
Mean Imputation and Stochastic Coordinate Descent for Linear Systems with
Missing Data

Meha Patel∗ , Samuel Rath† , and Chupeng Zheng‡

Projet Advisor: Anna Ma§

Abstract. As big data problems become more prevalent, the need to accurately approximate solutions to large-
scale linear systems increases. Many real-world big data problems are also accompanied by the risk
of missing or incomplete data, further complicating the linear models assigned to them. Current
methods to address missing data involve deletion or zero imputation, which introduces bias to the
model. We propose a model that adapts Stochastic Coordinate Descent (SCD) to handle missing data
in linear systems and utilizes µ-imputation to retrieve a better approximation of the original data.
We prove that in expectation, our proposed algorithm, µ-imputation mSCD utilizes an unbiased
estimator of the gradient of the least-squares objective function when using mean imputation in
the absence of data. Furthermore, we compare our algorithm’s performance on synthetic data to
closely related algorithms: zero-imputation mSCD and SCD. Finally, we apply µ-imputation mSCD
on real-world data to demonstrate the usefulness and viability of our proposed algorithm.

1. Introduction. Large-scale data is crucial in training algorithms that are being imple-
mented and utilized today. However, the data collection process to train such algorithms is
often imperfect and can lead to noisy and incomplete data. For example, malfunctions in
physical measurement devices can cause data to become corrupt or, in extreme instances,
unavailable. As another example, a person may skip questions on a questionnaire to save time
resulting in incomplete survey data. While a straightforward approach for dealing with miss-
ing data is to impute the missing data with zeros or ignore missing data altogether (throwing
out any and all incomplete data points), this quickly becomes impractical and inefficient.

Other methods for solving missing data problems consider imputation methods in which
a new data set is created using information from the available data set. For example, in [6],
Mukhopadhyay and Mukherjee propose an algorithm for imputing incomplete streaming data
using a constant factor times the possibly imputed data at the previous time instance. While
this method eliminates any inefficiency of solving a matrix with missing entries and provides
a more accurate estimation of the full matrix, it is not independent of data being missing at
random. Mukhopadhyay and Mukherjee assume that there is a previous entry from which
we can draw information to determine the following entry. When we face the problem of
incomplete data sets, we often find that the data is missing independently at random. This
work focuses on missing data and how it arises in linear systems. In particular, we consider
the following linear system of equations Ax = y where A ∈ Rm×n is the measurement matrix
that is not entirely known, i.e. only some of its entries are known, and we consider the
over-determined case in which m ≥ n, x ∈ Rn is the unknown signal we wish to find, and
y ∈ Rm are the measurements. In most general cases, this system can be solved as x = A†y,

∗California State University Long Beach, Long Beach, CA (meha.patel01@student.csulb.edu)
†San Diego State University, San Diego, CA (sarath@sdsu.edu)
‡University of Chicago, Chicago, IL (chupenz@uchicago.edu)
§University of California, Irvine, Irvine, CA (anna.ma@uci.edu)

Copyright © SIAM

Unauthorized reproduction of this article is prohibited

 214

mailto:meha.patel01@student.csulb.edu
mailto:sarath@sdsu.edu
mailto:chupenz@uchicago.edu
mailto:anna.ma@uci.edu

where A† denotes the Moore-Penrose pseudo-inverse of A. However, this method can become
computationally expensive for large-scale linear systems, i.e., when m and n become very large.
In this regime, one may not even be able to load the entire matrix A into working memory,
let alone compute its pseudo-inverse to approximate the solution to the linear system.

Handling large-scale data sets may be impossible if the computer memory is limited, so
stochastic iterative methods with low memory footprint have become a popular choice for
solving large-scale linear systems. Randomized Kaczmarz (RK) and Stochastic Gradient De-
scent (SGD) are examples of stochastic iterative methods that can be employed to solve linear
systems. By adapting these methods for specialized settings, improved performance results
can be empirically and theoretically verified. For e xample, i n [3], Ma a nd N eedell propose
missing Stochastic Gradient Descent (mSGD), a stochastic iterative projection method used
for solving large-scale data that is missing at random. Another example is in [7], where Needell
shows that RK can be used to solve a linear system corrupted by noise.

Another example of a stochastic iterative method that works well on large-scale data is the
Stochastic Coordinate Descent (SCD) method, also known as the Randomized Gauss-Seidel
(RGS) method. When applied to linear systems, SCD requires processing one column of the
matrix at a time, and thus is useful when we can only access the column-wise information.
SCD minimizes a given objective function by moving the approximate solution along one
coordinate direction at each iteration. In the linear system case, since only one column is
required in every iteration, SCD does not consume much working memory. Other works that
have examined the use of SCD to solve linear systems include [2], where Leventhal and Lewis
show the expected linear convergence rate of a randomized coordinate descent algorithm, and
[8], where Nesterov compares the convergence rates for both constrained and unconstrained
versions of the randomized coordinate descent method and their efficiency es timates. It should
also be noted that SCD can be applied to solve systems in the under-constrained case, when
m < n. For example, in [4], Ma, Needell, and Ramdas, extend SCD to allow for convergence
to the least squares norm solution. Much like SGD or RK, SCD can also be adapted to
specialized settings, such as when data are missing at random.

In this work, we adapt SCD to solve the least squares problem by utilizing mean imputation
when missing-ness in data can be modeled as independent and identically distributed (i.i.d.)
Bernoulli random variables. We show that the iterates of the proposed adaptation to SCD,
named µ-imputed mSCD, move in the direction of the least squares gradient in expectation.
To demonstrate the efficacy of our algorithm, we perform numerical experiments on synthetic
and real-world data.

2. Background. We examine two stochastic iterative methods that can be used to solve
linear systems. Both methods are advantageous to use in the large-scale setting as they only
require rows or columns of the matrix in each iteration.

Before we begin, we briefly d iscuss t he n otation a dopted i n t his m anuscript. We will
denote matrices by bold capital letters and vectors by bold lowercase letters. We let m ∈ N
and n ∈ N be the number of rows and columns for the data matrix A respectively. We let
1m×n be an m × n ones matrix. The missing data matrix will be denoted as Ã. We let A:j
denote the jth column and Ai: denote the ith row of matrix A. Let || · ||F denote the Frobenius
norm and diag(B) ∈ Rn×n denote the diagonal matrix containing the diagonal of B.

215

2.1. Stochastic Gradient Descent (SGD). The SGD algorithm is a popular method for
solving optimization problems. In its most general form, the algorithm minimizes an objective
function F (x) =

∑
i fi(x) via the iterative procedure

xk+1 = xk − αk∇fi(xk),

where αk is the step size at the kth iteration and ∇fi(xk) is the gradient of fi(xk). Intuitively,
SGD uses fi(xk) is an unbiased estimator of the gradient of the objective ∇F (x) and so
on average moves iterates in the direction of descent towards the minimizer. When solving
large-scale linear systems, SGD can be used to minimize the least-squares objective function

F (x) =
1

2m
||Ax− y||2 = 1

m

m∑
i=1

fi(x),

where fi(x) = 1
2(Ai:x − yi)

2.Thus, at every iteration, this method selects the ith row of A
at random and computes fi(x) such that ∇fi(xk) = A∗

i:(Ai:xk − yi).This is ideal when A is
extremely large and only the rows of the matrix can be accessed.

2.2. Stochastic Coordinate Descent (SCD). The Stochastic Coordinate Descent algo-
rithm is another iterative method for solving optimization problems. In general, the SCD
algorithm randomly selects a coordinate j and approximately minimizes an objective function
L(x) in that coordinate direction via the iterates:

(2.1) xk+1 = xk − αkℓj(xk),

where αk is the step size at the kth iteration. When solving linear systems using SCD, we
wish to minimize the least squares objective

L(x) =
1

2n
||Ax− y||2,

whose gradient is given by

∇L(x) =
n∑

j=1

1

n
ℓj(x)

where ℓj (x) = (A:
T
j (Ax − y))ej , and A:j is the jth column of our matrix A. Standard

implementations of SCD use ℓj (x) as an unbiased estimator for the gradient of the objective
function, i.e., E[ℓj (xk)] = ∇L(x). Because of the coordinate-wise updates on xk+1, one need
not recompute the residual vector Axk − y at every iteration. Instead, the residual vector
can be tracked in each iteration and its update would only require the chosen column of A.
Thus, this algorithm will only require a single column of the matrix of A in each iteration.

3. Main Results. This section introduces the missing data model adopted in this work and
the motivation for mean imputation. We also discuss a variation of the previously studied
mSGD algorithm [3], which we identify in this paper as a zero imputation approach. In
Section 3.1, we introduce our model and motivate it in Section 3.2. Section 3.3 outlines our
proposed method and the theoretical justification for our method i s provided in Section 3.4.

3.1. Missing Data Model. In this work, we assume that data are missing completely at
random. This is the same assumption that was adopted in [3]. Such model assumptions can
be satisfied by d esign: in a survey the surveyor can randomly select which questions to reveal
to a participant, causing survey answers to be missing completely at random. In another

216

example, in an extremely large-scale setting where even entire rows or columns of a matrix
cannot be loaded into memory, one can consider taking a random sample of entries in the row
or column such that the sampling satisfies our model. For simulation purposes, we choose p
to represent the probability of existing data in our sample set. However, in real applications,
we assume that we have some knowledge regarding much data is already missing from our
dataset. Using this probabilistic assumption of missing entries, we are able to calculate the
least squares solution without any additional information regarding our data matrix A. More
concretely, we assume that the entries of A are missing with probability 1− p, as done in [3].
We also similarly define a binary mask as:

Definition 3.1 (Binary Mask). A binary mask is a matrix D ∈ {0, 1}m×n such that

Dij
iid∼ Bern(p),

where p ∈ [0, 1].

The binary mask in Definition 3.1 determines whether entries of A are missing. If Dij = 1
then Aij is not missing and if Dij = 0 then Aij is missing. In other words, entries of A are
missing with probability 1 − p independently, and the matrix Ã where zeros are imputed to
replace missing values, can be written as Ã = A ⊙D where ⊙ denotes the Hadamard (i.e.,
element wise) product.

3.2. Mean Imputation. The missing data model we consider here is the same model
adopted in [3] where Ã is a matrix with zeros imputed where data is missing and data is
assumed to be missing completely at random. If the original matrix has mean zero entries
then this is a reasonable imputation, though that is not always the case. In addition, in some
applications zero values can be meaningful. For example, in single-cell RNA sequences, zeros
represent a lack of or low gene expression and thus imputing zeros into a matrix with missing
data creates a misrepresentation of the data itself [1].

The choice of proper imputation value heavily depends on the application at hand. With-
out any additional information, a common choice for imputation is the mean value of the
matrix (or feature). In fact, even when zero values are not meaningful in a data matrix,
imputing empirical mean values from the given data provides a better approximation of the
original matrix when compared to zero mean imputation, as shown in Lemma 3.5.

To allow for variable imputation, we define the µ-imputed matrix as follows:

Ã

Definition 3 .2 (µ-Imputed Matrix). Let A ∈ R m×n and µ ∈ R . Given b inary mask D , the
µ-imputed matrix is defined as:

= A ⊙ D + µ(1m×n − D),

where ⊙ denotes the Hadamard product.

Definition 3.2 presents the µ-imputed matrix Ã where the value µ is being imputed in all
entries that are determined to be missing by D. While Definition 3 .2 imputes only a single
value µ into the matrix Ã, the definition can be generalized to allow for varying mean values
across rows and/or columns. This can be accomplished by defining a mean matrix M ∈ Rm×n

where Mij = µij , and µij is the appropriate imputation value of entry (i, j). Then, one can
217

define

Ã = A⊙D +M ⊙ (1m×n −D).

For the remainder of this work, we consider the setting in which the same value µ is imputed
in all entries for simplicity, but this work easily extends to the more general case in which
different values are imputed into the missing data matrix A.

3.3. µ-imputed mSCD Algorithm. In this work, we propose a variant of SCD for missing
data such that the iterates utilize an unbiased estimator for the least squares gradient. Before
we discuss our method, we introduce some additional notation. Let 1m×n be an m× n ones
matrix. Let µ ∈ R be a fixed scalar, µ be a vector containing only values of µ whose dimension
will be specified when context is unclear, and M = µ1m×n.

Suppose we apply SCD to the least squares objective using the µ−imputed matrix Ã
directly, and we let µ = µ1m×1. In this case, we denote the objective function:

L̃(x) =
1

2n
||Ãx− y||2,

and the SCD iterate (2.1) is

ℓ̃j(x) = (ÃT
:j(Ãx− y))ej .

If we take the expectation of ℓ̃j(x) with respect to the randomness from the binary mask and
random choice of coordinate direction j, we find that ℓ̃j(x) is no longer an unbiased estimator
of the gradient of the objective. In particular, assuming that coordinate choice and binary
mask are independent, we have:

E
[
ℓ̃j(x)

]
= EjEδ

[(
ÃT

:j

(
Ãx− y

))
ej

]
=

 p

n

∑
j

(
AT

:j (pAx− y)
)
ej

+

p− p2

n

∑
j

(
AT

:jA:jxj
)
ej

(3.1)

+

1− p

n

∑
j

(
p
(
AT

:jM + µTA
)
x+ (1− p)µTMx− µTy

)
ej

(3.2)

+

p− p2

n

∑
j

(
µTµ− µTA:j −AT

:jµxj
)
ej

(3.3)

̸= 1

n

∑
j

(
AT

:j (Ax− y)
)
ej .

Here, we see that E
[
ℓ̃j(x)

]
̸= 1

n

∑
j

(
AT

:j (Ax− y)
)
ej . To impose this, we propose a

proxy function sj(x) that rescales the first term of (3.1), removes the second term of (3.1) in
expectation, and removes the terms (3.2) and (3.3) in expectation. The proposed function is:

sj(x) := (cj(x)− dj(x)) ej ,(3.4)

where

cj(x) :=
1

p2
ÃT

:j

(
Ãx− py

)
− 1− p

p2
ÃT

:jÃ:jxj ,(3.5)

218

and

dj(x) :=
1− p

p2

[(
ÃT

:jM + µT Ã− (1− p)µTM
)
x

−pµTy −
(
ÃT

:jµ+ µT Ã:j − µTµ
)
xj

]
.(3.6)

Here, the term cj(x) plays the role of rescaling the first term and removing the second term
in (3.1). The term dj(x) plays the role of removing (3.2) and (3.3) in expectation.

Algorithm 3.1 presents pseudocode for our proposed algorithm, which we refer to as the µ-
imputed missing Stochastic Coordinate Descent Algorithm or µ-imputed mSCD. In Section 3.4
we provide a theoretical justification for our method.

Algorithm 3.1 µ-imputed mSCD

Input (Ã,y, p, T, µ, α)
Initialize x0 = 0n×1,M = µ1m×n

for k = 0, 1, 2, ..., T do
Pick j ∼ {1, ..., n} uniformly at random
Compute cj(xk) as defined in (3.5)
Compute dj(xk) as defined in (3.6)
xk+1 = xk − α(cj(xk)− dj(xk))ej

end for
return xk+1 =0

3.4. Theoretical Justification. In this section, we provide a theoretical justification for
the use of our proposed methods. Theorem 3.3 shows that the iterates utilized in Algorithm 3.1
are unbiased approximations of the gradient of the least squares objective function. In The-
orem 3.4, we demonstrate that our approach can also be applied to derive a mean-imputed
mSGD algorithm or µ-imputed missing Stochastic Gradient Descent (µ-mSGD) and show that
along the same vain as Theorem 3.3, our proposed algorithm utilizes an unbiased estimate of
the gradient of the least squares objective. Remark 1 considers the zero imputation case and
illuminates the role of dj(x). Remark 2 considers the zero imputation case for µ-mSGD to
demonstrate that the proposed method is a generalization of the mSGD algorithm. Lastly,
Lemma 3.5 provides a justification for using the empirical mean value to impute into a matrix
with missing data.

Detailed proofs of all theorems and remarks are provided in the Appendix to maintain
the flow of the main text and allow interested readers to delve into the rigorous mathematical
foundations of our methods.

Theorem 3.3 (µ-imputed mSCD in Expectation). Let x ∈ Rn, A ∈ Rm×n, y = Ax, µ ∈ R
be fixed , and µ = µ1m×1. Furthermore, let Ã be a random matrix such that

ãij =

{
aij w.p p
µ w.p 1− p.

219

Where “w.p.” stands for “with probability”. Define for each j ∈ [n], where [n] denotes the set
1, 2, . . . , n, Then,

sj(x) = (cj(x)− dj(x)) ej

where

cj(x) =
1

p2
ÃT

:j

(
Ãx− py

)
− 1− p

p2
∥Ã:j∥2xj ,

and

dj(x) =
1− p

p2

[(
ÃT

:jM + µT Ã− (1− p)µTM
)
x

−pµTy −
(
ÃT

:jµ+ µT Ã:j − µTµ
)
xj

]
.

Then picking j ∈ [n] uniformly at random, we have

E [sj(x)] = ∇L(x),

where L(x) = 1
2n∥Ax− y∥2 and the expectation is taken over randomness in j and in Ã.

It should be noted that Theorem 3.3 holds for all µ and thus for µ = 0, we can conclude
a similar result for a linear system with i.i.d. Bernoulli missing column entries of a matrix
in which values of 0 are imputed for missing entries. Remark 1 shows that, in expectation,
the iterates of our proposed algorithm utilize unbiased estimators of the gradient of the least
squares objective function.

Remark 1 (mSCD with 0 imputation). When µ = 0, (3.6) is an all zeros vector and thus
sj(x) in Theorem 3.3 simplifies to

sj(x) = cj(x)ej =

(
1

p2
ÃT

:j

(
Ãx− py

)
− 1− p

p2
ÃT

:jÃ:jxj

)
ej .

Thus, we can interpret the function sj(x) as a combination of two terms: the term cj(x) is
a biased estimator of ∇L(x) when µ ̸= 0 and the term dj(x) corrects for the bias introduced
when utilizing a non-zero µ imputation.

In addition to proposing an algorithm for solving missing data linear systems that use
columns of a matrix, we also utilize our techniques to derive an unbiased estimator that
utilizes rows of the matrix, i.e., for a µ-imputed SGD algorithm. Theorem 3.4 presents an
estimator for ∇L(x) where the estimates use only rows of the matrix Ã, instead of columns
of the matrix. Such an estimate can be incorporated into the SGD algorithm, as has been
done for the µ = 0 case in [3] (see Remark 2). Similar to Theorem 3.3, the estimate ti(x)
shown in (3.7) is the sum of two components: one which approximates the gradient using a
single row of Ã and the other which debiases the estimate when µ ≠ 0 (see Remark 1).

Theorem 3.4 (mSGD with µ imputation). Let x ∈ Rn, A ∈ Rm×n, y = Ax, µ ∈ R be fixed,
and µ = µ11×n. Let Ã be a random matrix such that

ãij =

{
aij w.p p
µ w.p 1− p

For i ∈ [m], define

(3.7) ti(x) := gi(x) − hi(x) ,
220

where

gi(x) =
1

p2
ÃT

i:

(
Ãi:x− pyi

)
− 1− p

p2
diag

(
ÃT

i:Ãi:

)
x,

and

hi(x) =
1− p

p2

[(
ÃT

i:µ+ µT Ãi: − (1− p)µTµ
)
x

−pµT yi − diag
(
ÃT

i:µ+ µT Ãi: − µTµ
)
x
]
.

Then, selecting i ∈ [m] uniformly at random,

E [ti(x)] = ∇F (x),

where the expectation is taken with respect to the choice of i and randomness in Ã.

Remark 2. When µ = 0, the update function ti(x) in Theorem 3.4 reduces to

gi(x) =
1

p2
ÃT

i:

(
Ãi:x− pyi

)
− 1− p

p2
diag

(
ÃT

i:Ãi:

)
x,

which is exactly the iterate update proposed for mSGD [3].

Although Theorem 3.3 and Theorem 3.4 hold for any µ, the choice of µ impacts how well
the imputed matrix approximates the original matrixA and thus the approximation error. We
argue that a natural choice for µ is the mean of the given entries the matrix Ã. In particular,
when the empirical average is non-zero, Lemma 3.5 shows that performing a µ-imputation
produces a better approximation of the original matrix A than performing a 0 imputation.
Practically, one can use a priori information about the mean of A or the empirical mean of
the given entries in Ã to approximate µ.

Theorem 3.5 (Expectation of Frobenius Norm). Let A ∈ Rm×n be a random matrix with
i.i.d entries such that µ = 1

mn

∑
ij aij. Let D be a binary mask with parameter p as defined

in Definition 3.1. Denoting Ãµ = A⊙D + µ(1m×n −D) and Ã0 = A⊙D, we have that

Eδ

[
∥A− Ã0∥2F

]
≥ Eδ

[
∥A− Ãµ∥2F

]
,(3.8)

where Eδ denotes the expectation with respect to randomness in D.

4. Experiments. In this section, we conduct various numerical experiments to show the
efficacy of ou r al gorithm. In th e fir st exp eriment, we compare SCD , mSCD and µ-imputed
mSCD if the mean value of matrix A is nonzero. Specifically, vanilla SCD solves the matrix
without adaptive terms, and the missing entries of the matrix are imputed by 0; mean-imputed
SCD solves the matrix without adaptive terms, but the matrix is imputed by its mean value;
mSCD has adaptive terms, but the matrix is imputed by 0; lastly, our µ-imputed mSCD
algorithm considers both adaptive terms and the non-zero imputation for the matrix. In our
second and third experiments, we demonstrate µ-imputed mSCD on matrix A with different
mean values and different data missing-ness p robabilities. Finally in our third experiment, we
apply µ-imputed mSCD on real world data.

In Figure 1, we compare the performance of three versions of SCD: vanilla SCD, mSCD,
and our main contribution µ-imputed mSCD. We show that µ-imputed mSCD outperforms
mSCD when the mean value of matrix A is no longer 0. First, we randomly generated a
1000 × 200 matrix with mean value µ = 10, missing probability p = 0.9, and fixed learning

221

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

106

10-1

100

101

102

103

mean-imputed SCD

mSCD

vanilla SCD

Figure 1. Vanilla SCD, mean-imputed SCD, mSCD and µ-imputed mSCD on 1000 × 200 matrix, with
µ = 10, p = 0.9, α = 10−6.

rate α = 10−6. For our tests, we ran SCD and mSCD on a zero-imputed matrix, and then
SCD and µ-imputed mSCD on a mean-imputed matrix. We found that µ-imputed mSCD
reaches a lower convergence horizon than mSCD, consistent with Lemma 3.5. Our µ-imputed
mSCD also performs better than the simple mean-imputed SCD.

In Figure 2, we demonstrate that µ-imputed mSCD converges. By applying µ-imputed
mSCD on 1000×200 matrix with mean value µ = 0, 5, 10 separately, each of them successfully
converges under learning rate α = 10−6 and missing probability p = 0.9.

Furthermore, in Figure 3, we ensure that µ-imputed mSCD converges under different
missing data probabilities. Specifically, w e g enerate a 1000 × 2 00 m atrix w ith m ean value
µ = 40, and then apply µ-imputed mSCD with fixed l earning r ate α = 1 0−7 a nd missing
probability p = 0.6, 0.8, 0.9 respectively. Here we notice that the convergence rate is associated
with missing probability. That is, if more data is missing, the convergence horizon will be
reached sooner.

In addition to synthetic experiments, we also include an experiment on real world data.
This data set was obtained from the UCI Machine Learning Repository [9]. This data set
contains features relating to a garment factor’s productivity including worker idle time, target
productivity for the day, and the number of workers. We employ a subset of all possible
features to train a linear model to predict worker productivity. In this experiment, we have
m = 1197 rows and n = 6 columns where each row contains data pertaining to a specific day.
The vector y is chosen to be the actual productivity of the workers for that day, as given in
the data set.

It should be noted that the columns in the data set have significantly d ifferent mean
values. The smallest mean value being 0.1504 and the largest being 15.0622. Due to the

222

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

10
6

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Different Mean Value

mu = 0

mu = 5

mu = 10

Figure 2. µ-mSCD on 1000× 200 matrix, with µ = 0, 5, 10, p = 0.9, α = 10−6.

0 5 10 15

10
6

10
0

10
1

10
2

10
3

Different Missing Probability

p = 0.9

p = 0.8

p = 0.6

Figure 3. µ-imputed mSCD on 1000 × 200 matrix, with µ = 40, p = 0.6, 0.8, 0.9, α = 10−7.

variation in means per feature, we employ the more general version of the proposed method
which, instead of imputing a fixed m ean µ , i mputes t he e mpirical c olumn m ean f or each
column. Practically, we would assume that this information is known a priori. The missing-
ness is simulated in this data set by drawing a binary mask (3.1) at every iteration. Figure 4
presents the performance of our algorithm compared to a zero imputation averaged over 20

223

Figure 4. Performance of µ-imputed mSCD on Garment Productivity data set from the UCI Machine
Learning Repo.

trials. We report the approximation error to the least squares solution for this data set using
α = 5 × 10−5 and p = 0.85. We observe that the approximation error decays linearly until the
algorithm reaches a convergence horizon on the order of 10−5 for mean imputation and 10−4

for zero imputation, highlighting the benefit of using mean imputation.

5. Conclusion. We propose µ-imputed mSCD as a solution to big data problems in which
missing or corrupt data issues arise. Our method utilizes an unbiased estimator of the gradient
of the least-squares objective function as well as mean imputation to eliminate the issue of
bias that may be introduced in the absence of data. The experimental results and theoretical
proofs show that our method has less bias than current methods and, subsequently, performs
better than these methods when solving large-scale linear systems with missing data. While
we are able to show our algorithm’s convergence capabilities through theoretical and practical
experiments, we hope to analyze convergence guarantees in future work. Furthermore, for
future work we believe our method can be expanded to other types of imputation methods
or patterns of missing data. For example, we believe our idea of using mean imputation can
be utilized to improve the cumulative information method used in [5] to create a cumulative
information mean-imputed algorithm.

Acknowledgments. We thank Dr. Anna Ma from the University of California, Irvine
for advising us and this work. We also thank Chelsea Huynh and Michael Strand from the
University of California, Irvine for their contributions in facilitating the conversations around
our research topic.

Appendix. In this section we prove the major theorem of the paper, namely Theorem 3.3.
To do this, we first introduce some convenient notation, π and Π, to simplify the calculation.

224

This notation will also be used for the proof of Theorem 3.4, and in fact one of our goals is
that it conveys the essential parallels between these proofs. Finally, we also prove Theorem
3.5.

By the assumption of our model, we treat the entries of a given matrix Ã as i.i.d. Bernoulli
random variables such that

ãij =

{
aij w.p. p
µ w.p. 1− p

,

for which the expected value is simply

Eδ [ãij] = paij + (1− p)µ.(5.1)

However, when computing expectations we often run into products of 2 entries. For these,
we need to consider 2 cases:

ãij ãik =


aijaik w.p. p2

µaij w.p. p(1− p)
µaik w.p. p(1− p)
µ2 w.p. (1− p)2

,

when j ̸= k, and

ãij ãik =

{
aijaik w.p. p
µ2 w.p. 1− p

,

when j = k. These come from the fact that when an entry is multiplied by itself, it still
corresponds to one coin toss with 2 outcomes. On the other hand, when the entries are
distinct, we now have 2 independent coin tosses and 4 outcomes total. Thus, we get the
following expectation:

Eδ [ãij ãik] =

{
p2aijaik + p(1− p) (aijµ+ µaik) + (1− p)2µ2 j ̸= k
paijaik + (1− p)µ2 j = k

.(5.2)

The 2 cases in (5.2) occur so often in our proofs that we give them labels to condense
the notation. These labels will also serve to indicate how the expected value operator Eδ [·]
acts on different components in our calculations, depending on whether there are products
of repeated or distinct entries. Let us define the functions Π : Rm×d × Rd×n → Rm×n and
π : Rm×d × Rd×n → Rm×n such that

Π [A,B] := p2AB + p(1− p) (AMB +MAB) + (1− p)2MAMB(5.3)

π [A,B] := pAB + (1− p)MAMB,(5.4)

where MA = µ1m×d and MB = µ1d×n, and whose dimensions are that of A and B respec-
tively. Hence, using (5.3) and (5.4), we can now express (5.2) as

Eδ [ãij ãik] =

{
Π [aij , aik] j ̸= k
π [aij , aik] j = k

.(5.5)

225

In addition to condensing the expectation, the functions Π [·, ·] and π [·, ·] have the added
benefit of extending to higher dimensional expectations. For instance, suppose we need to
take an expectation of the inner product of columns:

Eδ

[
ÃT

:jÃ:k

]
= Eδ [ã1j ã1k + ã2j ã2k + ...+ ãmj ãmk]

= Eδ [ã1j ã1k] + Eδ [ã2j ã2k] + ...+ Eδ [ãmj ãmk]

=
m∑
i=1

Eδ [ãij ãik]

which by (5.2) is

=
m∑
i=1

[
p2aijaik + p(1− p) (aijµ+ µaik) + (1− p)2µ2

]
= p2

m∑
i=1

aijaik + p(1− p)

(
m∑
i=1

aijµ+
m∑
i=1

µaik

)
+ (1− p)2

m∑
i=1

µ2

= p2AT
:jA:k + p(1− p)

(
AT

:jµ+ µTA:k

)
+ (1− p)2µTµ

when j ̸= k , and

=
m∑
i=1

[
paijaik + (1− p)µ2

]
= p

m∑
i=1

aijaik + (1− p)
m∑
i=1

µ2

= pAT
:jA:k + (1− p)µTµ

when j = k . But these are exactly Π
[
AT

:j ,A:k

]
and π

[
AT

:j ,A:k

]
, respectively.

5.1. Proof of Theorem 3.3. Here we seek to show that sj(x) is an unbiased estimator
for the gradient of our loss function, i.e. E [sj(x)] = ∇L(x). To do this we use the law of
iterated expectation E [sj(x)] = Ej [Eδ [sj(x)]], showing one at a time that for some function
ℓj(x), Eδ [sj(x)] = ℓj(x), while Ej [ℓj(x)] = ∇L(x).

Proof. Recall that sj(x) = (cj(x)− dj(x)) ej such that

cj(x) :=
1

p2
ÃT

:j

(
Ãx− py

)
− 1− p

p2
ÃT

:jÃ:jxj ,

and

dj(x) :=
1− p

p2

[(
ÃT

:jM + µT Ã− (1− p)µTM
)
x

−pµTy −
(
ÃT

:jµ+ µT Ã:j − µTµ
)
xj

]
,

where cj (x) addresses the missing entry without mean shift, while dj (x) accounts for mean

226

shift. Now, observe that

Eδ [sj(x)] = (Eδ [cj(x)]− Eδ [dj(x)]) ej ,(5.6)

where the expectations of cj and dj will be functions of inner products of columns of A. Using
(5.3) and (5.4) that notation can be simplified. In particular, we can write

Eδ

[
ÃT

:jÃ
]
= Eδ

[(
ÃT

:jÃ:1, Ã
T
:jÃ:2, ..., Ã

T
:jÃ:j , ..., Ã

T
:jÃ:n

)]

=
(

Eδ

[
ÃT

:jÃ:1

]
,Eδ

[
ÃT

:jÃ:2

]
, ...,Eδ

[
ÃT

:jÃ:j

]
, ...,Eδ

[
ÃT

:jÃ:n

])
=
(
Π
[
AT

:j ,A:1

]
,Π
[
AT

:j ,A:2

]
, ..., π

[
AT

:j ,A:j

]
, ...,Π

[
AT

:j ,A:n

])
= Π

[
AT

:j ,A
]
−Π

[
AT

:j ,A:j

]
eTj + π

[
AT

:j ,A:j

]
eTj ,(5.7)

Thus, using (5.7), we compute the expectation of cj and dj :

Eδ [cj(x)] =
1

p2
Eδ

[
ÃT

:jÃ
]
x− 1

p
Eδ

[
ÃT

:j

]
y − 1− p

p2
Eδ

[
ÃT

:jÃ:j

]
xj

=
1

p2
(
Π
[
AT

:j ,A
]
x−Π

[
AT

:j ,A:j

]
xj + π

[
AT

:j ,A:j

]
xj
)

− 1

p

(
pAT

:j + (1− p)µT
)
y − 1− p

p2
(
π
[
AT

:j ,A:j

])
xj

=
1

p2
(
p2AT

:jA+ p(1− p)
(
AT

:jM + µTA
)
+ (1− p)2µTM

)
x

− 1

p2
(
p2AT

:jA:j + p(1− p)
(
AT

:jµ+ µTA:j

)
+ (1− p)2µTµ

)
xj

+
1

p2
(
pAT

:jA:j + (1− p)µTµ
)
xj −

1

p

(
pAT

:j + (1− p)µT
)
y

− 1− p

p2
(
pAT

:jA:j + (1− p)µTµ
)
xj

=

(
AT

:jA+
1− p

p

(
AT

:jM + µTA
)
+

(1− p)2

p2
µTM

)
x

−
(
AT

:jA+
1− p

p

(
AT

:jµ+ µTA:j

)
+

(1− p)2

p2
µTµ

)
xj

+

(
1

p
AT

:jA+
1− p

p2
µTµ

)
xj −

(
AT

:j +
1− p

p
µT

)
y

−
(
1− p

p
AT

:jA+
(1− p)2

p2
µTµ

)
xj

= AT
:jAx−AT

:jy +

(
1− p

p

(
AT

:jM + µTA
)
+

(1− p)2

p2
µTM

)
x(5.8)

227

−
(
1− p

p

(
AT

:jµ+ µTA:j

)
+

2(1− p)2

p2
µTµ

)
xj

+

(
1− p

p2
µTµ

)
xj −

1− p

p
µTy

Eδ [dj(x)] =
1− p

p2

[(
Eδ

[
ÃT

:jM
]
+ Eδ

[
µT Ã

]
− (1− p)µTM

)
x

−pµTy −
(

Eδ

[
ÃT

:jµ
]
+ Eδ

[
µT Ã:j

]
− µTµ

)
xj

]
=

1− p

p2
[(
π
[
AT

:j ,M
]
+ π

[
µT ,A

]
− (1− p)µTM

)
x

−pµTy −
(
π
[
AT

:j ,µ
]
+ π

[
µT ,A:j

]
− µTµ

)
xj
]

=
1− p

p2
[(
pAT

:jM + pµTA+ 2(1− p)µTM − (1− p)µTM
)
x

−pµTy −
(
pAT

:jµ+ pµTA:j + 2(1− p)µTµ− µTµ
)
xj
]

=

(
1− p

p
AT

:jM +
1− p

p
µTA+

(1− p)2

p2
µTM

)
x− 1− p

p
µTy

−
(
1− p

p
AT

:jµ− 1− p

p
µTA:j −

(1− p)(1− 2p)

p2
µTµ

)
xj

=

(
1− p

p

(
AT

:jM + µTA
)
+

(1− p)2

p2
µTM

)
x(5.9)

−
(
1− p

p

(
AT

:jµ+ µTA:j

)
+

2(1− p)2

p2
µTµ

)
xj

+

(
1− p

p2
µTµ

)
xj −

1− p

p
µTy

Plugging (5.8) and (5.9) into (5.6), we get

Eδ [sj(x)] = (Eδ [cj(x)]− Eδ [dj(x)]) ej =
(
AT

:j (Ax− y)
)
ej ,(5.10)

for which we refer to the right-hand side expression as “ℓj(x)”. Recalling our loss function
L(x) = 1

2n∥Ax− y∥2, it can be shown after some expansions that

∂L(x)

∂xj
=

1

n
AT

:j (Ax− y) .

Thus, when we go to compute the column-wise expectation of ℓj(x) (assuming columns of A
are selected uniformly at random) we get

Ej [ℓj(x)] =
n∑

j=1

1

n
ℓj(x) =

n∑
j=1

1

n

(
AT

:j (Ax− y)
)
ej =

n∑
j=1

∂L(x)

∂xj
ej .(5.11)

Finally, combining (5.10) and (5.11) gives us the desired gradient,

E [sj(x)] = Ej [Eδ [sj(x)]] = Ej [ℓj(x)] = ∇L(x).

228

5.2. Proof of Theorem 3.4. Similar to the last proof, here we show that ti(x) is an
unbiased estimator for the gradient of the loss function, E [ti(x)] = ∇F (x). Again, we use
an iterated expectation E [ti(x)] = Ei [Eδ [ti(x)]], showing first that for the function fi(x),
Eδ [ti(x)] = ∇fi(x) holds, then finally that Ei [∇fi(x)] = ∇F (x).

Proof. Recall that ti(x) = gi(x)− hi(x) such that

gi(x) :=
1

p2
ÃT

i:

(
ÃT

i:x− pyi

)
− 1− p

p2
diag

(
ÃT

i:Ãi:

)
x,

and

hi(x) :=
1− p

p2

[(
ÃT

i:µ+ µT Ãi: − (1− p)µTµ
)
x

−pµT yi − diag
(
ÃT

i:µ+ µT Ãi: − µTµ
)
x
]
,

where gi(x) plays the analogous role to cj(x) in the previous proof (missing entry without
mean shift), and hi(x) the role of dj(x) (mean shift). Now, observe that

Eδ [ti(x)] = Eδ [gi(x)]− Eδ [hi(x)] ,(5.12)

where the expectations of gi and hi will be functions of inner products of columns of A. Using
(5.3) and (5.4) that notation can be simplified. In particular, we can write

Eδ

[
ÃT

i:Ãi:

]
= Eδ




ãi1ãi1, ãi1ãi2, ... ãi1ãin

ãi2ãi1, ãi2ãi2, ... ãi2ãin
...

...
. . .

...

ãinãi1, ãinãi2, ... ãinãin





=


Eδ [ãi1ãi1] , Eδ [ãi1ãi2] , ... Eδ [ãi1ãin]

Eδ [ãi2ãi1] , Eδ [ãi2ãi2] , ... Eδ [ãi2ãin]
...

...
. . .

...

Eδ [ãinãi1] , Eδ [ãinãi2] , ... Eδ [ãinãin]



=


π [ai1, ai1] , Π [ai1, ai2] , ... Π [ai1, ain]

Π [ai2, ai1] , π [ai2, ai2] , ... Π [ai2, ain]
...

...
. . .

...

Π [ain, ai1] , Π [ain, ai2] , ... π [ain, ain]



= Π
[
AT

i: ,Ai:

]
− diag

(
Π
[
AT

i: ,Ai:

])
+ diag

(
π
[
AT

i: ,Ai:

])
.

(5.13)

229

Thus, taking each expectation separately and using (5.13), we get:

Eδ [gi(x)] =
1

p2
Eδ

[
ÃT

i:Ãi:

]
x− 1

p
Eδ

[
ÃT

i:

]
yi −

1− p

p2
diag

(
Eδ

[
ÃT

i:Ãi:

])
x

=
1

p2
(
Π
[
AT

i: ,Ai:

]
− diag

(
Π
[
AT

i: ,Ai:

])
+ diag

(
π
[
AT

i: ,Ai:

]))
x

− 1

p

(
pAT

i: + (1− p)µT
)
yi −

1− p

p2
(
diag

(
π
[
AT

i: ,Ai:

]))
x

=
1

p2
(
p2AT

i:Ai: + p(1− p)
(
AT

i:µ+ µTAi:

)
+ (1− p)2µTµ

)
x

− 1

p2
diag

(
p2AT

i:Ai: + p(1− p)
(
AT

i:µ+ µTAi:

)
+ (1− p)2µTµ

)
x

+
1

p2
diag

(
pAT

i:Ai: + (1− p)µTµ
)
x− 1

p

(
pAT

i: + (1− p)µT
)
yi

− 1− p

p2
diag

(
pAT

i:Ai: + (1− p)µTµ
)
x

=

(
AT

i:Ai: +
1− p

p

(
AT

i:µ+ µTAi:

)
+

(1− p)2

p2
µTµ

)
x

− diag

(
AT

i:Ai: +
1− p

p

(
AT

i:µ+ µTAi:

)
+

(1− p)2

p2
µTµ

)
x

+ diag

(
1

p
AT

i:Ai: +
1− p

p2
µTµ

)
x−

(
AT

i: +
1− p

p
µT

)
yi

− diag

(
1− p

p
AT

i:Ai: +
(1− p)2

p2
µTµ

)
x

= AT
i:Ai:x−AT

i:yi +

(
1− p

p

(
AT

i:µ+ µTAi:

)
+

(1− p)2

p2
µTµ

)
x(5.14)

− diag

(
1− p

p

(
AT

i:µ+ µTAi:

)
+

2(1− p)2

p2
µTµ

)
x

+ diag

(
1− p

p2
µTµ

)
x− 1− p

p
µT yi,

and

Eδ [hi(x)] =
1− p

p2

[(
Eδ

[
ÃT

i:µ
]
+ Eδ

[
µT Ãi:

]
− (1− p)µTµ

)
x

−pµT yi − diag
(

Eδ

[
ÃT

i:µ
]
+ Eδ

[
µT Ãi:

]
− µTµ

)
x
]

=
1− p

p2

[(
π
[
ÃT

i:µ
]
+ π

[
µT Ãi:

]
− (1− p)µTµ

)
x

−pµT yi − diag
(
π
[
ÃT

i:µ
]
+ π

[
µT Ãi:

]
− µTµ

)
x
]

=
1− p

p2
[(
pAT

i:µ+ pµTAi: + 2(1− p)µTµ− (1− p)µTµ
)
x

230

−pµT yi − diag
(
pAT

i:µ+ pµTAi: + 2(1− p)µTµ− µTµ
)
x
]

=

(
1− p

p
AT

i:µ+
1− p

p
µTAi: +

(1− p)2

p2
µTµ

)
x− 1− p

p
µT yi

− diag

(
1− p

p
AT

i:µ− 1− p

p
µTAi: −

(1− p)(1− 2p)

p2
µTµ

)
x

=

(
1− p

p

(
AT

i:µ+ µTAi:

)
+

(1− p)2

p2
µTµ

)
x(5.15)

− diag

(
1− p

p

(
AT

i:µ+ µTAi:

)
+

2(1− p)2

p2
µTµ

)
x

+ diag

(
1− p

p2
µTµ

)
x− 1− p

p
µT yi.

Plugging (5.14) and (5.15) into (5.12), we get

Eδ [ti(x)] = Eδ [gi(x)]− Eδ [hi(x)] = AT
i: (Ai:x− yi) .(5.16)

Now, recall our objective function F (x) = 1
2m∥Ax − y∥2, which can be rewritten as

F (x) = 1
m

∑m
i=1 fi(x), where fi(x) = 1

2 (Ai:x− yi)
2. After some expansions, it is not too

difficult to show that

∇fi(x) = AT
i: (Ai:x− yi) ,(5.17)

and notice this is exactly the right-hand side of (5.16). Thus, assuming rows i are uniformly
selected from [m], we take the row-wise expectation of ∇fi(x) to get

Ei [∇fi(x)] =

m∑
i=1

1

m
∇fi(x) = ∇

[
1

m

m∑
i=1

fi(x)

]
= ∇F (x).(5.18)

Finally, combining (5.16), (5.17), and (5.18), we get

E [ti(x)] = Ei [Eδ [ti(x)]] = Ei [∇fi(x)] = ∇F (x).

the desired gradient.

5.3. Proof of Theorem 3.5. In this proof, we first define the µ, then we consider the
different cases, such as 0-imputation and µ-imputation for the matrix A. By calculating the
expectation for both cases, Eδ∥A− Ã0∥2F ≥ Eδ∥A− Ãµ∥2F holds.

Proof. Given Ã0 is matrix A with missing entries ã0,ij in which 0 is imputed and Ãµ is
matrix A with entries ãµ,ij in which the mean value of A, a fixed µ = 1

mn

∑
ij aij , is imputed,

we want to find Eδ

[
∥A− Ã0∥2F

]
and Eδ

[
∥A− Ãµ∥2F

]
and compare them.

We know,

ã0,ij =

{
0 w.p 1− p
aij w.p p

⇒ ã20,ij =

{
0 w.p 1− p
a2ij w.p p

231

ãµ,ij =

{
µ w.p 1− p
aij w.p p

⇒ ã2µ,ij =

{
µ2 w.p 1− p
a2ij w.p p

Therefore,

Eδ

[
∥A− Ã0∥2F

]
= Eδ

 m∑
i=1

n∑
j=1

(aij − ã0,ij)
2


=

m∑
i=1

n∑
j=1

Eδ

[(
a2ij − 2aij ã0,ij + ã20,ij

)]
=

m∑
i=1

n∑
j=1

Eδ

[
a2ij
]
+

m∑
i=1

n∑
j=1

EA,δ

[
ã20,ij

]
−

m∑
i=1

n∑
j=1

Eδ [2aij ã0,ij]

= ∥A∥2F +

m∑
i=1

n∑
j=1

pa2ij −
m∑
i=1

n∑
j=1

2pa2ij

= ∥A∥2F −
m∑
i=1

n∑
j=1

pa2ij

= ∥A∥2F − p∥A∥2F = (1− p)∥A∥2F
Similarly,

Eδ

[
∥A− Ãµ∥2F

]
= Eδ

 m∑
i=1

n∑
j=1

(aij − ãµ,ij)
2


=

m∑
i=1

n∑
j=1

Eδ

[(
a2ij − 2aij ãµ,ij + ã2µ,ij

)]
=

m∑
i=1

n∑
j=1

Eδ

[
a2ij
]
+

m∑
i=1

n∑
j=1

Eδ

[
ã2µ,ij

]
−

m∑
i=1

n∑
j=1

Eδ [2aij ãµ,ij]

= ∥A∥2F +

m∑
i=1

n∑
j=1

(
pa2ij + µ2(1− p)

)
−

m∑
i=1

n∑
j=1

2aij (paij + µ(1− p))

= ∥A∥2F +

m∑
i=1

n∑
j=1

pa2ij +

m∑
i=1

n∑
j=1

µ2(1− p)− 2

m∑
i=1

n∑
j=1

pa2ij − 2

m∑
i=1

n∑
j=1

aijµ(1− p)

= ∥A∥2F −
m∑
i=1

n∑
j=1

pa2ij +
m∑
i=1

n∑
j=1

µ2(1− p)− 2
m∑
i=1

n∑
j=1

aijµ(1− p)

= ∥A∥2F −
m∑
i=1

n∑
j=1

pa2ij +
m∑
i=1

n∑
j=1

µ(1− p) (µ− 2aij)

= (1− p)∥A∥2F +
m∑
i=1

n∑
j=1

µ(1− p) (µ− 2aij)

232

For the last term we have,
m∑
i=1

n∑
j=1

µ(1− p) (µ− 2aij) = µ(1− p)
m∑
i=1

n∑
j=1

(µ− 2aij)

= µ(1− p)

mnµ−
m∑
i=1

n∑
j=1

2aij


= µ(1− p) (mnµ− 2mnµ)

= −mnµ2(1− p),

which is non-positive. Thus, Eδ[∥A− Ã0∥2F] ≥ Eδ[∥A− Ãµ∥2F]

REFERENCES

[1] R. Jiang, T. Sun, D. Song, and J. J. Li, Statistics or biology: the zero-inflation controversy about
scrna-seq data, Genome biology, 23 (2022), pp. 1–24.

[2] D. Leventhal and A. S. Lewis, Randomized methods for linear constraints: Convergence rates and
conditioning, 2008.

[3] A. Ma and D. Needell, Stochastic gradient descent for linear systems with missing data.
[4] A. Ma, D. Needell, and A. Ramdas, Convergence properties of the randomized extended gauss–seidel

and kaczmarz methods, SIAM Journal on Matrix Analysis and Applications, 36 (2015), pp. 1590–1604.
[5] S. Mukhopadhyay, Stochastic gradient descent for linear systems with sequential matrix entry accumula-

tion, Signal Processing, 171 (2020), p. 107494.
[6] S. Mukhopadhyay and A. Mukherjee, Imdlms: An imputation based lms algorithm for linear system

identification with missing input data, IEEE Transactions on Signal Processing, 68 (2020), pp. 2370–
2385.

[7] D. Needell, Randomized kaczmarz solver for noisy linear systems, BIT Numerical Mathematics, 50 (2010),
pp. 395–403.

[8] Y. Nesterov, Efficiency of coordinate descent methods on huge-scale optimization problems, SIAM Journal
on Optimization, 22 (2012), pp. 341–362.

[9] M. S. Rahim, A. A. Imran, and T. Ahmed, Mining the productivity data of garment industry, Interna-
tional Journal of Business Intelligence and Data Mining, 1 (2021), p. 1.

233

	Introduction
	Background
	Stochastic Gradient Descent (SGD)
	Stochastic Coordinate Descent (SCD)

	Main Results
	Missing Data Model
	Mean Imputation
	-imputed mSCD Algorithm
	Theoretical Justification

	Experiments
	Conclusion
	A1
	A2
	A3

