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Abstract. As big data problems become more prevalent, the need to accurately approximate solutions to large-
scale linear systems increases. Many real-world big data problems are also accompanied by the risk
of missing or incomplete data, further complicating the linear models assigned to them. Current
methods to address missing data involve deletion or zero imputation, which introduces bias to the
model. We propose a model that adapts Stochastic Coordinate Descent (SCD) to handle missing data
in linear systems and utilizes µ-imputation to retrieve a better approximation of the original data.
We prove that in expectation, our proposed algorithm, µ-imputation mSCD utilizes an unbiased
estimator of the gradient of the least-squares objective function when using mean imputation in
the absence of data. Furthermore, we compare our algorithm’s performance on synthetic data to
closely related algorithms: zero-imputation mSCD and SCD. Finally, we apply µ-imputation mSCD
on real-world data to demonstrate the usefulness and viability of our proposed algorithm.

1. Introduction. Large-scale data is crucial in training algorithms that are being imple-
mented and utilized today. However, the data collection process to train such algorithms is
often imperfect and can lead to noisy and incomplete data. For example, malfunctions in
physical measurement devices can cause data to become corrupt or, in extreme instances,
unavailable. As another example, a person may skip questions on a questionnaire to save time
resulting in incomplete survey data. While a straightforward approach for dealing with miss-
ing data is to impute the missing data with zeros or ignore missing data altogether (throwing
out any and all incomplete data points), this quickly becomes impractical and inefficient.

Other methods for solving missing data problems consider imputation methods in which
a new data set is created using information from the available data set. For example, in [6],
Mukhopadhyay and Mukherjee propose an algorithm for imputing incomplete streaming data
using a constant factor times the possibly imputed data at the previous time instance. While
this method eliminates any inefficiency of solving a matrix with missing entries and provides
a more accurate estimation of the full matrix, it is not independent of data being missing at
random. Mukhopadhyay and Mukherjee assume that there is a previous entry from which
we can draw information to determine the following entry. When we face the problem of
incomplete data sets, we often find that the data is missing independently at random. This
work focuses on missing data and how it arises in linear systems. In particular, we consider
the following linear system of equations Ax = y where A ∈ Rm×n is the measurement matrix
that is not entirely known, i.e. only some of its entries are known, and we consider the
over-determined case in which m ≥ n, x ∈ Rn is the unknown signal we wish to find, and
y ∈ Rm are the measurements. In most general cases, this system can be solved as x = A†y,
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where A† denotes the Moore-Penrose pseudo-inverse of A. However, this method can become 
computationally expensive for large-scale linear systems, i.e., when m and n become very large. 
In this regime, one may not even be able to load the entire matrix A into working memory, 
let alone compute its pseudo-inverse to approximate the solution to the linear system.

Handling large-scale data sets may be impossible if the computer memory is limited, so 
stochastic iterative methods with low memory footprint have become a popular choice for 
solving large-scale linear systems. Randomized Kaczmarz (RK) and Stochastic Gradient De-
scent (SGD) are examples of stochastic iterative methods that can be employed to solve linear 
systems. By adapting these methods for specialized settings, improved performance results 
can be empirically and theoretically verified. For e xample, i n [3], Ma a nd N eedell propose 
missing Stochastic Gradient Descent (mSGD), a stochastic iterative projection method used 
for solving large-scale data that is missing at random. Another example is in [7], where Needell 
shows that RK can be used to solve a linear system corrupted by noise.

Another example of a stochastic iterative method that works well on large-scale data is the 
Stochastic Coordinate Descent (SCD) method, also known as the Randomized Gauss-Seidel 
(RGS) method. When applied to linear systems, SCD requires processing one column of the 
matrix at a time, and thus is useful when we can only access the column-wise information. 
SCD minimizes a given objective function by moving the approximate solution along one 
coordinate direction at each iteration. In the linear system case, since only one column is 
required in every iteration, SCD does not consume much working memory. Other works that 
have examined the use of SCD to solve linear systems include [2], where Leventhal and Lewis 
show the expected linear convergence rate of a randomized coordinate descent algorithm, and 
[8], where Nesterov compares the convergence rates for both constrained and unconstrained 
versions of the randomized coordinate descent method and their efficiency es timates. It should 
also be noted that SCD can be applied to solve systems in the under-constrained case, when 
m < n. For example, in [4], Ma, Needell, and Ramdas, extend SCD to allow for convergence 
to the least squares norm solution. Much like SGD or RK, SCD can also be adapted to 
specialized settings, such as when data are missing at random.

In this work, we adapt SCD to solve the least squares problem by utilizing mean imputation 
when missing-ness in data can be modeled as independent and identically distributed (i.i.d.) 
Bernoulli random variables. We show that the iterates of the proposed adaptation to SCD, 
named µ-imputed mSCD, move in the direction of the least squares gradient in expectation. 
To demonstrate the efficacy of  our algorithm, we  perform numerical experiments on  synthetic 
and real-world data.

2. Background. We examine two stochastic iterative methods that can be used to solve 
linear systems. Both methods are advantageous to use in the large-scale setting as they only 
require rows or columns of the matrix in each iteration.

Before we begin, we briefly d iscuss t he n otation a dopted i n t his m anuscript. We will 
denote matrices by bold capital letters and vectors by bold lowercase letters. We let m ∈ N 
and n ∈ N be the number of rows and columns for the data matrix A respectively. We let 
1m×n be an m × n ones matrix. The missing data matrix will be denoted as Ã. We let A:j 
denote the jth column and Ai: denote the ith row of matrix A. Let || · ||F denote the Frobenius 
norm and diag(B) ∈ Rn×n denote the diagonal matrix containing the diagonal of B.
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2.1. Stochastic Gradient Descent (SGD). The SGD algorithm is a popular method for
solving optimization problems. In its most general form, the algorithm minimizes an objective
function F (x) =

∑
i fi(x) via the iterative procedure

xk+1 = xk − αk∇fi(xk),

where αk is the step size at the kth iteration and ∇fi(xk) is the gradient of fi(xk). Intuitively,
SGD uses fi(xk) is an unbiased estimator of the gradient of the objective ∇F (x) and so
on average moves iterates in the direction of descent towards the minimizer. When solving
large-scale linear systems, SGD can be used to minimize the least-squares objective function

F (x) =
1

2m
||Ax− y||2 = 1

m

m∑
i=1

fi(x),

where fi(x) = 1
2(Ai:x − yi)

2.Thus, at every iteration, this method selects the ith row of A
at random and computes fi(x) such that ∇fi(xk) = A∗

i:(Ai:xk − yi).This is ideal when A is
extremely large and only the rows of the matrix can be accessed.

2.2. Stochastic Coordinate Descent (SCD). The Stochastic Coordinate Descent algo-
rithm is another iterative method for solving optimization problems. In general, the SCD
algorithm randomly selects a coordinate j and approximately minimizes an objective function
L(x) in that coordinate direction via the iterates:

(2.1) xk+1 = xk − αkℓj(xk),

where αk is the step size at the kth iteration. When solving linear systems using SCD, we
wish to minimize the least squares objective

L(x) =
1

2n
||Ax− y||2,

whose gradient is given by

∇L(x) =
n∑

j=1

1

n
ℓj(x)

where ℓj (x) = (A:
T
j (Ax − y))ej , and A:j is the jth column of our matrix A. Standard 

implementations of SCD use ℓj (x) as an unbiased estimator for the gradient of the objective 
function, i.e., E[ℓj (xk)] = ∇L(x). Because of the coordinate-wise updates on xk+1, one need 
not recompute the residual vector Axk − y at every iteration. Instead, the residual vector 
can be tracked in each iteration and its update would only require the chosen column of A. 
Thus, this algorithm will only require a single column of the matrix of A in each iteration.

3. Main Results. This section introduces the missing data model adopted in this work and 
the motivation for mean imputation. We also discuss a variation of the previously studied 
mSGD algorithm [3], which we identify in this paper as a zero imputation approach. In 
Section 3.1, we introduce our model and motivate it in Section 3.2. Section 3.3 outlines our 
proposed method and the theoretical justification for our method i s provided in Section 3.4.

3.1. Missing Data Model. In this work, we assume that data are missing completely at 
random. This is the same assumption that was adopted in [3]. Such model assumptions can 
be satisfied by d esign: in a  survey the surveyor can randomly select which questions to reveal 
to a participant, causing survey answers to be missing completely at random. In another
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example, in an extremely large-scale setting where even entire rows or columns of a matrix
cannot be loaded into memory, one can consider taking a random sample of entries in the row
or column such that the sampling satisfies our model. For simulation purposes, we choose p
to represent the probability of existing data in our sample set. However, in real applications,
we assume that we have some knowledge regarding much data is already missing from our
dataset. Using this probabilistic assumption of missing entries, we are able to calculate the
least squares solution without any additional information regarding our data matrix A. More
concretely, we assume that the entries of A are missing with probability 1− p, as done in [3].
We also similarly define a binary mask as:

Definition 3.1 (Binary Mask). A binary mask is a matrix D ∈ {0, 1}m×n such that

Dij
iid∼ Bern(p),

where p ∈ [0, 1].

The binary mask in Definition 3.1 determines whether entries of A are missing. If Dij = 1
then Aij is not missing and if Dij = 0 then Aij is missing. In other words, entries of A are
missing with probability 1 − p independently, and the matrix Ã where zeros are imputed to
replace missing values, can be written as Ã = A ⊙D where ⊙ denotes the Hadamard (i.e.,
element wise) product.

3.2. Mean Imputation. The missing data model we consider here is the same model
adopted in [3] where Ã is a matrix with zeros imputed where data is missing and data is
assumed to be missing completely at random. If the original matrix has mean zero entries
then this is a reasonable imputation, though that is not always the case. In addition, in some
applications zero values can be meaningful. For example, in single-cell RNA sequences, zeros
represent a lack of or low gene expression and thus imputing zeros into a matrix with missing
data creates a misrepresentation of the data itself [1].

The choice of proper imputation value heavily depends on the application at hand. With-
out any additional information, a common choice for imputation is the mean value of the
matrix (or feature). In fact, even when zero values are not meaningful in a data matrix,
imputing empirical mean values from the given data provides a better approximation of the
original matrix when compared to zero mean imputation, as shown in Lemma 3.5.

To allow for variable imputation, we define the µ-imputed matrix as follows:

Ã

Definition 3 .2 (µ-Imputed Matrix). Let A  ∈  R m×n and µ  ∈  R . Given b inary mask D , the 
µ-imputed matrix is defined as:

= A ⊙ D + µ(1m×n − D),

where ⊙ denotes the Hadamard product.

Definition 3.2 presents the µ-imputed matrix Ã  where the value µ  is being imputed in all 
entries that are determined to be missing by D. While Definition 3 .2 imputes only a  single 
value µ into the matrix Ã, the definition can be generalized to allow for varying mean values 
across rows and/or columns. This can be accomplished by defining a mean matrix M  ∈ Rm×n 

where Mij = µij , and µij is the appropriate imputation value of entry (i, j). Then, one can
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define

Ã = A⊙D +M ⊙ (1m×n −D).

For the remainder of this work, we consider the setting in which the same value µ is imputed
in all entries for simplicity, but this work easily extends to the more general case in which
different values are imputed into the missing data matrix A.

3.3. µ-imputed mSCD Algorithm. In this work, we propose a variant of SCD for missing
data such that the iterates utilize an unbiased estimator for the least squares gradient. Before
we discuss our method, we introduce some additional notation. Let 1m×n be an m× n ones
matrix. Let µ ∈ R be a fixed scalar, µ be a vector containing only values of µ whose dimension
will be specified when context is unclear, and M = µ1m×n.

Suppose we apply SCD to the least squares objective using the µ−imputed matrix Ã
directly, and we let µ = µ1m×1. In this case, we denote the objective function:

L̃(x) =
1

2n
||Ãx− y||2,

and the SCD iterate (2.1) is

ℓ̃j(x) = (ÃT
:j(Ãx− y))ej .

If we take the expectation of ℓ̃j(x) with respect to the randomness from the binary mask and
random choice of coordinate direction j, we find that ℓ̃j(x) is no longer an unbiased estimator
of the gradient of the objective. In particular, assuming that coordinate choice and binary
mask are independent, we have:

E
[
ℓ̃j(x)

]
= EjEδ

[(
ÃT

:j

(
Ãx− y

))
ej

]
=

 p

n

∑
j

(
AT

:j (pAx− y)
)
ej

+

p− p2

n

∑
j

(
AT

:jA:jxj
)
ej

(3.1)

+

1− p

n

∑
j

(
p
(
AT

:jM + µTA
)
x+ (1− p)µTMx− µTy

)
ej

(3.2)

+

p− p2

n

∑
j

(
µTµ− µTA:j −AT

:jµxj
)
ej

(3.3)

̸= 1

n

∑
j

(
AT

:j (Ax− y)
)
ej .

Here, we see that E
[
ℓ̃j(x)

]
̸= 1

n

∑
j

(
AT

:j (Ax− y)
)
ej . To impose this, we propose a

proxy function sj(x) that rescales the first term of (3.1), removes the second term of (3.1) in
expectation, and removes the terms (3.2) and (3.3) in expectation. The proposed function is:

sj(x) := (cj(x)− dj(x)) ej ,(3.4)

where

cj(x) :=
1

p2
ÃT

:j

(
Ãx− py

)
− 1− p

p2
ÃT

:jÃ:jxj ,(3.5)
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and

dj(x) :=
1− p

p2

[(
ÃT

:jM + µT Ã− (1− p)µTM
)
x

−pµTy −
(
ÃT

:jµ+ µT Ã:j − µTµ
)
xj

]
.(3.6)

Here, the term cj(x) plays the role of rescaling the first term and removing the second term
in (3.1). The term dj(x) plays the role of removing (3.2) and (3.3) in expectation.

Algorithm 3.1 presents pseudocode for our proposed algorithm, which we refer to as the µ-
imputed missing Stochastic Coordinate Descent Algorithm or µ-imputed mSCD. In Section 3.4
we provide a theoretical justification for our method.

Algorithm 3.1 µ-imputed mSCD

Input (Ã,y, p, T, µ, α)
Initialize x0 = 0n×1,M = µ1m×n

for k = 0, 1, 2, ..., T do
Pick j ∼ {1, ..., n} uniformly at random
Compute cj(xk) as defined in (3.5)
Compute dj(xk) as defined in (3.6)
xk+1 = xk − α(cj(xk)− dj(xk))ej

end for
return xk+1 =0

3.4. Theoretical Justification. In this section, we provide a theoretical justification for
the use of our proposed methods. Theorem 3.3 shows that the iterates utilized in Algorithm 3.1
are unbiased approximations of the gradient of the least squares objective function. In The-
orem 3.4, we demonstrate that our approach can also be applied to derive a mean-imputed
mSGD algorithm or µ-imputed missing Stochastic Gradient Descent (µ-mSGD) and show that
along the same vain as Theorem 3.3, our proposed algorithm utilizes an unbiased estimate of
the gradient of the least squares objective. Remark 1 considers the zero imputation case and
illuminates the role of dj(x). Remark 2 considers the zero imputation case for µ-mSGD to
demonstrate that the proposed method is a generalization of the mSGD algorithm. Lastly,
Lemma 3.5 provides a justification for using the empirical mean value to impute into a matrix
with missing data.

Detailed proofs of all theorems and remarks are provided in the Appendix to maintain
the flow of the main text and allow interested readers to delve into the rigorous mathematical
foundations of our methods.

Theorem 3.3 (µ-imputed mSCD in Expectation). Let x ∈ Rn, A ∈ Rm×n, y = Ax, µ ∈ R
be fixed , and µ = µ1m×1. Furthermore, let Ã be a random matrix such that

ãij =

{
aij w.p p
µ w.p 1− p.
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Where “w.p.” stands for “with probability”. Define for each j ∈ [n], where [n] denotes the set
1, 2, . . . , n, Then,

sj(x) = (cj(x)− dj(x)) ej

where

cj(x) =
1

p2
ÃT

:j

(
Ãx− py

)
− 1− p

p2
∥Ã:j∥2xj ,

and

dj(x) =
1− p

p2

[(
ÃT

:jM + µT Ã− (1− p)µTM
)
x

−pµTy −
(
ÃT

:jµ+ µT Ã:j − µTµ
)
xj

]
.

Then picking j ∈ [n] uniformly at random, we have

E [sj(x)] = ∇L(x),

where L(x) = 1
2n∥Ax− y∥2 and the expectation is taken over randomness in j and in Ã.

It should be noted that Theorem 3.3 holds for all µ and thus for µ = 0, we can conclude
a similar result for a linear system with i.i.d. Bernoulli missing column entries of a matrix
in which values of 0 are imputed for missing entries. Remark 1 shows that, in expectation,
the iterates of our proposed algorithm utilize unbiased estimators of the gradient of the least
squares objective function.

Remark 1 (mSCD with 0 imputation). When µ = 0, (3.6) is an all zeros vector and thus
sj(x) in Theorem 3.3 simplifies to

sj(x) = cj(x)ej =

(
1

p2
ÃT

:j

(
Ãx− py

)
− 1− p

p2
ÃT

:jÃ:jxj

)
ej .

Thus, we can interpret the function sj(x) as a combination of two terms: the term cj(x) is
a biased estimator of ∇L(x) when µ ̸= 0 and the term dj(x) corrects for the bias introduced
when utilizing a non-zero µ imputation.

In addition to proposing an algorithm for solving missing data linear systems that use
columns of a matrix, we also utilize our techniques to derive an unbiased estimator that
utilizes rows of the matrix, i.e., for a µ-imputed SGD algorithm. Theorem 3.4 presents an
estimator for ∇L(x) where the estimates use only rows of the matrix Ã, instead of columns
of the matrix. Such an estimate can be incorporated into the SGD algorithm, as has been
done for the µ = 0 case in [3] (see Remark 2). Similar to Theorem 3.3, the estimate ti(x)
shown in (3.7) is the sum of two components: one which approximates the gradient using a
single row of Ã and the other which debiases the estimate when µ ≠ 0 (see Remark 1).

Theorem 3.4 (mSGD with µ imputation). Let x ∈ Rn, A ∈ Rm×n, y = Ax, µ ∈ R be fixed,
and µ = µ11×n. Let Ã be a random matrix such that

ãij =

{
aij w.p p
µ w.p 1− p

For i ∈ [m], define

(3.7) ti(x) := gi(x) − hi(x) ,
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where

gi(x) =
1

p2
ÃT

i:

(
Ãi:x− pyi

)
− 1− p

p2
diag

(
ÃT

i:Ãi:

)
x,

and

hi(x) =
1− p

p2

[(
ÃT

i:µ+ µT Ãi: − (1− p)µTµ
)
x

−pµT yi − diag
(
ÃT

i:µ+ µT Ãi: − µTµ
)
x
]
.

Then, selecting i ∈ [m] uniformly at random,

E [ti(x)] = ∇F (x),

where the expectation is taken with respect to the choice of i and randomness in Ã.

Remark 2. When µ = 0, the update function ti(x) in Theorem 3.4 reduces to

gi(x) =
1

p2
ÃT

i:

(
Ãi:x− pyi

)
− 1− p

p2
diag

(
ÃT

i:Ãi:

)
x,

which is exactly the iterate update proposed for mSGD [3].

Although Theorem 3.3 and Theorem 3.4 hold for any µ, the choice of µ impacts how well
the imputed matrix approximates the original matrixA and thus the approximation error. We
argue that a natural choice for µ is the mean of the given entries the matrix Ã. In particular,
when the empirical average is non-zero, Lemma 3.5 shows that performing a µ-imputation
produces a better approximation of the original matrix A than performing a 0 imputation.
Practically, one can use a priori information about the mean of A or the empirical mean of
the given entries in Ã to approximate µ.

Theorem 3.5 (Expectation of Frobenius Norm). Let A ∈ Rm×n be a random matrix with
i.i.d entries such that µ = 1

mn

∑
ij aij. Let D be a binary mask with parameter p as defined

in Definition 3.1. Denoting Ãµ = A⊙D + µ(1m×n −D) and Ã0 = A⊙D, we have that

Eδ

[
∥A− Ã0∥2F

]
≥ Eδ

[
∥A− Ãµ∥2F

]
,(3.8)

where Eδ denotes the expectation with respect to randomness in D.

4. Experiments. In this section, we conduct various numerical experiments to show the 
efficacy of  ou r al gorithm. In  th e fir st exp eriment, we compare SCD , mSCD and  µ-imputed 
mSCD if the mean value of matrix A is nonzero. Specifically, vanilla SCD solves the matrix 
without adaptive terms, and the missing entries of the matrix are imputed by 0; mean-imputed 
SCD solves the matrix without adaptive terms, but the matrix is imputed by its mean value; 
mSCD has adaptive terms, but the matrix is imputed by 0; lastly, our µ-imputed mSCD 
algorithm considers both adaptive terms and the non-zero imputation for the matrix. In our 
second and third experiments, we demonstrate µ-imputed mSCD on matrix A with different 
mean values and different data missing-ness p robabilities. Finally in our third experiment, we 
apply µ-imputed mSCD on real world data.

In Figure 1, we compare the performance of three versions of SCD: vanilla SCD, mSCD, 
and our main contribution µ-imputed mSCD. We show that µ-imputed mSCD outperforms 
mSCD when the mean value of matrix A is no longer 0. First, we randomly generated a 
1000 × 200 matrix with mean value µ = 10, missing probability p = 0.9, and fixed learning
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Figure 1. Vanilla SCD, mean-imputed SCD, mSCD and µ-imputed mSCD on 1000 × 200 matrix, with 
µ = 10, p = 0.9, α = 10−6.

rate α = 10−6. For our tests, we ran SCD and mSCD on a zero-imputed matrix, and then 
SCD and µ-imputed mSCD on a mean-imputed matrix. We found that µ-imputed mSCD 
reaches a lower convergence horizon than mSCD, consistent with Lemma 3.5. Our µ-imputed 
mSCD also performs better than the simple mean-imputed SCD.

In Figure 2, we demonstrate that µ-imputed mSCD converges. By applying µ-imputed 
mSCD on 1000×200 matrix with mean value µ = 0, 5, 10 separately, each of them successfully 
converges under learning rate α = 10−6 and missing probability p = 0.9.

Furthermore, in Figure 3, we ensure that µ-imputed mSCD converges under different 
missing data probabilities. Specifically, w e g enerate a  1000 × 2 00 m atrix w ith m ean value 
µ = 40, and then apply µ-imputed mSCD with fixed l earning r ate α  =  1 0−7 a nd missing 
probability p = 0.6, 0.8, 0.9 respectively. Here we notice that the convergence rate is associated 
with missing probability. That is, if more data is missing, the convergence horizon will be 
reached sooner.

In addition to synthetic experiments, we also include an experiment on real world data. 
This data set was obtained from the UCI Machine Learning Repository [9]. This data set 
contains features relating to a garment factor’s productivity including worker idle time, target 
productivity for the day, and the number of workers. We employ a subset of all possible 
features to train a linear model to predict worker productivity. In this experiment, we have 
m = 1197 rows and n = 6 columns where each row contains data pertaining to a specific day. 
The vector y is chosen to be the actual productivity of the workers for that day, as given in 
the data set.

It should be noted that the columns in the data set have significantly d ifferent mean 
values. The smallest mean value being 0.1504 and the largest being 15.0622. Due to the
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Figure 2. µ-mSCD on 1000× 200 matrix, with µ = 0, 5, 10, p = 0.9, α = 10−6.
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Figure 3. µ-imputed mSCD on 1000 × 200 matrix, with µ = 40, p = 0.6, 0.8, 0.9, α = 10−7.

variation in means per feature, we employ the more general version of the proposed method 
which, instead of imputing a fixed m ean µ , i mputes t he e mpirical c olumn m ean f or each 
column. Practically, we would assume that this information is known a priori. The missing-
ness is simulated in this data set by drawing a binary mask (3.1) at every iteration. Figure 4 
presents the performance of our algorithm compared to a zero imputation averaged over 20
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Figure 4. Performance of µ-imputed mSCD on Garment Productivity data set from the UCI Machine 
Learning Repo.

trials. We report the approximation error to the least squares solution for this data set using 
α = 5 × 10−5 and p = 0.85. We observe that the approximation error decays linearly until the 
algorithm reaches a convergence horizon on the order of 10−5 for mean imputation and 10−4 

for zero imputation, highlighting the benefit of using mean imputation.

5. Conclusion. We propose µ-imputed mSCD as a solution to big data problems in which 
missing or corrupt data issues arise. Our method utilizes an unbiased estimator of the gradient 
of the least-squares objective function as well as mean imputation to eliminate the issue of 
bias that may be introduced in the absence of data. The experimental results and theoretical 
proofs show that our method has less bias than current methods and, subsequently, performs 
better than these methods when solving large-scale linear systems with missing data. While 
we are able to show our algorithm’s convergence capabilities through theoretical and practical 
experiments, we hope to analyze convergence guarantees in future work. Furthermore, for 
future work we believe our method can be expanded to other types of imputation methods 
or patterns of missing data. For example, we believe our idea of using mean imputation can 
be utilized to improve the cumulative information method used in [5] to create a cumulative 
information mean-imputed algorithm.
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Appendix. In this section we prove the major theorem of the paper, namely Theorem 3.3. 
To do this, we first introduce some convenient notation, π and Π, to simplify the calculation.
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This notation will also be used for the proof of Theorem 3.4, and in fact one of our goals is
that it conveys the essential parallels between these proofs. Finally, we also prove Theorem
3.5.

By the assumption of our model, we treat the entries of a given matrix Ã as i.i.d. Bernoulli
random variables such that

ãij =

{
aij w.p. p
µ w.p. 1− p

,

for which the expected value is simply

Eδ [ãij ] = paij + (1− p)µ.(5.1)

However, when computing expectations we often run into products of 2 entries. For these,
we need to consider 2 cases:

ãij ãik =


aijaik w.p. p2

µaij w.p. p(1− p)
µaik w.p. p(1− p)
µ2 w.p. (1− p)2

,

when j ̸= k, and

ãij ãik =

{
aijaik w.p. p
µ2 w.p. 1− p

,

when j = k. These come from the fact that when an entry is multiplied by itself, it still
corresponds to one coin toss with 2 outcomes. On the other hand, when the entries are
distinct, we now have 2 independent coin tosses and 4 outcomes total. Thus, we get the
following expectation:

Eδ [ãij ãik] =

{
p2aijaik + p(1− p) (aijµ+ µaik) + (1− p)2µ2 j ̸= k
paijaik + (1− p)µ2 j = k

.(5.2)

The 2 cases in (5.2) occur so often in our proofs that we give them labels to condense
the notation. These labels will also serve to indicate how the expected value operator Eδ [·]
acts on different components in our calculations, depending on whether there are products
of repeated or distinct entries. Let us define the functions Π : Rm×d × Rd×n → Rm×n and
π : Rm×d × Rd×n → Rm×n such that

Π [A,B] := p2AB + p(1− p) (AMB +MAB) + (1− p)2MAMB(5.3)

π [A,B] := pAB + (1− p)MAMB,(5.4)

where MA = µ1m×d and MB = µ1d×n, and whose dimensions are that of A and B respec-
tively. Hence, using (5.3) and (5.4), we can now express (5.2) as

Eδ [ãij ãik] =

{
Π [aij , aik] j ̸= k
π [aij , aik] j = k

.(5.5)
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In addition to condensing the expectation, the functions Π [·, ·] and π [·, ·] have the added
benefit of extending to higher dimensional expectations. For instance, suppose we need to
take an expectation of the inner product of columns:

Eδ

[
ÃT

:jÃ:k

]
= Eδ [ã1j ã1k + ã2j ã2k + ...+ ãmj ãmk]

= Eδ [ã1j ã1k] + Eδ [ã2j ã2k] + ...+ Eδ [ãmj ãmk]

=
m∑
i=1

Eδ [ãij ãik]

which by (5.2) is

=
m∑
i=1

[
p2aijaik + p(1− p) (aijµ+ µaik) + (1− p)2µ2

]
= p2

m∑
i=1

aijaik + p(1− p)

(
m∑
i=1

aijµ+
m∑
i=1

µaik

)
+ (1− p)2

m∑
i=1

µ2

= p2AT
:jA:k + p(1− p)

(
AT

:jµ+ µTA:k

)
+ (1− p)2µTµ

when j ̸= k , and

=
m∑
i=1

[
paijaik + (1− p)µ2

]
= p

m∑
i=1

aijaik + (1− p)
m∑
i=1

µ2

= pAT
:jA:k + (1− p)µTµ

when j = k . But these are exactly Π
[
AT

:j ,A:k

]
and π

[
AT

:j ,A:k

]
, respectively.

5.1. Proof of Theorem 3.3. Here we seek to show that sj(x) is an unbiased estimator
for the gradient of our loss function, i.e. E [sj(x)] = ∇L(x). To do this we use the law of
iterated expectation E [sj(x)] = Ej [Eδ [sj(x)]], showing one at a time that for some function
ℓj(x), Eδ [sj(x)] = ℓj(x), while Ej [ℓj(x)] = ∇L(x).

Proof. Recall that sj(x) = (cj(x)− dj(x)) ej such that

cj(x) :=
1

p2
ÃT

:j

(
Ãx− py

)
− 1− p

p2
ÃT

:jÃ:jxj ,

and

dj(x) :=
1− p

p2

[(
ÃT

:jM + µT Ã− (1− p)µTM
)
x

−pµTy −
(
ÃT

:jµ+ µT Ã:j − µTµ
)
xj

]
,

where cj (x) addresses the missing entry without mean shift, while dj (x) accounts for mean
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shift. Now, observe that

Eδ [sj(x)] = (Eδ [cj(x)]− Eδ [dj(x)]) ej ,(5.6)

where the expectations of cj and dj will be functions of inner products of columns of A. Using
(5.3) and (5.4) that notation can be simplified. In particular, we can write

Eδ

[
ÃT

:jÃ
]
= Eδ

[(
ÃT

:jÃ:1, Ã
T
:jÃ:2, ..., Ã

T
:jÃ:j , ..., Ã

T
:jÃ:n

)]

=
(

Eδ

[
ÃT

:jÃ:1

]
,Eδ

[
ÃT

:jÃ:2

]
, ...,Eδ

[
ÃT

:jÃ:j

]
, ...,Eδ

[
ÃT

:jÃ:n

])
=
(
Π
[
AT

:j ,A:1

]
,Π
[
AT

:j ,A:2

]
, ..., π

[
AT

:j ,A:j

]
, ...,Π

[
AT

:j ,A:n

])
= Π

[
AT

:j ,A
]
−Π

[
AT

:j ,A:j

]
eTj + π

[
AT

:j ,A:j

]
eTj ,(5.7)

Thus, using (5.7), we compute the expectation of cj and dj :

Eδ [cj(x)] =
1

p2
Eδ

[
ÃT

:jÃ
]
x− 1

p
Eδ

[
ÃT

:j

]
y − 1− p

p2
Eδ

[
ÃT

:jÃ:j

]
xj

=
1

p2
(
Π
[
AT

:j ,A
]
x−Π

[
AT

:j ,A:j

]
xj + π

[
AT

:j ,A:j

]
xj
)

− 1

p

(
pAT

:j + (1− p)µT
)
y − 1− p

p2
(
π
[
AT

:j ,A:j

])
xj

=
1

p2
(
p2AT

:jA+ p(1− p)
(
AT

:jM + µTA
)
+ (1− p)2µTM

)
x

− 1

p2
(
p2AT

:jA:j + p(1− p)
(
AT

:jµ+ µTA:j

)
+ (1− p)2µTµ

)
xj

+
1

p2
(
pAT

:jA:j + (1− p)µTµ
)
xj −

1

p

(
pAT

:j + (1− p)µT
)
y

− 1− p

p2
(
pAT

:jA:j + (1− p)µTµ
)
xj

=

(
AT

:jA+
1− p

p

(
AT

:jM + µTA
)
+

(1− p)2

p2
µTM

)
x

−
(
AT

:jA+
1− p

p

(
AT

:jµ+ µTA:j

)
+

(1− p)2

p2
µTµ

)
xj

+

(
1

p
AT

:jA+
1− p

p2
µTµ

)
xj −

(
AT

:j +
1− p

p
µT

)
y

−
(
1− p

p
AT

:jA+
(1− p)2

p2
µTµ

)
xj

= AT
:jAx−AT

:jy +

(
1− p

p

(
AT

:jM + µTA
)
+

(1− p)2

p2
µTM

)
x(5.8)
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−
(
1− p

p

(
AT

:jµ+ µTA:j

)
+

2(1− p)2

p2
µTµ

)
xj

+

(
1− p

p2
µTµ

)
xj −

1− p

p
µTy

Eδ [dj(x)] =
1− p

p2

[(
Eδ

[
ÃT

:jM
]
+ Eδ

[
µT Ã

]
− (1− p)µTM

)
x

−pµTy −
(

Eδ

[
ÃT

:jµ
]
+ Eδ

[
µT Ã:j

]
− µTµ

)
xj

]
=

1− p

p2
[(
π
[
AT

:j ,M
]
+ π

[
µT ,A

]
− (1− p)µTM

)
x

−pµTy −
(
π
[
AT

:j ,µ
]
+ π

[
µT ,A:j

]
− µTµ

)
xj
]

=
1− p

p2
[(
pAT

:jM + pµTA+ 2(1− p)µTM − (1− p)µTM
)
x

−pµTy −
(
pAT

:jµ+ pµTA:j + 2(1− p)µTµ− µTµ
)
xj
]

=

(
1− p

p
AT

:jM +
1− p

p
µTA+

(1− p)2

p2
µTM

)
x− 1− p

p
µTy

−
(
1− p

p
AT

:jµ− 1− p

p
µTA:j −

(1− p)(1− 2p)

p2
µTµ

)
xj

=

(
1− p

p

(
AT

:jM + µTA
)
+

(1− p)2

p2
µTM

)
x(5.9)

−
(
1− p

p

(
AT

:jµ+ µTA:j

)
+

2(1− p)2

p2
µTµ

)
xj

+

(
1− p

p2
µTµ

)
xj −

1− p

p
µTy

Plugging (5.8) and (5.9) into (5.6), we get

Eδ [sj(x)] = (Eδ [cj(x)]− Eδ [dj(x)]) ej =
(
AT

:j (Ax− y)
)
ej ,(5.10)

for which we refer to the right-hand side expression as “ℓj(x)”. Recalling our loss function
L(x) = 1

2n∥Ax− y∥2, it can be shown after some expansions that

∂L(x)

∂xj
=

1

n
AT

:j (Ax− y) .

Thus, when we go to compute the column-wise expectation of ℓj(x) (assuming columns of A
are selected uniformly at random) we get

Ej [ℓj(x)] =
n∑

j=1

1

n
ℓj(x) =

n∑
j=1

1

n

(
AT

:j (Ax− y)
)
ej =

n∑
j=1

∂L(x)

∂xj
ej .(5.11)

Finally, combining (5.10) and (5.11) gives us the desired gradient,

E [sj(x)] = Ej [Eδ [sj(x)]] = Ej [ℓj(x)] = ∇L(x).
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5.2. Proof of Theorem 3.4. Similar to the last proof, here we show that ti(x) is an
unbiased estimator for the gradient of the loss function, E [ti(x)] = ∇F (x). Again, we use
an iterated expectation E [ti(x)] = Ei [Eδ [ti(x)]], showing first that for the function fi(x),
Eδ [ti(x)] = ∇fi(x) holds, then finally that Ei [∇fi(x)] = ∇F (x).

Proof. Recall that ti(x) = gi(x)− hi(x) such that

gi(x) :=
1

p2
ÃT

i:

(
ÃT

i:x− pyi

)
− 1− p

p2
diag

(
ÃT

i:Ãi:

)
x,

and

hi(x) :=
1− p

p2

[(
ÃT

i:µ+ µT Ãi: − (1− p)µTµ
)
x

−pµT yi − diag
(
ÃT

i:µ+ µT Ãi: − µTµ
)
x
]
,

where gi(x) plays the analogous role to cj(x) in the previous proof (missing entry without
mean shift), and hi(x) the role of dj(x) (mean shift). Now, observe that

Eδ [ti(x)] = Eδ [gi(x)]− Eδ [hi(x)] ,(5.12)

where the expectations of gi and hi will be functions of inner products of columns of A. Using
(5.3) and (5.4) that notation can be simplified. In particular, we can write

Eδ

[
ÃT

i:Ãi:

]
= Eδ




ãi1ãi1, ãi1ãi2, ... ãi1ãin

ãi2ãi1, ãi2ãi2, ... ãi2ãin
...

...
. . .

...

ãinãi1, ãinãi2, ... ãinãin





=


Eδ [ãi1ãi1] , Eδ [ãi1ãi2] , ... Eδ [ãi1ãin]

Eδ [ãi2ãi1] , Eδ [ãi2ãi2] , ... Eδ [ãi2ãin]
...

...
. . .

...

Eδ [ãinãi1] , Eδ [ãinãi2] , ... Eδ [ãinãin]



=


π [ai1, ai1] , Π [ai1, ai2] , ... Π [ai1, ain]

Π [ai2, ai1] , π [ai2, ai2] , ... Π [ai2, ain]
...

...
. . .

...

Π [ain, ai1] , Π [ain, ai2] , ... π [ain, ain]



= Π
[
AT

i: ,Ai:

]
− diag

(
Π
[
AT

i: ,Ai:

])
+ diag

(
π
[
AT

i: ,Ai:

])
.

(5.13)
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Thus, taking each expectation separately and using (5.13), we get:

Eδ [gi(x)] =
1

p2
Eδ

[
ÃT

i:Ãi:

]
x− 1

p
Eδ

[
ÃT

i:

]
yi −

1− p

p2
diag

(
Eδ

[
ÃT

i:Ãi:

])
x

=
1

p2
(
Π
[
AT

i: ,Ai:

]
− diag

(
Π
[
AT

i: ,Ai:

])
+ diag

(
π
[
AT

i: ,Ai:

]))
x

− 1

p

(
pAT

i: + (1− p)µT
)
yi −

1− p

p2
(
diag

(
π
[
AT

i: ,Ai:

]))
x

=
1

p2
(
p2AT

i:Ai: + p(1− p)
(
AT

i:µ+ µTAi:

)
+ (1− p)2µTµ

)
x

− 1

p2
diag

(
p2AT

i:Ai: + p(1− p)
(
AT

i:µ+ µTAi:

)
+ (1− p)2µTµ

)
x

+
1

p2
diag

(
pAT

i:Ai: + (1− p)µTµ
)
x− 1

p

(
pAT

i: + (1− p)µT
)
yi

− 1− p

p2
diag

(
pAT

i:Ai: + (1− p)µTµ
)
x

=

(
AT

i:Ai: +
1− p

p

(
AT

i:µ+ µTAi:

)
+

(1− p)2

p2
µTµ

)
x

− diag

(
AT

i:Ai: +
1− p

p

(
AT

i:µ+ µTAi:

)
+

(1− p)2

p2
µTµ

)
x

+ diag

(
1

p
AT

i:Ai: +
1− p

p2
µTµ

)
x−

(
AT

i: +
1− p

p
µT

)
yi

− diag

(
1− p

p
AT

i:Ai: +
(1− p)2

p2
µTµ

)
x

= AT
i:Ai:x−AT

i:yi +

(
1− p

p

(
AT

i:µ+ µTAi:

)
+

(1− p)2

p2
µTµ

)
x(5.14)

− diag

(
1− p

p

(
AT

i:µ+ µTAi:

)
+

2(1− p)2

p2
µTµ

)
x

+ diag

(
1− p

p2
µTµ

)
x− 1− p

p
µT yi,

and

Eδ [hi(x)] =
1− p

p2

[(
Eδ

[
ÃT

i:µ
]
+ Eδ

[
µT Ãi:

]
− (1− p)µTµ

)
x

−pµT yi − diag
(

Eδ

[
ÃT

i:µ
]
+ Eδ

[
µT Ãi:

]
− µTµ

)
x
]

=
1− p

p2

[(
π
[
ÃT

i:µ
]
+ π

[
µT Ãi:

]
− (1− p)µTµ

)
x

−pµT yi − diag
(
π
[
ÃT

i:µ
]
+ π

[
µT Ãi:

]
− µTµ

)
x
]

=
1− p

p2
[(
pAT

i:µ+ pµTAi: + 2(1− p)µTµ− (1− p)µTµ
)
x
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−pµT yi − diag
(
pAT

i:µ+ pµTAi: + 2(1− p)µTµ− µTµ
)
x
]

=

(
1− p

p
AT

i:µ+
1− p

p
µTAi: +

(1− p)2

p2
µTµ

)
x− 1− p

p
µT yi

− diag

(
1− p

p
AT

i:µ− 1− p

p
µTAi: −

(1− p)(1− 2p)

p2
µTµ

)
x

=

(
1− p

p

(
AT

i:µ+ µTAi:

)
+

(1− p)2

p2
µTµ

)
x(5.15)

− diag

(
1− p

p

(
AT

i:µ+ µTAi:

)
+

2(1− p)2

p2
µTµ

)
x

+ diag

(
1− p

p2
µTµ

)
x− 1− p

p
µT yi.

Plugging (5.14) and (5.15) into (5.12), we get

Eδ [ti(x)] = Eδ [gi(x)]− Eδ [hi(x)] = AT
i: (Ai:x− yi) .(5.16)

Now, recall our objective function F (x) = 1
2m∥Ax − y∥2, which can be rewritten as

F (x) = 1
m

∑m
i=1 fi(x), where fi(x) = 1

2 (Ai:x− yi)
2. After some expansions, it is not too

difficult to show that

∇fi(x) = AT
i: (Ai:x− yi) ,(5.17)

and notice this is exactly the right-hand side of (5.16). Thus, assuming rows i are uniformly
selected from [m], we take the row-wise expectation of ∇fi(x) to get

Ei [∇fi(x)] =

m∑
i=1

1

m
∇fi(x) = ∇

[
1

m

m∑
i=1

fi(x)

]
= ∇F (x).(5.18)

Finally, combining (5.16), (5.17), and (5.18), we get

E [ti(x)] = Ei [Eδ [ti(x)]] = Ei [∇fi(x)] = ∇F (x).

the desired gradient.

5.3. Proof of Theorem 3.5. In this proof, we first define the µ, then we consider the
different cases, such as 0-imputation and µ-imputation for the matrix A. By calculating the
expectation for both cases, Eδ∥A− Ã0∥2F ≥ Eδ∥A− Ãµ∥2F holds.

Proof. Given Ã0 is matrix A with missing entries ã0,ij in which 0 is imputed and Ãµ is
matrix A with entries ãµ,ij in which the mean value of A, a fixed µ = 1

mn

∑
ij aij , is imputed,

we want to find Eδ

[
∥A− Ã0∥2F

]
and Eδ

[
∥A− Ãµ∥2F

]
and compare them.

We know,

ã0,ij =

{
0 w.p 1− p
aij w.p p

⇒ ã20,ij =

{
0 w.p 1− p
a2ij w.p p
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ãµ,ij =

{
µ w.p 1− p
aij w.p p

⇒ ã2µ,ij =

{
µ2 w.p 1− p
a2ij w.p p

Therefore,

Eδ

[
∥A− Ã0∥2F

]
= Eδ

 m∑
i=1

n∑
j=1

(aij − ã0,ij)
2


=

m∑
i=1

n∑
j=1

Eδ

[(
a2ij − 2aij ã0,ij + ã20,ij

)]
=

m∑
i=1

n∑
j=1

Eδ

[
a2ij
]
+

m∑
i=1

n∑
j=1

EA,δ

[
ã20,ij

]
−

m∑
i=1

n∑
j=1

Eδ [2aij ã0,ij ]

= ∥A∥2F +

m∑
i=1

n∑
j=1

pa2ij −
m∑
i=1

n∑
j=1

2pa2ij

= ∥A∥2F −
m∑
i=1

n∑
j=1

pa2ij

= ∥A∥2F − p∥A∥2F = (1− p)∥A∥2F
Similarly,

Eδ

[
∥A− Ãµ∥2F

]
= Eδ

 m∑
i=1

n∑
j=1

(aij − ãµ,ij)
2


=

m∑
i=1

n∑
j=1

Eδ

[(
a2ij − 2aij ãµ,ij + ã2µ,ij

)]
=

m∑
i=1

n∑
j=1

Eδ

[
a2ij
]
+

m∑
i=1

n∑
j=1

Eδ

[
ã2µ,ij

]
−

m∑
i=1

n∑
j=1

Eδ [2aij ãµ,ij ]

= ∥A∥2F +

m∑
i=1

n∑
j=1

(
pa2ij + µ2(1− p)

)
−

m∑
i=1

n∑
j=1

2aij (paij + µ(1− p))

= ∥A∥2F +

m∑
i=1

n∑
j=1

pa2ij +

m∑
i=1

n∑
j=1

µ2(1− p)− 2

m∑
i=1

n∑
j=1

pa2ij − 2

m∑
i=1

n∑
j=1

aijµ(1− p)

= ∥A∥2F −
m∑
i=1

n∑
j=1

pa2ij +
m∑
i=1

n∑
j=1

µ2(1− p)− 2
m∑
i=1

n∑
j=1

aijµ(1− p)

= ∥A∥2F −
m∑
i=1

n∑
j=1

pa2ij +
m∑
i=1

n∑
j=1

µ(1− p) (µ− 2aij)

= (1− p)∥A∥2F +
m∑
i=1

n∑
j=1

µ(1− p) (µ− 2aij)
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For the last term we have,
m∑
i=1

n∑
j=1

µ(1− p) (µ− 2aij) = µ(1− p)
m∑
i=1

n∑
j=1

(µ− 2aij)

= µ(1− p)

mnµ−
m∑
i=1

n∑
j=1

2aij


= µ(1− p) (mnµ− 2mnµ)

= −mnµ2(1− p),

which is non-positive. Thus, Eδ[∥A− Ã0∥2F ] ≥ Eδ[∥A− Ãµ∥2F ]
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