

SIAM QIS WORKSHOP 2024 Quantum Machine Learning An Introduction and Perspective

Alexander M. Dalzell AWS Center for Quantum Computing

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Confidential and Trademark.

Introduction … and, a disclaimer

- QML brings together many areas: ML / AI, theoretical & applied CS, physics, quantum info science, hardware engineering, **applied math**, etc.
- My viewpoint on QML is shaped by:
	- my background in physics / theoretical CS
	- my research preference for intermediate-to-far term applications for fault-tolerant quantum computers

Goals and key questions

- Why might we hope quantum computing will be good at ML in the first place?
- What are the biggest outstanding technical challenges in QML (and how can Applied Math help?)
- What is the outlook of QML as an application area of quantum computing?

Example: Quantum neural networks / variational quantum algorithms

Key idea: entangled quantum states can capture nonclassical correlations

- Quantum states live in a high-dimensional vector space, not directly simulable classically
- Interference and entanglement allow quantum information to be processed in fundamentally nonclassical way
- New tool to try on big data problems

Example: Quantum neural networks (QNNs)

But first, classical neural networks:

- Computes functions from inputs to outputs
- Tunable weights, trained by optimizing a loss function
- Training occurs via (stochastic) gradient descent, with "backpropagation"
- **Heuristic**

Example: Quantum neural networks (QNNs)

Parameterized quantum gates

- Computes functions from inputs to outputs
- Tunable gate parameters trained by gradient descent
- Heuristic

QNN caveats

• While somewhat NISQ-friendly, QNNs **cannot be scaled indefinitely without quantum error correction**

QNN caveats

- While somewhat NISQ-friendly, QNNs **cannot be scaled indefinitely without quantum error correction**
- **Barren plateaus –** due to exponentially large Hilbert space, gradients of loss function can be exponentially small
	- Recent unification of barren plateau phenomenon in language of Lie algebras and their subalgebras [Larocca et al. 2022] [Larocca et al., 2024]
- **No quantum analogue of backpropagation** for a model with $O(M)$ parameters, computing function requires $O(M)$ work but computing gradient of function requires at least $O(M^{3/2})$ work [Abbas et al. 2023]

QNN caveats

- While somewhat NISQ-friendly, QNNs **cannot be scaled indefinitely without quantum error correction**
- **Barren plateaus –** due to exponentially large Hilbert space, gradients of loss function can be exponentially small
	- Recent unification of barren plateau phenomenon in language of Lie algebras and their subalgebras [Larocca et al. 2022] [Larocca et al., 2024]
- **No quantum analogue of backpropagation** for a model with $O(M)$ parameters, computing function requires $O(M)$ work but computing gradient of function requires at least $O(M^{3/2})$ work [Abbas et al. 2023]
- © 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved. • **Classical ML is too good!**

9

Example: QML via quantum linear algebra

Key idea: quantum computing and ML are both highdimensional linear algebra

A quantum algorithm on $log(n)$ qubits is a sequence of sparse matrix-vector multiplications in n -dimensional vector space

Example: Support vector machine

<mark>?</mark>

W

 \overline{b}

 M labelled training samples (x_i, y_i) where x_i is an N dimensional vector

[See Rebentrost, Mohseni, Lloyd 2013]

Goal: find "maximum margin" hyperplane described by normal direction w , offset b

Other examples of QML problems with linear algebra

- Recommendation systems
- Principal component analysis
- Supervised cluster assignment
- Gaussian process regression

[Kerenidis, Prakash, 2017]

[Lloyd, Mohseni, Rebentrost, 2014]

[Lloyd, Mohseni, Rebentrost, 2013]

[Zhao, Fitzsimons, Fitzsimons, 2019]

Problem often reduces to linear system of equations

Often, in QML applications one also assumes A is low rank, or close to low rank

HHL algorithm can prepare quantum state encoding linear system solution in logarithmic time

Solution vector

x_0 x_1 x_2 x_3 $\mathcal{X}_\mathcal{A}$ $\ddot{\cdot}$ x_{n-2} x_{n-1} $|x\rangle =$ 1 $\frac{1}{|x||}\sum_{i=1}^{n}$ $i = 0$ $n-1$ $x_i|i\rangle$ **Quantum state**

[Harrow, Hassidim, Lloyd, 2009]

HHL algorithm (2009) Prepares the state $|x\rangle$ in time κ^2 polylog(n)

Later improved to κ polylog (n) See, e.g. [Ambainis 2010] [Costa et al. 2021]

HHL algorithm can prepare quantum state encoding linear system solution in logarithmic time

Solution vector

aws

x_0 x_1 x_2 x_3 $\mathcal{X}_\mathcal{A}$ $\ddot{\cdot}$ x_{n-2} x_{n-1} $|x\rangle =$ 1 $\frac{1}{|x||}\sum_{i=1}^{n}$ $i = 0$ $n-1$ $x_i|i\rangle$ **Quantum state**

© 2024, Amazon Web Services, Inc. or its affiliates. All rights reserved

[Harrow, Hassidim, Lloyd, 2009]

HHL algorithm (2009) Prepares the state $|x\rangle$ in time κ^2 polylog(n)

Later improved to κ polylog (n) See, e.g. [Ambainis 2010] [Costa et al. 2021]

Compare to classical iterative methods

- Gaussian elimination $O(n^{2.37})$
- Conjugate gradient method $O(\sqrt{k} n)$ for psd sparse matrices
- Randomized Kaczmarz method $O(\kappa^2 n)$ for low-rank matrices

Exponential speedup?!?!

Caveat #1: Output problem

• Need to read out useful information from state

$$
|\mathbf{x}\rangle = \frac{1}{\|\mathbf{x}\|} \sum_{i=0}^{n-1} x_i |\mathbf{i}\rangle
$$

Measuring this state yields outcome *i* with probability $\frac{x_i^2}{\|x_i\|^2}$ $||x||^2$

Caveat #1: Output problem

• Need to read out useful information from state

$$
|x\rangle = \frac{1}{\|x\|} \sum_{i=0}^{n-1} x_i |i\rangle
$$

Measuring this state yields outcome *i* with probability $\frac{x_i^2}{\|x_i\|^2}$ $||x||^2$

- Learning entire state costs $O(n)$ copies, negating exponential speedup
- Can read out <u>one</u> quantity to error ε at multiplicative overhead of $O(1/\varepsilon)$

Caveat #1: Output problem

• Need to read out useful information from state

$$
|\mathbf{x}\rangle = \frac{1}{\|\mathbf{x}\|} \sum_{i=0}^{n-1} x_i |\mathbf{i}\rangle
$$

Measuring this state yields outcome *i* with probability $\frac{x_i^2}{\|x_i\|^2}$ $||x||^2$

- Learning entire state costs $O(n)$ copies, negating exponential speedup
- Can read out one quantity to error ε at multiplicative overhead of $O(1/\varepsilon)$
- End-to-end problem needs to rely on a small number of quantities, and not require high precision
- Example: SVMs new vector can be classified by reading out 1 number

Caveat #2: Input problem

• How is it possible that the algorithm has runtime $\text{polylog}(n)$ when the data takes $O(n)$ space to even write down?

Caveat #2: Input problem

- How is it possible that the algorithm has runtime $\text{polylog}(n)$ when the data takes $O(n)$ space to even write down?
- Answer: parallelism, via assumption of quantum RAM

Quantum RAM allows data to be accessed
in superposition

$$
\sum_{i=0}^{n-1} \alpha_i |i\rangle \mapsto \sum_{i=0}^{n-1} \alpha_i |i\rangle |f(i)\rangle
$$
Many QML algorithms assume this operation can be done at cost polylog(*n*)

Caveat #2: Input problem (cont'd)

[See Jaques, Rattew, 2023]

- Assumption of $polylog(n)$ -cost QRAM is **controversial**
	- Assumption roughly holds for classical RAM
	- QRAM not perfectly compatible with quantum error correction
	- No compelling hardware proposal for large-scale physical QRAM

• Without assumption of cheap QRAM, exponential speedup is gone

Caveat #3: "dequantization" of QML reduces available quantum speedup in many cases

- One should compare QML algorithms to classical algorithms under analogous input assumptions
- "Sample-and-query" access model for classical algorithms is analogue of QRAM
	- Given dataset represented by a vector $x \in \mathbb{R}^n$, one can **query** entries x_i of x, or **sample** an entry with probability $\frac{x_i^2}{\|x_i\|^2}$ $||x||^2$

Caveat #3: "dequantization" of QML reduces available quantum speedup in many cases

- One should compare QML algorithms to classical algorithms under analogous input assumptions
- "Sample-and-query" access model for classical algorithms is analogue of QRAM
	- Given dataset represented by a vector $x \in \mathbb{R}^n$, one can **query** entries x_i of x, or **sample** an entry with probability $\frac{x_i^2}{\|x_i\|^2}$ $||x||^2$
- 2018: Quantum recommendation systems algorithm "dequantized" via classical algorithm with $\operatorname{poly}\left(\frac{\kappa}{2}\right)$ $\frac{\kappa}{\varepsilon}$) polylog (n) total cost [Tang, 2018]
- Also dequantized: Quantum Principal Component Analysis, Support Vector Machines, Nearest Centroid Classification, HHL for low-rank matrices

Other topics not covered

- Topological data analysis [Berry et al. 2024] [McArdle, Gilyén, Berta, 2022]
- Learning theory (e.g. PAC learning) [Arunachalam, de Wolf, 2017]
- Energy-based models (e.g. quantum Boltzmann machines)

[Amin et al. 2017] [Schuld, Petruccione 2021]

- Tensor PCA [Hastings, 2020]
- Training sparse classical neural networks via quantum algorithms for nonlinear differential equations [Liu et al., 2023]
- Learning with quantum data

[Chen, Cotler, Huang, Li, 2022]

Technical opportunities for applied math in QML

- **Heuristic algorithms** how to gather evidence with limited empirical data?
- **End-to-end problems** how to connect the capabilities of quantum computers with real-world problems that aren't served by classical ML?
- **More creative solutions to input-output problems**

Applications where input is small and calculation is hard offer clearer path to quantum advantage

aws

Conceptual outlook and next steps

- QML needs new ideas to circumvent known caveats and expected scaling issues
- The energy in quantum computing is moving away from NISQ and toward fault-tolerant (FT) quantum computing
- What can we learn about QML from early FT devices?
- What "quantum data" problems are interesting in science and industry, and can we solve them?

Some more references

- **General**: https://arxiv.org/pdf/1707.08561
- **[On classification of different QM](https://arxiv.org/abs/1307.0471)L tasks: F** https://arxiv.org/[pdf/2303.09491](https://arxiv.org/pdf/2310.03011)
- **Quantum algorithm for training sparse class** networks: https://www.nature.com/articles
- **Quantum neural networks**: https://arxiv.or
- Quantum algorithms for support vector m https://arxiv.org/abs/1307.0471

• General: Sec. 9 of https://arxiv.org/pdf/231

Notes after presentation

- **Thank you to attendees who pointed out mistake in conjugate gradient complexity (it has been fixed in this version)**
- **I have added more references**