respect to y.

E[p̂n(x)] =

∫
Rd

1

hd
e−(||x−y||/h)

2/2

(2π)d/2
p(y) dy.

In order to evaluate this integral, we use change of variables. We substitute

u =
y − x
h

, du = det

(
du

dy

)
dy =

1

hd
dy, y = uh+ x.

The limits of integration remain the same. Our equation becomes

E[p̂n(x)] =

∫
Rd

e−u
2/2

(2π)d/2
p(uh+ x) du.

If we choose a small value for h, then we can use Taylor’s theorem to expand this
integral. We assume the probability density function is (2k)-times differentiable.
Using multi-index notation, with α = (α1, α2, ..., αd), |α| = α1 + α2 + ... + αd, and
α! = α1!α2!...αd!, Taylor’s theorem says

p(x+ uh) =
∑

|α|≤2k−1

∂αp(x)

α!
(uh)α +

∑
|α|=2k

∂αp(x+ cuh)

α!
(uh)α for some c ∈ (0, 1).

The equation for the expectation of p̂n(x) becomes

E[p̂n(x)] =
∑

|α|≤2k−1

∫
Rd

e−u
2/2

(2π)d/2
∂αp(x)

α!
(uh)α du.

We now recognize three things: firstly, assuming that the density function has
bounded (2k)th derivatives, all the integrals in this sum are finite due to the exponen-
tial decay factor; secondly, the |α| = 0 in this sum is simply p(x) times the integral of
the probability density function of the standard normal distribution, which gives p(x)
times 1; lastly, all the integrals with odd |α| are 0 since we integrate an odd function
of u over a domain that is symmetric about the origin. Our equation becomes

E[p̂n(x)]− p(x) = m2(x)h2 +m4(x)h4 + ...+m2k(x)h2k,

where

m2j(x) =
∑
|α|=2j

∫
Rd

e−u
2/2

(2π)d/2
∂αp(x)

α!
uα du

for j 6= k and

m2k(x) =
∑
|α|=2k

∫
Rd

e−u
2/2

(2π)d/2
∂αp(x+ cuh)

α!
uα du for some c ∈ (0, 1).

Note that, although in this proof we assumed the derivatives of order 2k to be
bounded, the bias would be finite even if these derivatives had polynomial growth due
to the exponential decay factor in the integrand.

The following corollary is more relevant for the base use of KDE.
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Corollary 2.2. Given a twice-differentiable probability density function p(x)
with a bounded second derivative, if the random data X1, ..., Xn sampled from p(x)
are IID, the bias of the kernel density estimator for p(x) has magnitude on the order
of h2; in other words,

E[p̂n(x)]− p(x) = O(h2).

Proof. We start with the result of Theorem 2.1. Since h is small, we only take the
h2 term and ignore the rest as higher order. We must assume that the density function
has a bounded second derivative so that m2(x) is finite. We call the maximum value
that the second derivative could possibly achieve l. Therefore, the bias value is at
most

E[p̂n(x)]− p(x) =
lh2

2

The bias is therefore on the order of O(h2).

Note that, for now, we are dismissing the value of l as a constant that does not
change the order of the bias. This will not be true in later sections of this paper.

Although picking a small h would give us that the expected value for the estimated
probability density function is very close to the actual probability density function,
we should not be so quick to simply pick a very small value of h because this would
result in a very large variance.

2.2. Variance. The variance measures the amount that our actual estimate for
the probability density function differs from the expected value of the estimated prob-
ability density function and can be measured by

σ2 = E[(p̂n − E[p̂n])2].

As will be shown, this value approaches infinity as h approaches zero, meaning
that although the expected value of the estimated probability density function will
approach the actual probability density function, our actual estimated probability
density function might be all over the place, resulting in a high mean squared error
despite the low bias.

Theorem 2.3. Given a probability density function p(x), the variance of its kernel
density estimator has magnitude on the order of 1/(nhd); in other words,

σ2 = E[(p̂n − E[p̂n])2] = O

(
1

nhd

)
.

Proof. Plugging in the expression for p̂n and rearranging terms, we get

σ2 =
1

n2
E

( n∑
i=1

(
e−((x−Xi)/h)

2/2

(2π)d/2hd
− E[p̂n(x)]

))2
 .

We now use the fact that the variance of a sum is the sum of the variances. Also, as
before, we use the fact that the data Xi are IID so that we can replace Xi with X1

in this expression. Then, without any dependence on i inside the sum, we replace the
sum with n times the addend.

σ2 =
1

n
E

(e−((x−X1)/h)
2/2

(2π)d/2hd
− E[p̂n(x)]

)2
 .
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As before, we replace X1 with y to avoid confusion. This expectation value is
now turned into an integral. Also, we are still considering a small value of h, so we
can plug in the expression for E[p̂n(x)] that we obtained before.

σ2 =
1

n

∫
Rd

(
e−((x−y)/h)

2/2

(2π)d/2hd
− p(x) +O(h2)

)2

p(y) dy.

Again, as before, we will use the substitution

u =
y − x
h

, du = det

(
du

dy

)
dy =

1

hd
dy, y = uh+ x.

Our equation becomes

σ2 =
hd

n

∫
Rd

(
e−u

2/2

(2π)d/2hd
− p(x) +O(h2)

)2

p(uh+ x) du.

We will now expand this expression, noting that the O(h2) is insignificant compared
to the other terms. We get

σ2 =
hd

n

∫
Rd

(
e−u

2

(2π)dh2d
− 2

(2π)d/2
e−u

2/2

hd
p(x) + p(x)2

)
p(uh+ x) du.

We see that the first term inside this integral is much greater than the other terms as
h gets small, so we simplify this into

σ2 =
hd

n

∫
Rd

e−u
2

(2π)dh2d
p(uh+ x) du+H.O.T.,

whereH.O.T.means Higher Order Terms. Using a similar analysis as when calculating
bias, we can say that

σ2 =
1

nhd
p(x)

∫
Rd

e−u
2

(2π)d
du+H.O.T.

That integral simplifies to 1/(2π)d/2. Therefore, the variance is given by

σ2 =
1

nhd(2π)d/2
p(x) +H.O.T. = O

(
1

nhd

)
.

Thus, as h approaches zero and n is fixed, although the expected value of the
estimated density function approaches the actual density function as shown in Theo-
rem 2.1, the variance approaches infinity. There is a trade off that must be considered
when deciding on a value for h - when we pick a value too large, we will not get a
good estimate of the actual probability density function, but when we pick a value
too small, the variance becomes too large. What we really want to do is minimize the
mean squared error (MSE), which depends on both the bias and the variance.

2.3. Mean Squared Error. The mean squared error takes into account both
the bias and the variance with the following equality:
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Theorem 2.4. The mean squared error of the kernel density estimator is equal
to its variance plus its bias squared. In other words,

E[(p̂n(x)− p(x))2] = σ2 + bias2.

Proof. This proof involves some algebraic manipulation, starting with the defini-
tion of mean squared error.

E[(p̂n(x)− p(x))2] = E[(p̂n(x)− E[p̂n(x)] + E[p̂n(x)]− p(x))2]

= E[(p̂n(x)− E[p̂n(x)])2 + 2(p̂n(x)− E[p̂n(x)])(E[p̂n(x)]− p(x))

+ (E[p̂n(x)]− p(x))2]

= E[(p̂n(x)− E[p̂n(x)])2 + (E[p̂n(x)]− p(x))2]

= E[(p̂n(x)− E[p̂n(x)])2] + (E[p̂n(x)]− p(x))2

= σ2 + bias2,

where we have added and subtracted the same term, E[p̂n(x)], in order to show that
this is the value of the variance, σ2, plus the bias squared.

This MSE is what we actually want to minimize, and this is done when we set
the variance and bias squared equal to each other. So up to a factor of a constant, we
get 1/(nhd) = h4. In other words, we want to choose a value for h that is a constant
times n−1/(d+4). We then get an error value on the order of

σ2 + bias2 = O(h4) = O(n−4/(d+4)).

Note that when d = 1 we get an MSE value on the order of n−4/5, as promised by
Scott [6].

Figure 1 shows estimates of the standard normal distribution in one and two
dimensions using the Kernel Density Estimation. In the first graph, the estimated
and actual functions are compared, while in the second graph, only the estimate is
shown.
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Fig. 1. Examples of density function estimates. (a): Actual and estimated probability density
functions for the one-dimensional standard normal distribution with n=1000. (b): Estimated prob-
ability density function for the two-dimensional standard normal distribution with n=1000. Notice
that the estimate appears to be more accurate for the one-dimensional case.
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The purpose of this paper is to demonstrate a method to reduce the error produced
by using Kernel Density Estimation. The Curse of Dimensionality states that non-
parametric methods such as this one will not be able to achieve an error of O(n−1/2)
for a large value of d, and although our new method does not quite reach this value,
it does improve significantly on the value achieved by this base use of KDE. In the
next section, we present the first step in this direction.

3. Using the Richardson Extrapolation. We now employ a method known
as Richardson Extrapolation to decrease the bias and thereby reduce the error.

We pick two different values for h, which we call h1 and h2. Our estimated
probability density function is now

p̂n,2(x) = c1p̂n,h1
(x) + c2p̂n,h2

(x),

where the subscript 2 in p̂n,2(x) indicates there are 2 values for h, and c1 and c2 are
constant weights. We will use this new estimate to decrease the value of the error.

Theorem 3.1. Using two values of h with the estimator p̂n,2(x), the bias is re-
duced to O(h4).

Proof. We first need to assume that our distribution p is now four times differen-
tiable. Then, recall from subsection 2.1 that

E[p̂n,1(x)] = p(x) + bias, where bias = O(h2) =
lh2

2
+O(h4).

Now, using the linearity of expectation value, we can write

E[p̂n,2(x)] = c1E[p̂n,h1(x)] + c2E[p̂n,h2(x)]

= c1(p(x) +
lh21
2

+O(h41)) + c2(p(x) +
lh22
2

+O(h42))

= (c1 + c2)p(x) +
l

2
(c1h

2
1 + c2h

2
2) +O(h41) +O(h42).

We now choose c1 and c2 so that the following matrix equation is true. The goal
of this is to make E[p̂n,2(x)] be equal to p(x) with a bias of only O(h4). Note that
because of the second part of this equation, one of c1 or c2 must be negative.[

1 1
h21 h22

] [
c1
c2

]
=

[
1
0

]
.

We can solve this for c1 and c2 whenever h1 6= h2 since the determinant is then
non-zero. After doing so, the summed h2 terms of the biases cancel, and we get

E[p̂n,2(x)] = p(x) +O(h41) +O(h42).

Without loss of generality, we assume that h1 is always less than h2 so that we
get

E[p̂n,2(x)] = p(x) +O(h42).

The bias has now been reduced from O(h2) to O(h4) - changed by two entire
orders of magnitude.

Unlike the new bias, the following is true of the new variance.

Theorem 3.2. The order of magnitude of the variance is the same with this new
estimator p̂n,2(x) as with the original one: O(1/(nhd)).
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The proof of this is very similar to that of Theorem 2.3, so we will not show it
here, but the reader is welcome to find it in Appendix A.

We have now shown that p̂n,2 has bias O(h4) and variance O(1/(nhd)). To mini-
mize the error, we set bias squared equal to variance as we did in subsection 2.3. Up
to multiplication by constants, this gives 1/(nhd) = h8; therefore, we set h to be a
constant times n−1/(d+8) and get an error value of

σ2 + bias2 = O(h8) = O(n−8/d+8),

which is visibly better than our previous O(n−4/d+4), as shown in Figure 2. However,
for large values of d, this is still a rather large error value. The next sections are
dedicated to decreasing it further.
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Fig. 2. A visual depiction of using two values of h. (a): Actual and estimated probability
density functions for the one-dimensional standard normal distribution with n=1000 using 2 values
of h. You can see we have a much better estimate for the standard normal probability density
function than in Figure 1a. (b): How to choose two values of h to minimize the mean squared error.
Note that the two values of h cannot be the same, or we cannot find the values of c1 and c2. You
can see how we should choose pairs of h values in the valley in order to minimize error.

4. Expanding on the Richardson Extrapolation. There is no particular
reason to stop at only two values for h. We will instead use r values, keeping with the
notation of Schucany (1977) [5]. We assume that p(x) has 2r derivatives. The value
of our estimate is then

p̂n,r(x) = c1p̂n,h1
(x) + c2p̂n,h2

+ ...+ crp̂n,hr
,

or if we define a vector ~c containing all the weights and a vector ~pn(x) containing each
individual estimate, then

p̂n,r(x) = ~c T ~pn(x).

Then, to find the values of weights, we solve the following matrix equation for c1
through cr by taking the inverse of the left-most matrix R and left-multiplying it on
both sides: 

1 1 1 ...
h21 h22 h23 ...
h41 h42 h43 ...
... ... ... ...



c1
c2
c3
...

 =


1
0
0
...

 .
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Using this method, if we choose 4r = d, it seems we could in theory get the bias to
be so small that our error converges to a limiting value of O(n−4r/(4r+d)) = O(n−1/2)
even for very large values of d. Unfortunately, it doesn’t work out so nicely. The first
obstacle to doing this is that R becomes ill-conditioned as r gets large, meaning that
as consecutive rows get closer to zero, the rows become linearly dependent to the top
row of all ones, numerically speaking. Instead, we must solve for ~c without taking the
inverse of R. In section 5, we will discuss the second obstacle to the coveted n−1/2

result, but here we show the way past the first obstacle.
We start by taking the transpose of the equation above.

[
c1 c2 c3 ...

] 
1 h21 h41 ...
1 h22 h42 ...
1 h23 h43 ...
... ... ... ...

 =
[
1 0 0 ...

]

The r × r matrix RT in the middle of this equation is called a Vandermonde
matrix [4], except each term is squared. We call the row vector on the right hand side

of this equation ~k T . The solution for c1 through cr is

~c T = ~k T (RT )−1.

Then, since ~k T is a row vector with 1 as the first element followed by all 0’s, we know
that ~c T is simply the first row of (RT )−1. However, our goal is to avoid computing
the inverse of RT , so we will work around this using using the method of Lagrange
Interpolation. We write

RT


a0
a1
a2
...

 =


P1(h21)
P1(h22)
P1(h23)
...

 , where P1(h2) = a0 + a1h
2 + a2h

4 + ...+ ar−1(h2)r−1.

Rearranging terms, we get 
a0
a1
a2
...

 = (RT )−1


P1(h21)
P1(h22)
P1(h23)
...

 .
In order to extract the first column of (RT )−1, we pick a polynomial P1(h2) such

that P1(h21) = 1 and P1(h2) = 0 for all other h’s. Using Lagrange Interpolation, such
a polynomial looks like this:

P1(h2) =
(h2 − h22)(h2 − h23)...(h2 − h2r)
(h21 − h22)(h21 − h23)...(h21 − h2r)

.

Fortunately, we do not have to expand this completely; since we only need to find
the first row of (RT )−1, we only need to compute a0, the constant term. Since the
column vector of polynomials on the right is simply 1 followed by 0’s, a0 is equal to
the element in the first row and first column of (RT )−1, which in turn is equal to c1.
So, we calculate

c1 = ((RT )−1)11 = a0 =
(−h22)(−h23)...(−h2r)

(h21 − h22)(h21 − h23)...(h21 − h2r)
.
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Next, we obtain c2 by finding the element of the first row and second column of
(RT )−1. This is done by finding the value of a0 for a polynomial P2(h) that has value
1 for h = h2 and 0 for all other h’s. As expected following the pattern, this comes
out as

c2 = ((RT )−1)12 = a0 =
(−h21)(−h23)(−h24)...(−h2r)

(h22 − h21)(h22 − h23)(h22 − h24)...(h22 − h2r)
.

Thus we generalize: the formula for ci is

ci =
r∏

j=1, j 6=i

(
−h2j

h2i − h2j

)
.

5. Limitations due to the Derivative. Using this method, we can extend the
order of the Richardson Extrapolation without having to worry about inverting the
matrix. However, it is still not convenient to use a very large value of r. This is
because, although it seems that MSE has order O(n−4r/(4r+d)), we are neglecting the
“constant” term multiplied by the bias, which although is constant for fixed r ends
up blowing up enormously with increasing values of r.

Recall from subsection 2.1 that for r = 1 the bias is equal to lh2

2 , where l is
bounded above by the maximum possible value of the second derivative of p(x). For
the general case with r values of h, a straightforward generalization of Theorem 3.1
shows that the bias becomes

r∑
i=1

(
lrh

2r
i

2

)
,

where lr is the weighted integral of the (2r)th derivative of p(x) times u2r. We can
calculate that lr is bounded by the maximum value of the (2r)th derivative of p(x).
We must sum over all the different h’s, but if one h is even slightly bigger than the
others, then raising it to the power of 2r makes it much more significant than the
others and this can simplify to lrh

2r/2.
As it turns out, for the example with a Gaussian density function, where p(ρ) =

e−ρ
2/2/(2π)d/2, the value of lr blows up enormously for increasing values of r - so

much so that despite the fact that h2r continues to become smaller, the bias can no
longer decrease.

In order to find the true order of magnitude of the bias, then, we must find
the order of magnitude of lr. This could vary between different probability density
functions, so we will look at the standard normal distribution as an example, where
p(ρ) = e−ρ

2/2/(2π)d/2. The (2r)th derivative of this function with respect to ρ can

be expressed as e−ρ
2/2/(2π)d/2 times a polynomial. The maximum possible absolute

value of a derivative is therefore the absolute value of the constant term of this poly-
nomial divided by (2π)d/2. The absolute value of this constant term is found to be
(2r − 1)!!, the so-called double factorial or semifactorial of 2r − 1. For example, for
r = 4, the constant term is 7!! = 7 ∗ 5 ∗ 3 ∗ 1 = 105, so the value of l4 is 105/(2π)d/2.
Note that d is fixed and we are therefore treating (2π)d/2 as a constant.

The next step is to figure out how big (2r− 1)!! is. We start by relating (2r− 1)!!
to (2r)!! in the following lemma.

Lemma 5.1. The ratio of (2r−1)!! to (2r)!! is approximately
√
πr. More precisely,

(2r)!!/(2r − 1)!! ∼
√
πr.
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Proof. First, note these intuitive equalities regarding the double factorial:

(2r)!! = 2rr!, (2r − 1)!! =
(2r)!

(2r)!!

Substituting and using Stirling’s approximation, we get

(2r)!!

(2r − 1)!!
=

22r(r!)2

(2r)!
∼ 22r

(√
2πr

(
r
e

)r)2
√

2π2r
(
2r
e

)2r ∼ 22r
√
πr · 1/22r ∼

√
πr.

We will neglect constants since we are only trying to find the order of magnitude.

(2r − 1)!! = O(
(2r)!!√

r
).

Next, note that the terms being multiplied together in (2r)!! correspond to two
times each term being multiplied in r!, so we can establish that (2r)!! = 2r · r!. Thus,

(2r − 1)!! = O(
2r · r!√

r
).

Next, using Stirling’s approximation, we estimate r! as
√
r(r/e)r. Our equation be-

comes

(2r − 1)!! = O(
2r ·
√
r√

r

(r
e

)r
) = O(

(
2r

e

)r
).

The order of the bias is therefore

bias = O

(
rr
(

2

e

)r
h2r
)
.

We now calculate the bias-variance tradeoff as we did in subsection 2.3:

bias2 = σ2

O

(
r2r
(

2

e

)2r

h4r

)
= O

(
1

nhd

)
h =

1

n1/(4r+d)

( e
2r

)2r/(4r+d)
.

This gives us a value for the best theoretical h in terms of n, d, and r. In practice,
we choose r values of h that are approximately equal to this theoretical best value, but
not actually equal, since that would result in division by zero when finding ~c. We now
compute the best value of r - that is, the best order of the Richardson Extrapolation
- in terms of n and d. The MSE is equal to the bias squared plus the variance, so we
plug this value of h into the variance:

MSE = O

(
1

nhd

)
= O

(
1

n4r/(4r+d)

(
2r

e

)2rd/(4r+d)
)
.

Now we take the derivative with respect to r and set it equal to zero. (Note: the
d in the left side of the following equation is the differential; in the right side, it is the
dimension.)

d MSE

dr
= 2

2dr
4r+d+1e−

2dr
4r+d r

2dr
4r+dn

−4r
4r+d (4r+d)−2d(−2 ln(n) + 4r+d ln(r) +d ln(2)) = 0
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Since only the last term here could equal zero, we have

(−2 ln(n) + 4r + d ln(r) + d ln(2)) = 0.

Solving this equation for r gives us a formula for the best value of r given n data
points. The solution turns out to be

r =
1

4
d W

(
2n2/d

d

)
,

where W (x) is the product log function, also known as the Lambert-W function, that
can be expressed as the inverse of the function f(W ) = WeW .

It is convenient to choose n so that the Lambert-W term is approximately equal
to 1, so r = d/4. Then, 4r/(4r + d) = 1/2 and 2rd/(4r + d) = d/4. Plugging this
back into the formula for MSE, we get

MSE = O

 1

n1/2

dW
(

2n2/d

d

)
2e

d/4
 = O(n−1/2(dW (α))d/4),

where α = 2n2/d/d. This is similar to the coveted goal value of O(n−1/2), but with a
correction factor that gets larger with larger d and larger n. This correction factor,
unfortunately, is not negligible: even for moderate values of d, dd/4 becomes very
large.

6. Summary of Results. It is thus shown that we can achieve a mean squared
error value of O(n−1/2(dW ((2n2/d)/d))d/4). This result for large values of d may be
confusing, so we consider the case with d = 1, when we want MSE = O(n−1).
Then, since we are interested in large n, we assume r is also large and approximate
4r/(4r + 1) ≈ 1 and 2r/(4r + 1) ≈ 1

2 . We also argue that r = W (α)/4 = W (2n2)/4
is approximately equal to ln(2)/4 + ln(n)/2. Plugging this back into the formula for
MSE, we get

MSE = O

(
1

n

(
ln(n)

e

)1/2
)

= O

(
1

n

√
ln(n)

)
.

This is similar to the coveted goal value of O(1/n) but with a correction factor of√
ln(n).

7. Future Research. Although this method improves the error value associated
with the Kernel Density Estimator, it is very limited and certainly does not break the
Curse of Dimensionality due to the correction factors associated with our final result.
There is a variety of possible directions for further research, and here we present one
of them. Instead of imposing many Richardson Extrapolation constraints in order
to determine the values in ~c, we use one fewer such constraint and instead impose
the constraint ~c TV ~c = ~c TB~c, where V and B are the variance and bias matrices,
respectively:

V =
1

n


1
hd
1

√
2

(h2
1+h

2
2)

d/2 ...
√
2

(h2
1+h

2
2)

d/2
1
hd
2

...

... ... ...

 B =

 h41 h21h
2
2 ...

h21h
2
2 h42 ...

... ... ...

 .
This could result in an even lower mean squared error. Figure 3 shows the error

when two values of h are chosen and the values of c1 and c2 are computed using this
constraint.
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Fig. 3. When choosing c1 and c2 to satisfy the constraint ~c TV ~c = ~c TB~c, we choose pairs of
h values to minimize the mean squared error. The resulting MSEs are comparable to those using
first order Richardson Extrapolation, shown in Figure 2b.

Appendix A. Proof of Theorem 3.2.
The new calculation of the variance is the following, with similar simplification

steps as with the case with a single value for h in Theorem 2.3. For conciseness, let

Kh(x, a) =
e−((x−a)/h)

2/2

(2π)d/2hd
.

σ2 = E[(p̂n,2 − E[p̂n,2])2]

=
1

n2
E

( n∑
i=1

(c1(Kh1
(x,Xi)− E[p̂n(x)]) + c2(Kh2

(x,Xi)− E[p̂n(x)]))

)2


=
1

n
E[(c1(Kh1

(x,Xi)− E[p̂n(x)]) + c2(Kh2
(x,Xi)− E[p̂n(x)]))2]

=
1

n

∫
Rd

(c1(Kh1(x, y)− p(x) +O(h31)) + c2(Kh2(x, y)− p(x) +O(h32)))2p(y) dy

=
1

n

∫
Rd

(c1(Kh1
(x, y)− p(x) +O(h31)) + c2(Kh2

(x, y)− p(x) +O(h32)))2p(y) dy

=
1

n

∫
Rd

(c21(Kh1
(x, y))2 + c22(Kh2

(x, y))2 + 2c1c2(Kh1
(x, y))(Kh2

(x, y)))p(y) dy

The first two terms of the integrand can be split into their own integrals, and the
calculation becomes very similar to that of the variance in Theorem 2.3. From those
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two terms, we get O( 1
nhd

1
) +O( 1

nhd
2
). The last term requires some more calculation.

1

n

∫
Rd

(
2c1c2

e−((x−y)/h1)
2/2−((x−y)/h2)

2/2

(2π)dhd1h
d
2

)
p(y) dy

=
1

n

∫
Rd

(
2c1c2

e−((x−y)
2/2)((h2

1+h
2
2)/h

2
1h

2
2)

(2π)dhd1h
d
2

)
p(y) dy

=
1

n

∫
Rd

(
2c1c2

e−((x−y)/(h1h2/
√
h2
1+h

2
2)

2/2

(2π)dhd1h
d
2

)
p(y) dy

=
1

n

∫
Rd

(
2c1c2

e−((x−y)/v)
2/2

(2π)dhd1h
d
2

)
p(y) dy,

where we substituted v = h1h2√
h2
1+h

2
2

. We now use the substitution

u =
y − x
v

, du = det

(
du

dy

)
dy =

1

vd
dy, y = uv + x; we then obtain

2vdc1c2
(2π)dnhd1h

d
2

∫
Rd

e−u
2/2p(uv + x) du =

2
√

2p(x)c1c2
(h21 + h22)d/2n(2π)d/2

.

We combine this result with the other two terms from the integral to get

σ2 =
p(x)

n(2π)d/2

(
c21
hd1

+
c22
hd2

+
2
√

2c1c2
(h21 + h22)d/2

)
.

After all these calculations, we can see that the variance has not changed - it is still
O
(

1
nhd

)
.
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