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See Light Move: Compressed Sensing 
and the World’s Fastest 2-D Camera
By Hans Kaper

I t may take one, ten, or even a 
hundred years, but beautiful ideas 

always find their way to applications.
In an ordinary digital camera, a large 

amount of information is collected by the 
camera’s sensor. This information is imme-
diately processed by compression software, 
and a much smaller amount is then stored. 
This process takes time, contributing largely 
to what is called “shutter lag.” Is it possible 
to collect only what is needed and thus reduce 
or even eliminate shutter lag? Thanks to some 
clever physics and compressed sensing, the 
answer is “yes.”

The mathematical concepts underlying 
compressed or compressive sensing date back 
to the 1970s, when the merits of the 1 norm 
were recognized in convex programming. 
The theory developed rapidly in the 1990s, 
and a breakthrough occurred in the early 
years of the 21st century with the work of 
Candès, Tao, Romberg, and Donoho [2, 3, 5]. 
Collectively, they realized that one can 
design an efficient sensing or sampling proto-
col by capturing useful information in a 
sparse signal and compressing it into a small 
amount of data.

These beautiful mathematical ideas have 
found an application in the world’s fastest 
2-D camera. By adding a digital micromir-
ror device for spatial encoding and applying 
reconstruction algorithms from compressed 
sensing, Lihong Wang and colleagues at 
Washington University in St. Louis trans-
formed a traditional one-dimensional streak 
camera into a 2-D ultrafast imaging camera. 
Now, for the first time, humans can see the 
movement of light on the fly (see Figure 1).

Compressed Sensing
Compressed sensing is based on the obser-

vation that most signals or images contain 
only a small amount of crucial informa-
tion. By strategically discarding unnecessary 
data, one can reduce the image’s size while 
retaining sufficient information to faithfully 
reconstruct the original. The full image is then 
reconstructed from the encoded data using 
linear programming algorithms. To make this 
possible, compressed sensing relies on two 
principles: sparsity and incoherence. Sparsity 
implies that the image has a concise repre-
sentation when expressed in the proper basis, 
while incoherence indicates that unlike the 
image of interest, the sampling/sensing wave-
forms have an extremely dense representation 

in the sparsifying basis. Thus, compressed 
sensing is a simple and efficient signal acqui-
sition protocol that samples—in a signal-
independent fashion—at a low rate and later 
uses computational power for reconstruction 
from what appears to be an incomplete set of 
measurements.

Instead of collecting all of the informa-
tion about a signal or image in pixels in 
a large n-dimensional vector x, compressed 
sensing collects information in a much smaller 
k-dimensional vector y = Ax. Here, A is a (rect-

angular) matrix that represents the measure-
ment process. If the signal is sparse, k need 
not be very large to recover the original signal 
x from y; in practice, it usually needs to be no 
more than four times the sparsity level of x. 

The underdetermined system  Ax = y can 
be solved in a remarkably efficient way by 

minimizing the 1 norm x x
i

n

i1
1

=
=
∑ | | of x, 

subject to the constraint y = Ax. This convex 
problem can be converted to a linear

Figure 1. Still frames from movies captured with compressed ultrafast photography (CUP)
shows a light pulse (a) bouncing off a mirror and (b) refracting at an air-resin interface.

Computational Modeling of 
Convection in the Earth’s Mantle
By Wolfgang Bangerth, Juliane 
Dannberg, Rene Gassmöller, and 
Timo Heister

Louis Moresi’s article1 in the December 
issue of SIAM News prompts readers to 

take a deeper look at models of Earth – deeper 
into Earth, that is, and more specifically into 
Earth’s mantle: the region between the solid 
crust and the metallic core.

The mantle makes up about 84% of Earth 
by volume and extends to a depth of 2,890 
km. At its bottom, it is believed to reach 
temperatures of about 3,300–4,400 K. Yet 
because of pressure from overlying mate-
rial, the mantle consists of solid rock (with 
few localized exceptions of partially mol-
ten material), as evidenced by its ability to 
transmit seismic shear waves. However, on 
sufficiently large time scales it behaves like 
a vigorously convecting fluid, cooled by the 
cold surface above and heated by both the 
hot core below and radioactive decay within 
(see Figure 1). Thus, one could view plate 

1  Moresi, Louis. (2015, December). 
Computational Plate Tectonics and the 
Geological Record in the Continents. SIAM 
News, 48(10), 1 & 3.

tectonics simply as the surface expression of 
convection cells. Within the mantle, average 
velocities are on the order of cm/year.
At first glance there seem to be only a few 
visible expressions of mantle convection. 
However, most volcanism on Earth’s surface 
is closely related to the distribution and advec-
tion of thermal and chemical heterogeneities 
in the mantle and at mid-ocean ridges, subduc-
tion zones, and oceanic islands, for example. 
Furthermore, the importance of the mantle lies 
in its interactions with other parts of Earth:

• When hot material rising in the mantle 
approaches the surface, it causes massive 
melting that leads to large volcanic eruptions. 
The volume of erupted material can exceed 
106 km3 in just a few million years, leading 
to the formation of large volcanic provinces 
with areal extensions greater than 106 km2. 
Due to the released gases, these events influ-
ence the global climate and may have led to 
mass extinction events.

• Cooling by the mantle drives convec-
tion in Earth’s core, which generates Earth’s 
magnetic field. A more viscous mantle would 
effectively insulate the core, and a less viscous 
mantle would have led to the core’s crystal-
lization long ago; both scenarios would leave 
us without the magnetic field that offers pro-

tection from the 
harsh radiation of 
space and keeps 
solar wind from 
driving away the 
atmosphere.

•  By ingest-
ing water and 
sediment-laden 
subducting oce-
anic plates—and 
later releasing 
material again 
through volcanic 
outgassing—the 
mantle acts as a 
giant reservoir 
for water and 

carbon, thus creating a carbon cycle on time 
scales of tens of millions of years.
For these reasons, understanding the dynam-
ics of convection and the conditions under 
which it happens have long been important in 
the geosciences. More recently, a fair number 
of computational and applied mathematicians 
have also entered the field, as mantle convec-
tion presents an attractive, accessible set of 
problems that require large-scale computa-
tions, are tough on linear and nonlinear solv-
ers, yet still fall within a solvable range.

Many aspects of mantle convection can 
already be understood qualitatively by con-
sidering a set of equations in which fluid flow 
is slow and driven by density differences that 
result from temperature variation. The Stokes 
equations allow for adequate modeling of 
velocity and pressure:

     − ⋅ + = ( ( )) ,2ηε ρu p g
                    ⋅ =u 0,

with viscosity η  (ranging from 1018 to 1023 
Pa·s; for comparison, the viscosity of water 
is about 10-3 Pa·s; that of air 10-5 Pa·s; and 
that of honey ~10 Pa·s), density ρ, and 
gravity g. An advection diffusion equation 
models temperature:

       
∂
∂

+ ⋅
T
t
u T − ⋅ = κ T Q.

This must be augmented with appropri-
ate boundary conditions for the velocity 
and temperature, such as tangential or zero 
velocity around the boundary, and “hot” 
at the bottom and “cold” at the top of the 
domain. In the simplest description, the 
density depends linearly on the temperature, 
ρ ρ α( ) ( ),T T Tref ref= − −  where α  is the 
thermal expansion coefficient. With realisti-
cally small values for the thermal diffusivity 
κ , such a model already (correctly) predicts 
that heat is transported from the core to the 
surface primarily through “blobs,” or sheets 

See Earth’s Mantle on page 3

Figure 1. Schematic of convection in Earth’s mantle, including cold down-
wellings (blue), hot upwellings (red), and strong chemical heterogeneities 
(orange, green), all of which influence the material properties of the rocks.

See Compressed Sensing on page 3
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New Initiative Focuses on Computational 
Science and Advanced Computing
With the launch of the federal National 

Strategic Computing Initiative 
(NSCI), the Obama Administration and 
federal agencies have thrust computational 
science and advanced computing into the 
spotlight.  The initiative, which should be 
of interest to the SIAM community, aims to 
create a cohesive, strategic vision in High 
Performance Computing (HPC) for the 
United States.  As agencies seek to imple-
ment this vision, applied math and computa-
tional science will play a key role in ensur-
ing that the U.S. realizes the full benefit of 
HPC systems. Three primary agencies are 
engaged in the initiative: the Department 
of Energy (DOE), the National Science 

Foundation (NSF), and the Department of 
Defense (DOD).  

The NSCI aims to combine the strengths 
of computers focused on simulation/model-
ing and computers focused on managing 
large amounts of data. The goal is to cre-
ate new platforms, keep the U.S. at the 
forefront of HPC capabilities by achieving 
exascale computing, create systems that are 
easier to program to encourage widespread 
use, make HPC readily available through 
deployment and education, and conduct 
fundamental research to establish hardware 
technology for future HPC systems. For 
example, the NSF is planning investments 
in software, technology, and people. These 

investments primarily focus on increas-
ing synergies between modeling/simulation 
and data analytic computing, increasing 
the capacity and capability of a national 
HPC ecosystem, and researching a viable 
path forward for future HPC systems post 
Moore’s law. The DOE will continue its 
pursuit of an exascale system with accom-
panying applied math investments. The 
DOD will focus on data analytic computing 
related to its mission. As these agencies 
develop their implementation plans, new 
opportunities are likely to emerge for the 
SIAM community.  

Given the growing nature of this ini-
tiative and the importance of modeling 
and other mathematical challenges to its 
success, the SIAM community is encour-
aged to participate in workshops, symposia, 
conferences, and Proposers Days to shape 
and compete for new opportunities arising 
from the NSF, the DOE, and the DOD. For 
instance, the White House held a workshop 
in October to discuss key challenges and 
opportunities related to the initiative, foster 
collaboration, and communicate long-term 
plans for the NSCI. Multiple participants 
at the workshop emphasized the need for 
research on algorithms, cited applied math-
ematics challenges, or noted the importance 
of computational science. The White House 
is currently planning follow-on workshops 
on particular challenge areas. Now is a 
great time to engage, bringing the expertise 
of the mathematics community to ensure 
that the U.S. will continue its leadership 
in HPC. – Miriam Quintal, Lewis–Burke 
Associates, LLC. 

Large-Scale Inversion in Exploration Seismology
By Tristan van Leeuwen

Seismic data offers a rich source of 
information about the subsurface of 

the earth. By studying its dynamic and 
kinematic properties, researchers can infer 
large-scale variations as well as rock prop-
erties on a local scale. Seismic measure-
ments for exploration purposes are typically 
acquired by placing receivers (geophones) 
on the surface and detonating an explosive 
source, as seen in Figure 1. This procedure 
is repeated for various locations, result-
ing in a large volume of data. This is a 
typical multi-experiment setting, meaning 
multiple data sets are collected for a single 
set of parameters. The rock properties are 
parametrized in the subsurface by m and 
the experiment is simulated by solving a 
linear wave equation [ ] ,m u qi i=  where 
i = …0 1, , ,  k is the experiment index, qi  
represents the explosive source, and   is a 
differential operator.

The introduction of a linear operator 
that maps the solution ui  to the measure-
ments formally poses the inverse problem 
as follows: For given measurements di ,  
determine the coefficients m and solutions 
ui  such that u di i≈  and ( )m u qi i=  for 
i k= …1 2, , .

Numerically solving the PDEs readily 
eliminates the ui  and obtains a high-dimen-
sional (m may represent up to 109 parameters) 
nonlinear least-squares problem with k terms:

            

min ,
m i i

i

k

u d −
=
∑ 2

2

1

  
    

 
where ( )m u qi i= [5]. In principle, any 
black-box optimization method can be used 
to solve the resulting optimization problem. 
Due to the computational cost and severe 
nonlinearity, however, the seismic problem 
is not amenable to a black-box approach. 
The key to developing a better approach 
is considering the interplay between the 
formulation, the optimization algorithm, 
the multi-experiment nature of the data, 
and the means of (numerically) solving the 

wave equation. These aspects are tradition-
ally different disciplines’ areas of expertise  
(e.g., statistics, computer science, machine 
learning, and numerical analysis), making 
this a very exciting problem for multidisci-
plinary research. 

The leading computational cost lies in 
solving the wave equation for all k experi-
ments, where k is potentially very large 
(easily k ~ 106 ). Thus, one can only per-
form a few iterations to obtain an approxi-
mate solution of the optimization problem. 
Additionally, the severely nonlinear rela-
tion between the parameters and the data 
requires a very good initial parameter esti-
mate. If the initial guess is not ‘close’ to the 
true parameters in some sense, the optimi-
zation may converge to a local minimum. 
Failure to find a global minimum is often 
very hard to detect. The industry therefore 
spends a considerable amount of time and 
effort constructing a suitable initial estimate 
and performing subsequent quality control, 
both of which involve much specialized 
manual interference.

An ideal situation would involve running 
an inversion multiple times from a suite of 
initial guesses and quantifying the uncer-
tainty of the final result. While mathemati-
cal techniques to perform such uncertainty 

quantification for inverse problems are well 
established, they often rely on some form of 
Monte Carlo (MC) sampling. However, the 
high dimensionality of the problem at hand 
and the computational cost involved in run-
ning even a single simulation prohibit the use 
of such techniques. My recent research aims 
at tackling this challenge on multiple fronts:

• Reformulation of the conventional 
least-squares problem to one that is less 
nonlinear in the parameters, making the 
approach less sensitive to the quality of the 
initial guess [4, 7].

• Reduction of the dimensionality of the 
data, replacing the full data set with k terms by 
a subsampled dataset with ′k k  terms [6].

• Better quantification of the uncertainty 
by estimating statistics of the noise and 
other auxiliary parameters [1].

Reformulations
Many reformulations of the seismic 

inverse problem have been proposed over 
the years. One class of reformulations uses 
a different distance metric to measure the 
difference between the observed and simu-
lated data. This is very useful when certain 
features of the data are of primary interest, 
or when the data contains large outliers.

Figure 1. Schematic depiction of the acquisition process. The seismic source is indicated with 
a  while the receivers are indicated with a  .

See Exploration Seismology on page 4
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 programming problem, for which we have 
fast algorithms. When the signal is suffi-
ciently sparse, the recovery via 1  minimi-
zation is provably exact [1].

Signals and images are rarely exactly 
sparse; more often they are only approxi-
mately sparse. Additionally, measured data 
are invariably corrupted by at minimum a 
small amount of noise; at the very least, small 
perturbations in the data should cause small 
perturbations in the reconstruction. So for 
practical reasons, compressed sensing must 
be able to deal with both nearly sparse signals 
and with noise. As was shown by Candès, 
Romberg, and Tao [4], if x is not exactly 
sparse, then the quality of the recovered signal 
is as good as if one knew the location of the 
largest values of x ahead of time and decided 
to measure those directly. In other words, 
the reconstruction is nearly as good as that 
provided by an oracle which, with full and 
perfect knowledge about x, extracts the most 
significant pieces of information.

The 2-D Camera
The 2-D camera, which can record non-

repetitive, time-evolving events at one hun-
dred billion frames per second, was developed 
by Wang and his colleagues using a dynamic 
2-D imaging technique called compressed 
ultrafast photography (CUP). CUP combines 
streak photography, an ultrafast imaging tech-
nique, with compressed sensing [6].

While traditional cameras capture discrete 
images by repeated opening and closing of a 
shutter, streak cameras deflect incoming light 
in a way that maps time onto a spatial dimen-
sion on the camera’s two-dimensional pixel 
array. The light is deflected by an amount 
proportional to its time of arrival, a process 
known as shearing.

Traditional streak cameras can film in only 
one spatial dimension. When a one-dimen-
sional scene like the one shown in Figure 2—
where the object moves from left to right—is 
sheared vertically, the scene’s time domain is 
translated to the detector’s y-domain. A movie 
can then be reconstructed by taking each row 
of pixels as a frame.

By masking the 2-D scene with a known 
pixel pattern, Wang’s group recorded a 2-D 

scene in a single shot. The Washington 
University team was able to achieve this by 
taking their cues from signal processing. 
CUP facilitates detection of information about 
all three dimensions—spatial coordinates x 
and y, and time t—on a single pixel array 
by encoding the input scene in the spatial 
domain. The resultant image is then sheared 
in the streak camera. A 2-D detector array 
with a single snapshot measures this encoded 
and sheared three-dimensional scene (x, y, t). 
The encoded data can retrieve time informa-
tion from the input scene in the subsequent 
image reconstruction.

Applications
The single-shot ultrafast camera is like a 

microscope for time, one that has many poten-
tial applications in fundamental and applied 
science. One remarkable medical applica-
tion for the camera is in magnetic resonance 
imaging (MRI). MRI recovers images from a 
human body by taking a large number of mea-
surements before reprocessing the data. The 
scan can take extended periods of time, much 
to the disadvantage of patients who have to 
be kept completely still. In the worst cases, 
the individual’s breathing is stopped, depriv-
ing the patient of oxygen for the entire scan. 
Compressed sensing techniques alleviate this 
issue by reconstructing the image using many 
fewer samples. These techniques significantly 
reduce the number of measurements required 
for the MRI from minutes to mere seconds.

CUP can potentially be coupled with 
microscopes to enable the observation of tran-
sient events in cell structures. For instance, it 
could be used to observe energy metabolism 
in cellular mitochondria. It could also enable 
understanding of light’s passage through tis-
sues, which could yield important insights 
into therapies that use lasers to destroy abnor-
mal or diseased tissue, with the objective of 
keeping healthy tissue unharmed.

As Wang puts it, the generic nature of the 
camera means it can be coupled with a wide 

variety of tools—from microscopes to tele-
scopes—and thus be used to film anything from 
cellular functions to collapsing supernovae [7].
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Figure 2. A one-dimensional scene is sheared vertically and the scene’s time domain maps to 
the detector’s y-domain. A movie can be reconstructed by taking each row of pixels as a frame.

of hot material that rise up from the core-
mantle boundary and sheets of cold material 
that well down from the surface (see Figure 
2). We can identify these hot blobs with 
mantle plumes believed to give rise to Earth’s 
hot spots, and the cold sheets with subducting 
oceanic plates. 

In this simple model, dynamics are easy 
to understand when considering the Rayleigh 
number Ra TgD=α η κ∆ 3 / ( ), where D is 
a length scale of the domain andΔ ∆T  is the 
temperature difference between the surface 
and the core-mantle boundary; the larger the 
Rayleigh number, the smaller the features of 
the flow field. This already gives rise to a for-
midable computational challenge: with real-
istic values for the material parameters in the 
above equations, Earth’s flow features can be 
as small as a few kilometers across. With a 
volume of around 1012 km3, a finite element 
discretization using uniform meshes requires 
about a billion cells and a few 1010 unknowns 
to achieve appreciable accuracy. The current 
generation of codes can reach into this range, 
either through highly-tuned numerics or the 
use of adaptive mesh refinement. Some of the 
largest implicit finite element computations 
have indeed been performed on this problem 
[1, 2, 3, 5, 6, 7]. The most recent Gordon Bell 
prize was also awarded for the solution of this 
system on up to 500,000 cores [4].

A separate, equally-difficult challenge 
arises from the fact that realistic materials do 
not behave as outlined above. Rather than 
expand linearly with temperature, rocks 
undergo phase changes where density varies 
both continuously and discontinuously as a 
function of temperature and pressure. The 
same is true for viscosity, which may vary by 
many orders of magnitude even over small 
distances where hot and cold materials come 
together, such as when cold oceanic slabs 
subduct into the hot mantle. Viscosity also 
depends strongly and nonlinearly on stress, 
grain size, water content, and a number of 
other quantities. Finally, when considering 

the entire mantle, a mass conservation equa-
tion,∇⋅ =( ) ,ρu 0 must replace the above 
incompressibility equation.

Cumulatively, compressibility and strong 
nonlinearities complicate the design of effi-
cient and accurate solver strategies. The 
required nonlinear iterations also make the 
solution very expensive computationally. 
While the nonlinearity can be treated effi-
ciently in a time-stepping scheme, solving the 
first time step self-consistently can become a 
significant challenge.

Equally difficult are the large jumps in 
viscosity that result from strong tempera-
ture gradients that often cannot be resolved 
adequately by the mesh. Such “essentially 
discontinuous” viscosity fields cause large 
discretization errors and pose enormous chal-
lenges to the design of linear solvers and pre-
conditioners. Recent experiments show that 
appropriately averaging material parameters 
on each cell, without reducing the overall 
convergence order, can significantly reduce 
these discretization errors. This also vastly 
improves the efficiency of linear solvers, 
sometimes reducing the time to solution by a 
factor of ten on complex models.

Much more progress in all areas of com-
putational mathematics—on discretizations, 
nonlinear and linear solvers, precondition-
ers, and parallel algorithms—is necessary 
to make the solution of complex models in 
mantle convection fast and routine. However, 
many of the most widely-used codes are 
open source and well-documented, such as 
Citcom,2 or our own contribution, ASPECT.3 
Specifically, ASPECT is built as a modu-
lar platform that allows mathematical and 
computational scientists to test new dis-
cretizations and solvers on realistic prob-
lems, and geoscientists to develop and test 
new model descriptions. The Computational 
Infrastructure for Geodynamics4 has been 
collecting and curating these and other codes 
to facilitate both geodynamical research as 

2  https://geodynamics.org/cig/software/
citcoms/

3  http://aspect.dealii.org
4  http://www.geodynamics.org

well as experimentation with new numerical 
methods.
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Figure 2. Two hemispherical views of a global mantle convection model. Cold material (blue to 
grey colors) sinks towards the core-mantle boundary, while hot low-viscosity material (rainbow 
colors) rises towards the surface in focused upwellings.
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Hot Hands, Streaks and Coin-flips: 
How The New York Times Got it Wrong
By Dan Gusfield

The existence of “Hot Hands” and 
“Streaks” in sports and gambling is 

hotly debated. Two recent articles in The 
New York Times (NYT) discussing streaks 
and hot hands in basketball and coin flips 
misinterpreted elementary concepts in prob-
ability and statistics. While it is dishearten-
ing to see the newspaper of record make 
such basic errors in mathematical reporting, 
the articles do provide a case study for how 
they got it wrong. This article is adapted 
from a longer piece I wrote for that purpose 
and audience [2].

The starting point is an article by George 
Johnson in the NYT Sunday Review on 
October 18, 2015, titled “Gamblers, 
Scientists and the Mysterious Hot Hand,”1  
which discusses recent claims by Joshua 
Miller and Adam Sanjurjo [3] that a clas-
sic 1985 paper [1] debunking the concept 
of hot hands in basketball, “is flawed by a 
subtle misperception about randomness.” 
Then, on October 27, 2015, in a follow-
up NYT article (published in The Upshot) 
called “Streaks Like Daniel Murphy’s 
Aren’t Necessarily Random,”2 Binyamin 
Appelbaum writes that Miller and Sanjurjo 
[3] claimed that the classic paper had “made 
a basic statistical error.”

What I discuss here is not hot hands per 
se, but how the NYT articles addressed prob-
ability and statistics. The following quotes 
are from the two articles:

(From Johnson): “For a 50 percent shoot-
er, for example, the odds of making a basket 
are supposed to be no better after a hit – still 
50-50. But in a purely random situation, 
according to the new analysis, a hit would 
be expected to be followed by another hit less 
than half the time.” (Italics added). The NYT 
article concerns a “purely random situation,” 
not some basketball-related phenomenon. I 

1  http://www.nytimes.com/2015/10/18/
sunday-review/gamblers-scientists-and-the-
mysterious-hot-hand.html

2  http://www.nytimes.com/2015/10/27/
upshot/trust-your-eyes-a-hot-streak-is-not-a-
myth.html

interpret the Johnson statement in italics as 
“... the probability that a hit will be followed 
by another hit is less than one-half.”

(From Appelbaum): “Flip a coin, and 
there’s an equal chance it will land heads 
or tails ... But Joshua Miller of Bocconi 
University and Adam Sanjurjo of the 
Universidad de Alicante pointed out some-
thing surprising: In the average series of 
four coin flips, the sequence heads-heads is 
significantly less common than heads-tails.  
On average, just 40.5 percent of the heads are 
followed by another heads.” (Italics added).

In a “purely random situation,” every flip 
will be an H with the same probability that 
it is a T – exactly one-half. Thus, a hit is 
expected to be followed by another hit (H) 
one-half of the time, which is as often as it 
is expected to be followed by a miss (T). So 
what is going on?

Following a similar example and table 
in the Miller and Sanjurjo paper (but not 
yielding a similar conclusion), Johnson did 
the following. He looked at the 16 length-
four sequences shown in Figure 1. For 
each sequence that contains an H in one 
of the first three positions (there are 14), 
he calculated the percentage of those Hs 
that are followed by another H. Call that 
the HH-percentage. Then he calculated the 
unweighted average of the HH-percentages 
and got about 40.5%. 

The arithmetic is right, but so what?  The 
unweighted average gives equal weight 
to each sequence, ignoring the fact that 
some sequences have more Hs than oth-
ers, and that occurrences of HH are not 
uniformly distributed among the sequences. 
To correctly calculate the probability that 
an H follows an H, you need to give equal 
weight to each H that occurs in the first 
three positions of a sequence. Equivalently, 
if you start from the HH-percentages of 
the 14 sequences, you need to compute a 
weighted average of those HH-percentages: 
each HH-percentage multiplied by the num-
ber of Hs in the first three positions of the 
associated sequence. The NYT articles get 
this wrong, because they suggest that the 
unweighted average of the HH-percentages 

equals the probability of an H following an 
H in a fair coin flip.

While Johnson and Appelbaum miss the 
issue of weighted versus unweighted aver-
aging, Miller and Sanjurjo (MS) do not. 
They state that “The key ... is that it is not 
the flip that is treated as the unit of analy-
sis, but rather the sequence of [four] flips 
from each coin ... Therefore, in treating the 
sequence as the unit of analysis, the average 
empirical prob-
ability across 
coins amounts  
to an unweight-
ed average.”

But Why?  

Why did 
MS intention-
ally calculate 
u n w e i g h t e d 
averages? Let 
me explain one 
reason. Suppose 
that a player, 
with an estab-
lished 50% hit 
rate, shoots four 
times in a game. 
To decide if he 
had a hot hand 
in the game, 
we compute his 
HH-percentage 
for the game 
and compare 
it to a refer-
ence number 
r e p r e s e n t i n g 
the expected HH-percentage for someone 
without a hot hand. We could compare to 
50%, which is essentially (but not exactly) 
what the authors did in the classic 1985 
paper. But the MS approach is to model a 
player without a hot hand as a fair coin; we 
can think of that player as selecting (with 
equal probability) one of the 16 four-flip 
sequences.3 The expected value of those 14 

3  In MS  they restrict to the 14 sequences 
that have an H in one of the first three positions.

HH-percentages is their unweighted aver-
age (about 40.5%).

In general, for any k, the unweighted aver-
age HH-percentage over the 2k sequences of 
length k is less than one-half. So, in the 
MS view, an HH-percentage of 50% in a 
game for a player with a hit-rate of 50% is 
evidence the player did exhibit a hot hand, 
rather than evidence against it.  That is the 
main point made by MS, and the reason for 

their use of the unweighted average. The 
NYT articles missed that point.

The Wall Street Journal also addressed 
the hot hands dispute in “The ‘hot hand’ 
debate gets flipped on its head,”4 by Ben 
Cohen, September 29, 2015, and initially 
made the same mistake as the NYT articles. 

4  http:/ /www.wsj.com/art icles/ the-
ho t -hand-deba te -ge t s - f l ipped-on- i t s -
head-1443465711

Figure 1. The 16 sequences of length four. The number of Hs in the first 
three positions is 24, and the number of those Hs followed by another H is 12, 
exactly 50%. However, the HHs are not distributed uniformly. For example, 
sequence HHHH has three HHs and TTHH only has one, but both have 
HH-percentage of 100%. So, the unweighted average of the HH-percentages 
is not 50%, but about 40.5%. True, but so what? It does not follow that the 
probability of a hit following another hit is less than half.

See Hot Hands on page 5

Exploration Seismology
Continued from page 2 

Another line of research focuses on relax-
ing the physics and putting more empha-
sis on fitting the data. The conventional 
approach insists on obeying the physics for 
a given set of parameters by solving the 
PDE ( )m u qi i=  and finding the param-
eters such that ui  fits the data. Instead, 
we can relax the constraints and construct 
solutions ui  that fit the data but fail to obey 
the physics, i.e., ( ) .m u qi i≈  The goal is 
now to find parameters m so the solution 
ui  obeys the physics. We state the problem 
here as follows: For given measurements 
di ,  determine the coefficients m such that 
u di i≈  and ( ) .m u qi i≈   for i k= …1 2, , .

Such approaches, which place the data 
and physics on equal footing, are well-
known in data assimilation but new in 
inverse problems. They can be used to solve 
the original inverse problem while being 
less sensitive to the initial guess.

Dimensionality Reduction
We can formulate a multi-experiment 

inverse problem generically as 
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where fi  measures the data fit for given 
parameters m. Evaluation of a single fi  
requires the solution of a PDE which consti-
tutes the dominant computational cost when 
solving this optimization problem. The idea 

is to replace the objective by an unbiased 
approximation
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where I k⊂ …{ , , , }1 2 is a randomly-chosen  
subset of size | | .I k  Using a relatively 
small number of terms can obtain very good 
results and lead to an order of magnitude 
speedup. To guarantee convergence to a 
solution of the full problem, special optimi-
zation techniques have to be developed. Of 
special interest are techniques to adaptively 
choose the number of samples based on the 
required accuracy [2].

Estimating Nuisance Parameters
Many formulations of the inverse prob-

lem involve additional nuisance parameters 
that may not be of primary interest but are 
crucial for finding a meaningful reconstruc-
tion. Such parameters include calibration 
weights or characteristics of noise, such 
as variance. Solving for these additional 
parameters alongside the primary ones leads 
to a bi-level optimization problem

                min ( , ).
,m w
f m w

Rather than solve this as a generic non-lin-
ear optimization problem, a more attractive 
approach involves introducing an optimal 
value function f m f m ww( ) min ( , )=  and 
solving a reduced problem for m alone. 
In many instances optimization in w is 
easy, and it turns out that the derivatives 

of f  with respect to m do not involve 
derivatives of w with respect to m. In 
particular, ∂ = ∂m mf m f m w( ) ( , )  where 
w  is the optimal w, implicitly defined 
through ∂ =w f m w( , ) .0  Employing the 
chain rule easily verifies the latter state-
ment, but similar statements can be made 
when f is not smooth in w (under suitable 
assumptions). This results in an extremely 
powerful framework for handling additional 
parameters in the context of large-scale 
optimization.

The aforementioned challenges of the 
seismic inverse problem call for unconven-
tional reformulations of the inverse problem 
and new computational techniques to han-
dle the large amounts of data. While some 
of the challenges are unique to explora-
tion seismology, other issues are generally 
encountered in inverse problems with wave 
equations. Being able to quantify the uncer-
tainty in the solution is important in many 
applications. Together with faster methods 
to solve the inverse problem, this may 
ultimately lead to computationally-feasible 
approaches for uncertainty mitigation.
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Hot Hands
Continued from page 4 

Cohen wrote: “Toss a coin four times. Write 
down what happened. Repeat that process 
one million times. What percentage of flips 
after heads also come up heads? The obvi-
ous answer is 50%. That answer is also 
wrong. The real answer is 40%.”

But on September 30, in an online version 
of the article, the error was corrected to “Toss 
a coin four times. Write down the percentage 
of heads on the flips coming immediately 
after heads. Repeat that process one million 
times. On average, what is that percentage?”

The NYT, on the other hand, has not yet 
issued a correction at the time of this pub-
lication. As an educator in a field involving 
mathematical reasoning, and one concerned 
with the public’s understanding of quantita-
tive issues, this is disturbing. Articles such 

as this reinforce the need for discussions in 
high school and college focused on quantita-
tive reasoning, data analysis, probability, and 
statistics. 
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Julia: A Fast Language for Numerical Computing
By Alan Edelman

The Environmental Protection Agency’s 
discovery that Volkswagen installed 

emissions-cheating software in over 11 mil-
lion vehicles last September garnered much 
attention. According to reports, the software 
made it seem like the vehicles were releas-
ing significantly less nitrogen oxides than 
in reality, allowing them to discharge up 
to 40 times the allowable amount of smog-
producing pollution. This prompted The 
New York Times to call for an openness in 
software that goes beyond the scientific 
need for transparency. Software openness 
is becoming a matter of safety and account-
ability for compliance purposes. This need 
applies to more than just cars, as the Internet 
of Things requires communication of data 
and instructions among multitudes of devic-
es. Open source is not just a checkbox; 
easy-to-read common code is increasingly 
becoming paramount.

With its speed, openness, and transpar-
ency, Julia is emerging as that “must-have” 
easy-to-read common language. And in 
terms of safety and accountability, Julia is 
being used as the specification language for 
the next-generation airplane collision avoid-
ing system1 (see Figure 1).

Why use Julia over languages such as R or 
Python? The differences lie in the programs’ 
intricacies. These are all very good languag-
es, but when programming in R or Python 
the two-language problem  lurks: the need to 
prototype with one slow dynamic language 
and rewrite with a fast static language to 
obtain the final product. Having been around 
longer than Julia, R and Python have natu-
rally established 
the kind of popular-
ity that takes some 
years to acquire. 
Nevertheless, the 
two-language prob-
lem is very serious. 
Prototyping in R or 
Python necessitates 
a rewrite for speed 
and deployment. If 
emissions software 
is written in Python, 
one must quickly 
drill down to C code 
to understand the 
details of what is 
happening. Julia’s 
advantage is that it 
solves the two-lan-
guage problem.

While exact 
usage statistics are 
difficult to gener-
ate, Julia’s popular-
ity is doubling every nine months, Moore’s 
law style. There are currently an estimated 
100,000 Julia users, nearly 1,000 Julia pack-

1 Robert Moss: Julia and the Next 
Generation Airborne Collision Avoidance 
System: https://www.youtube.com/watch?
v=19zm1Fn0S9M

ages, and more than 400 GitHub contribu-
tors. Dozens of universities are also using 
Julia in classes in engineering, big data, 
optimization, and numerical analysis, as well 
as in undergraduate computer science, linear 
algebra, and statistics. Anecdotally, many 
engineering and financial companies are 
using Julia at the “grassroots” level.

Nick Trefethen, former SIAM President 
and my Ph.D. advisor, first got me think-
ing about how to best articulate Julia’s 
speed and advantages. I spoke about Julia 
at the “New Directions in Numerical 
Computation” linear algebra conference in 
honor of Trefethen’s 60th birthday this past 
August. The following commentary includes 
a few key points from that talk.

Placing Emphasis on Performance
Julia demonstrates that if designed cor-

rectly, the very features that help the com-
puter can also appeal to the human. Those 
unfamiliar with the transformations of code 
tend to replace complete understandings 
with magic accelerators based on some par-
tial truths. Users hear that compiling makes 
code run faster. Jitting makes code run 
faster. Vectorizing makes code run faster. 
Declaring types makes code run faster. 

Interestingly, what makes an algorithm 
run faster seems less mysterious 
than what makes code run fast. 
Algorithms run quickly when they 
do not waste time computing unnec-
essary things. This efficiency can 
mean taking advantage of structure 
(as in not multiplying by or add-
ing zeros in sparse matrix computa-
tions), or computing only as many 
digits as are necessary (in iterative 
methods, or by truncating to take 
advantage of hardware).

Ultimately, code runs faster when 
it is not beleaguered by unneces-
sary computational baggage. That 
the computer language is thought 
of separately from the computer 
algorithm is unfortunate. When 
considering numerical error, every 
computation must work just right. 
If not, the entire computation goes 
wrong. The same can be said of 

performance; a language must be designed 
just right for speed.

The earliest computer languages were 
designed primarily to meet the needs of the 
computer, and were close enough to the 
hardware to be relatively fast. Then came 
interpreted languages, which were designed 
primarily to meet the needs of the human. 
This facilitated productivity and was thus 

the better choice 
for most people. 
Julia finds a new 
place by striking a 
reasonable balance 
between human 
and computer.

People initially 
thought, almost 
by some kind of 
conservation law 
of nature, that a 
dynamic math-
ematical language 
was required to be 
slow. Julia shows 
that a carefully 
designed language 
that is comfortable 
for the programmer 
can still run quick-
ly. It is important 
to understand that 
to date, many inter-
preted computer 

languages were designed with use cases in 
mind, while performance and acceleration 
came grafted in as potential “add-ons.” Placing 
more emphasis on performance enhances the 
cooperation between human and computer.

A First Julia Experience: the          
Batman Curve

The famous Batman curve is pictured in 
Figure 2, which users can experiment with 
on juliabox.org. The expres-
sions in Figure 2 are equiva-
lent to others that may be 
found online; I believe this 
version is much easier for 
people to read (See interac-
tive code in Lecture 1).2 

Julia is Fast and Flexible
Computer programs run 

faster when they transform 
to a tight set consisting of 
a small number of quick 
execution steps. Consider 
some uses of the plus char-
acter “+.” We ask so very 
much from plus, and know 
which plus we mean by context. Assembly 
language may use different instructions to 
express the various additions on a machine. 
The good news is that aside from some push-
ing, popping, and moving, one can see how 
tight Julia’s instructions are (see Figure 3).

Of course, “+” can refer to so much more, 
including dense matrix addition, sparse 
matrix addition, structured matrix addition, 
and any type of combination. The point is 
that Julia produces tight code in all instances.  

How does Julia do it? For those desiring a 
quick answer, “multiple dispatch” is the expla-
nation. The Julia language is built on careful 
principles of type stability that allow for type 
inference, which enables Julia to perform 
proper code selection through the multiple 
dispatch mechanism. Julia reduces the uncer-
tainty in a computation that can waste time.

One can see multiple dispatch in action 
with the “@which” command in Figure 4, 
which allows users to drill into Julia code if 
they wish to see how it implements various 

2   Use Numerical Computing  with  Julia: 
https://github.com/alanedelman/18.337_2015

“+” symbols. Without the user declaring 
types, the Julia program knows which “+” is 
intended and uses the correct assembly code 
without wasting time.

Julia is very much Julia all the way down. 
(There are bits of other software, and LLVM 
at the very bottom.) While Julia uses and 
plays nicely with packages from Python and 
other computing languages, it does not need 
to for speed. Even packages such as LAPACK 
would likely run as fast and could be more 
flexible if rewritten in Julia. Other numerical 
languages are front ends to C, C++, or Fortran.

Open Source Research
In reality, Julia is fast because the com-

munity cares about performance. Because it is 
an open project, self-described “performance 
obsessive types” have flocked to the project, 
thus boosting Julia’s performance. I personally 
want to see Julia emerge as the language of high 
performance computing, blurring the distinction 
between “Silicon Valley”-style big data and 
artificial intelligence (AI) computations, Wall 
Street style number crunching, and National 
Laboratory style scientific computing.

Numerical software research enjoys the 
benefit of its fruits being quite practical. 
Those with decades of experience in the 
business know that users have been sharing 
code development long before GitHub or the 
use of the term “open source.”  

It has been a pleasure to nurture the 
Massachusetts Institute of Technology’s 
component of this worldwide effort and 
to experience the brilliant contributions 
from so many first-class researchers. 
Experience Julia for yourself by searching 
“Juliacon2015” online and watching the 
videos, trying juliabox.org, or visiting juli-
alang.org.
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Figure 1. Julia is being used in the development and 
specification of the next-generation aircraft collision 
avoidance system.

Figure 3. Julia users rarely look at assembly, 
but they readily can. Julia’s tight assembly  is 
a clue as to why it is so fast.

Figure 2. Julia's implementation of the famous 
Batman curve. TeX  symbols such as \sigma + 
<tab> display beautifully.

Figure 4. Multiple dispatch in action with the “@which” command.
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Addressing Challenges in Reduced-Order Modeling
By Kevin Carlberg

One of applied mathematics’ great con-
tributions is the foundation it pro-

vides for simulating physical phenomena. 
From the derivation of consistent, stable, 
and convergent discretization schemes to 
the development of efficient parallel solv-
ers, mathematical advances have enabled 
the ubiquitous nature of modeling and 
simulation in applications ranging from 
protein-structure prediction to aircraft 
design. Today, the predictive capability 
of validated computational models allows 
simulation to replace physical experimen-
tation in many scenarios, which facilitates 
the realization of deeper analyses and better 
designs at lower costs. However, there is 
a catch: the resolution required to achieve 
such high fidelity leads to large-scale mod-
els whose simulations can consume weeks 
on a supercomputer. This creates a mas-
sive gap between the simulation times of 
high-fidelity models and the rapid time-

to-solution demands of time-critical (e.g., 
real-time analysis) and many-query (e.g., 
uncertainty quantification) applications in 
engineering and science.

To bridge this gap, researchers have 
pursued reduced-order modeling—which 
integrates techniques from data science, 
modeling, and simulation—as a strategy 
for reducing the computational cost of 
such models while preserving high levels 
of fidelity. First, these methods execute 
analyses (e.g., simulating the model, solv-
ing Lyapunov equations) during an offline 
‘training’ stage; these analyses generate 
data that  can be mined to extract important 
physical features, such as low-dimension-
al solution manifolds and interpolation 
points for approximating nonlinear func-
tions. Next, these techniques reduce the 
dimensionality and computational com-
plexity of the high-fidelity model by pro-
jecting the governing equations onto the 
low-dimensional manifold and introduc-
ing other approximations where necessary. 

The resulting reduced-order model (ROM) 
can then be rapidly simulated during an 
online ‘deployed’ stage.

While significant advances have been 
made in reduced-order modeling over the 
past fifteen years, many outstanding chal-
lenges face the community, especially with 
respect to applying model reduction to 
parameterized nonlinear dynamical systems. 
The West Coast ROM Workshop—held last 
November at Sandia National Laboratories 
in Livermore, California—brought together 
local researchers from both academia and 
the national laboratories to address these 
challenges. Speakers provided a range of 
interesting perspectives on the topic.

One workshop theme focused on apply-
ing ROMs to truly large-scale nonlinear 
problems in engineering and science. To 
motivate this, invited speaker Charbel 
Farhat provided a number of compelling 
examples in which the computational cost 
incurred by such models poses a major 
bottleneck to design engineers across the 

naval, aerospace, and automotive indus-
tries. A number of challenges arise in this 
case. First, ROM techniques must be tightly 
integrated with the original high-fidelity 
simulation code because most nonlinear 
ROM methods realize computational sav-
ings by performing computations with the 
high-fidelity model on a small subset of the 
computational domain. Second, ensuring 
accurate ROM solutions can be challenging 
due to the complex dynamics (e.g., stiff-
ness, chaoticity) exhibited by many large-
scale dynamical systems. Finally, when the 
model is very large scale, the computational 
costs of both the offline training and online 
deployment can remain prohibitive; devis-
ing ways to reduce them is often essential.

Farhat presented promising results for the 
energy-conserving sampling and weight-
ing (ECSW) ROM method [5] applied to 
large-scale problems in structural dynamics 
(Figure 1). This method integrates with 
finite-element codes by performing poten-
tial-energy computations on a subset of the 
domain’s elements; it produces accurate 
solutions by ensuring the ROM inherits 
the energy-conservation principle of the 
high-fidelity model. Jeffrey Fike present-
ed results on integrating nonlinear ROM 
methods with a compressible fluid-dynam-
ics code (developed at Sandia), and Irina 
Tezaur proposed a supporting approach for 
improving the accuracy of compressible-
flow ROMs by rotating typical solution sub-
spaces to include modes needed for energy 
dissipation [1]. Kyle Washabaugh present-
ed an approach for robustly deforming a 

Figure 1. Simulating the underbody blast of a V-hull vehicle with a ROM. Original computational domain with 2.4 × 105 elements (left), subset of 
the domain with 2 × 103 elements used by the ROM (center), and a comparison of the results (right). The ROM generated sub-1% displacement 
errors with a 104 wall-time speedup. Courtesy C. Farhat.

Will AI Make Jobs Obsolete?
Rise of the Robots: Technology and the 
Threat of a Jobless Future. By Martin 
Ford, Basic Books, New York, 2015, 354 
pages, $28.99.

Martin Ford’s recent book, Rise of the 
Robots: Technology and the Threat 

of a Jobless Future, explores the impact of 
automation, artificial intelligence, and smart 
machines on our economy and society.  Ford 
is the founder of a Silicon Valley-based 
software development firm, with twenty-
five years of experience in computer design 
and software development. The book’s early 
chapters describe recent developments in 
information technology, with emphasis on 
the synergy between hardware improvement 
and algorithm design. Later chapters explore 
the implications for specific businesses, 
industries, and sectors of society.

Chapter 1 focuses on recent advances in 
computer vision and the shop floor revolu-
tion they portend. A firm called Industrial 
Perception, Inc. is currently marketing a 
robot capable of restacking an irregular 
heap of boxes of varying size, shape, color, 
and orientation. A human assigned such 
a task would immediately know where to 
begin. But robots, lacking applicable expe-
rience, must pause to formulate a plan. As 
a result, writes Ford, Industrial Perception’s 
machine appears sluggish and hesitant at 
times. However, the company estimates 
that upgrades already in the pipeline will 
permit the transfer of a box per second, far 
faster than the six seconds apiece required 
by human workers.

The electric car company Tesla uses 160 
surprisingly versatile robots to assemble 
some 400 cars per week in its Fremont, 
California factory. Each robot is able to 
exchange one tool for another before start-
ing a new task. The same robot that installs 
the seats, for instance, is able to retool 
before applying adhesive and dropping the 
windshield into place.

Operative, vision-equipped robots, 
including those used by Tesla, currently see 
in just two dimensions. But modern techno-

logical developments indicate the possibil-
ity for more advanced vision. In November 
2006, Nintendo introduced its Wii video 
game console, complete with a wireless 
wand enabling players to exert control 
by waving the wand to return 
an approaching tennis ball, for 
instance. Sony soon entered the 
market with a competing prod-
uct, likewise reliant on two-
dimensional vision. Microsoft, 
on the other hand, gambled with an add-
on to the Xbox 360 game console called 
Kinect, which sees in three dimensions.

Using technology developed by a small 
Israeli company called PrimeSense, Kinect 
deploys a sort of 
sonar that oper-
ates at the speed of 
light. Bathing its 
field of vision in 
flashing infrared, 
Kinect measures 
the length of time 
required for each 
reflected flash to 
return to (roughly) 
its point of ori-
gin. Players need 
no magic wand 
to interact with 
Kinect; they need 
only move about in 
its field of vision. 
R e m a r k a b l y , 
Kinect makes 
a sophisticated 
machine vision 
s y s t e m — w h i c h 
might previously 
have cost tens or 
even hundreds of 
thousands of dol-
lars—available in a lightweight consumer 
device priced at $150!

Researchers in robotics were quick to 
realize the potential for such technology to 
revolutionize their field. Within weeks of 
Kinect’s introduction, says Ford, a number 

of potential competitors had hacked into the 
system and posted videos on YouTube dem-
onstrating the ability of their own retro-engi-
neered devices to see in three dimensions.

Time alone will reveal the practical impact 
of acute machine vision, 
which includes the ability to 
see in three dimensions. But 
Parkdale Mills, a textile facto-
ry in Gaffney, South Carolina, 
may offer a glimpse into the 

future. Employing a mere 140 workers, 
Parkdale now ships quantities that would 
have required 2,000 employees as recently 
as 1980. The impact of machine vision 
on agriculture could be equally dramatic. 

Ford points out 
that experimental 
robots are already 
pruning grapevines 
in France using 
machine vision 
augmented by algo-
rithms that decide 
which branches to 
eliminate. And a 
Japanese machine 
is able to recognize 
ripe strawberries 
by color and pick 
one every eight 
seconds, working 
continuously even 
after dark!

In Chapter 
3, Ford cites a 
study by Martin 
Grötschel of the 
Zuse Institute 
Berlin. The study 
asserts that a cer-
tain complex pro-
duction planning 

problem would have taken 82 years to 
solve in 1982, using what was then state-
of-the-art hardware and software. As of 
2003, the same problem could be solved 
in about a minute, an improvement of 
roughly 43 million! And since computer 

speed increased “only” a thousand-fold dur-
ing that time, Ford writes that the remaining 
factor of 43,000 must be due to algorithm 
improvement. This suggests that improved 
algorithm design may pose an even greater 
threat to mankind’s long-term job prospects 
than do faster computers.

Chapter 4 reproduces a three-paragraph 
newspaper account of a postseason baseball 
game played in October 2009. Though not 
the most eloquent prose, it is eminently 
readable, grammatically correct, and an 
accurate description of the event in question. 
The account is remarkable only because the 
author is a computer program! The software 
responsible, called Stats Monkey, was cre-
ated by a team of students and profession-
als at Northwestern University’s Intelligent 
Information Laboratory. Its purpose is to 
automate the process of sports reporting 
by transforming a stream of numerical data 
into a compelling narrative, complete with 
items of human interest.

To realize the commercial potential of 
their design, the creators of Stats Monkey 
founded a company called Narrative 
Science, Inc. They raised venture capital, 
hired a team of experienced software devel-
opers, and set out to construct a far more 
ambitious system called Quill. A variety 
of media outlets, including Forbes, now 
employ the system to compose articles on 
sports, business, and politics. Co-founder 
Kristian Hammond estimates that 90 per-
cent of all news articles will be written algo-
rithmically within fifteen years. In addition, 
Ford notes that one of the company’s earli-
est backers was In-Q-Tel, the venture capi-
tal arm of the Central Intelligence Agency. 
Presumably the company’s software is 
already being modified to transform the 
ever-growing deluge of raw intelligence 
data into easy-to-digest narrative reports.

The Narrative Science experience illus-
trates Ford’s claim that a wide variety of 
white-collar jobs face clear and present dan-
ger of automation. For further evidence, one 

BOOK REVIEW
By James Case

Martin Ford’s newest book, Rise of the Robots: 
Technology and the Threat of a Jobless Future. 
Photo credit: Basic Books.

See Artificial Intelligence on page 7

See Reduced-Order Modeling on page 8
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might invoke Google’s introduction of an 
online language translation tool. The proj-
ect development team began by assembling 
millions of pages previously translated into 
multiple languages, beginning with official 
documents prepared by the United Nations. 
Later on they exploited the web, where 
proprietary search engines located a host of 
additional pages suitable for analysis by the 
company’s machine-learning algorithms. In 
2005, Google’s natural language transla-
tor was the clear winner of the National 
Institute of Standards and Technology’s 
annual machine translation contest, besting 
a host of rival systems constructed by pro-
fessional linguists. Google’s system is not 
yet competitive with the product of skilled 
human translators, but it offers two-way 
translation between upwards of 500 lan-
guage pairs, meaning that pretty much any-
one can freely and all but instantaneously 
obtain a rough translation of just about any 
document in thirty or so different languages. 
While expensive human translators may 
never become extinct, call for their services 
seems certain to diminish.

Rise of the Robots is written, as the 
subtitle indicates, to warn of an impend-
ing shortage of jobs. Ford quotes a 2013 
study by Carl Frey and Michael Osborne of 
Oxford University (UK), which found that 
occupations accounting for nearly half of 
total U.S. employment may be vulnerable 
to automation within the next 20 years. He 
also points to the emergence of companies 
like YouTube which, at the time of its 

$1.65 billion acquisition by Google, had 
been in business for less than two years and 
employed only sixty-five people. That’s 
$25 million per employee!

In Ford’s eyes, the prevalence of soaring 
per-employee valuations—which apply to 
a number of other high-tech start-ups as 
well as YouTube—constitute a direct chal-
lenge to the conventional economic wisdom 
whereby advanced technologies must, in the 
process of destroying “old-economy” jobs, 
automatically create “new-economy” sub-
stitutes requiring greater skill and offering 
better pay. He takes little comfort from the 
fact that things have often worked out that 
way in the past, since they have not done so 
lately and probably will not in the future. 
Indeed, Ford presents mounting evidence 
that “this time is different,” in that the next 
new economy promises to be of the job-
less variety. Accordingly, he believes that 
nothing short of a radical reorganization of 
society—what political scientists would call 
a new “social contract”—will enable the 
ordinary citizen to earn a living wage.

The sort of reorganization Ford has in 
mind is outlined in the final chapter, entitled 
“Toward a New Economic Paradigm.” One 
need not agree with his conclusions or spe-
cific reform proposals to be impressed with 
the wealth of evidence he has marshaled 
in support of his central thesis. Rise of the 
Robots is well worth reading by anyone 
involved even peripherally in the informa-
tion technology revolution, or curious to 
know where it seems to be leading. 

James Case writes from Baltimore, 
Maryland.

Optics and Photonics Workshop 
at the SIAM Annual Meeting
By Shari Moskow

We are excited to announce the 
“NSF-SIAM Optics and Photonics 

Workshop,” which will take place on July 
11, 2016, as part of the 2016 SIAM Annual 
Meeting in Boston, MA. Featuring several 
accomplished applied mathematicians in 
the field of optics and photonics, workshop 
talks will survey the field and its open prob-
lems for the broader applied mathematics 
community. A representative from the NSF 
Division of Mathematical Sciences will 
discuss and answer questions about the new 
NSF program in Optics and Photonics.1  

Advances in our understanding of the 
behavior of light are necessary both for 
improving current technologies and real-
izing new and envisioned ones. These tech-
nologies directly influence a variety of 
sectors in our society including communica-
tions, defense and national security, energy, 
and medicine. Due to recent developments 
in computational tools, materials science, 
and nanostructure fabrication, mathemati-
cians have a larger role than ever to play in 
this field. This workshop can help applied 
mathematicians bring their vision of the 
future of mathematics in optics and photon-
ics to a large mathematical audience. We 
hope the meeting will encourage collabora-
tions among researchers in this field from a 
diverse set of scientific backgrounds. 

Among others, workshop topics will 
include the following: (1) Research on 
light-matter interaction, including—but 
not limited to—low-loss metamaterials, 
plasmonics, and quantum phenomena; (2) 
Multiphysics coupling between classical 
electromagnetic and quantum mechani-
cal phenomena; (3) The science of light 
propagation and imaging through scatter-
ing, dispersive, and turbulent media, which 
encompasses advances in radiative transport 
theory, statistical inverse theory, numerical 
inversion methods, simulation models, and 
hybrid imaging models; and (4) Nonlinear 

1  http://www.nsf.gov/publications/pub_
summ.jsp?ods_key=nsf16004 

photonics and the interplay between nonlin-
earity and randomness.  

These challenges in optics and photon-
ics touch on many areas of mathemat-
ics, including partial differential equations, 
ordinary differential equations, dynamical 
systems, functional analysis, numerical 
analysis, geometry, calculus of variations, 
probability, and stochastic differential equa-
tions, among others. Traditionally, models 
from different optical regimes have been 
associated with very different mathematical 
concepts and techniques. The development 
of the next generation of optical devices 
will require coupling of these models, and 
collaborations among mathematicians from 
various backgrounds. 

Thanks to the NSF, we expect to have 
funding available for researchers from 
underrepresented groups, graduate students, 
postdoctoral associates, and junior research-
ers to travel and participate in the meeting. 
See the SIAM annual meeting webpage2 to 
apply. The workshop will expose students 
and junior scientists to critical research 
areas in optics and photonics, as well as 
relevant and important areas of application 
of mathematics and computational science. 

The workshop is timely in that it pre-
cedes the Institute for Mathematics and its 
Applications’ thematic year on Mathematics 
and Optics.3 The year-long (2016-2017) 
program will address the study of optical 
phenomena and associated areas of applied 
and computational mathematics, with the 
goal of connecting mathematical and com-
putational scientists with the interdisciplin-
ary community. 

Shari Moskow is a professor and depart-
ment head of mathematics at Drexel 
University. She is currently a co-organizer 
of the IMA thematic year on Mathematics 
and Optics, and also organized the work-
shop discussed above.

2 http://www.siam.org/meetings/an16/
workshops.php#optics 

3   www.ima.umn.edu/2016-2017/

Artificial Intelligence
Continued from page 6
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condition aij = aji, illustrated in Figure 4, 
also amounts to stating that the 2D curl in 
every ij–plane vanishes. The symmetry for 
3× 3 matrices is equivalent to curl Ax = 0. 
In fact, decomposition of a general square 
matrix into its symmetric and antisym-
metric parts amounts to decomposing the 

vector field Ax into the sum of a curl-free 
and divergence-free field, a special case of 
Helmholtz’s theorem, itself a special case 
of the Hodge decomposition theorem.

And the diagonal entries aii give the 
rate of elongation of ei ; this explains geo-
metrically why the cube formed at t = 0 
by ei and carried by the velocity field Ax 
changes its volume at the rate tr A (at t = 
0). This also offers a geometrical explana-
tion of the matrix identity det eA = etr A.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

Reduced-Order Modeling
Continued from page 6

Classroom Notes: Symmetric Matrices and (a Little) Work
Here are a few unpretentious observa-

tions that occurred to me several years 
ago after teaching a linear algebra course. I 
am not making any claim to their originality.

1. The elegant but also a bit antiseptic 
definition of a symmetric n × n real matrix 
A as the one satisfying the identity

         ( , ) ( , )A Ax y x y− = 0           
(1)                 for all  x y, ∈n

has a physical  interpretation: this identity  
is equivalent  to saying that the work done  
by the linear force field F x x( ) = A  around  
the parallelogram generated by x and y 
vanishes (see Figure 1).

Figure 2 illustrates proof of this equiva-
lence. The average forces on each of the 
sides of the parallelogram are equal to the 
forces Fi  at the midpoints Mi . The total 
work W around the parallelogram, group-
ing parallel sides together, is

         W = − + −( , ) ( , );F F x F F y1 3 2 4

and  since  F F y1 3− = −A   and   F F x2 4− = A ,
    

 this gives W A A= −( , ) ( , ).x y x y

In particular, (1) expresses the conserva-
tiveness of the vector field Ax.

2. Here is a physical reason 
why eigenvalues of a symmet-
ric matrix are real. Assuming 
for a moment that they are 
not, consider the plane spanned 
by the real and the imaginary 
parts u, v of the eigenvector 
w u v= + i .  At each point x in this plane 
the force Ax lies in the plane (so that we 
can forget about the rest of 



n ). And 
since the work done by Ax around a 
circle in this plane—centered around the 
origin—is zero, the tangential component 

of Ax changes sign 
at some point(s) 
x0 on the circle, 
which is to say 
that Ax0 is normal 
to the circle at x0.  
Thus, x0 is a (real) 
eigenvector.

3. Orthogonality 
of the eigenvec-

tors: a physical/geometrical proof. Let u, v 
be two distinct eigenvectors of a symmet-
ric n × n matrix A with the eigenvalues 
λ µ/= = 0  (the latter assumption involves 
no loss of generality since we can take 
µ = 0  by replacing A with A I− µ ). Figure 
3 shows the force field Ax of such a 
matrix. Consider the work of Ax around 
the triangle OQP. The only contribution 
comes from PO since Ax vanishes along 
OQ and is normal to QP. And if Ax is 
conservative, then WPO = 0 and hence P = 
O, implying u v⊥ .  This completes a 
“physical” proof of orthogonality of the 

eigenvectors of symmetric 
matrices.

4.  The entry a i jij , /=  of 
a square  matrix A = (aij) has 
a dynamical interpretation: 
it is the angular velocity, in 
the (ij)–plane, of ei  moving 

with the vector  field Ax.1 Indeed, aij = 
(Aei, ej), the projection  of the velocity Aei 
onto ej, Figure 4. And thus the symmetry 

1   to be more precise, we should be referring 
to the moving vector instantaneously aligned 
with ei.

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 1. Vector field Ax and the closed parallelogram path. 

Figure 2. Physical meaning of (Ax, y) − (x, Ay).

Figure 3. Geometrical proof of orthogonality.

Figure 4. aij  as the angular velocity.

sample mesh in HPC environments when 
using ROMs to predict steady-state aerody-
namic flows subjected to geometric defor-
mations [11]. In contrast, invited speaker 
J. Nathan Kutz offered a framework that 
enables nonlinear model reduction without 
requiring access to the high-fidelity simula-
tion code. The approach, based on Koopman 
theory, approximates nonlinear dynamical 
systems with a linear operator constructed 
from time-history data of dynamical-system 
observables [2]. To reduce offline train-
ing costs, Geoffrey Oxberry presented a 
method that leverages ideas from error con-
trol in adaptive time integrators to decrease 
the amount of data needed to construct 
low-dimensional solution subspaces [9]. To 
decrease online simulation times in parallel-
computing environments, Kevin Carlberg 
proposed a new method for time parallel-
ism. This technique applies data-driven 
ROM-solution forecasts [3] as a coarse 
propagator in the parareal framework.

A second major workshop theme focused 
on applying ROMs to design optimization.  
These many-query problems—which are 
often formulated as mathematical optimiza-
tion problems constrained by partial dif-
ferential equations—can require hundreds 
of simulations (and sensitivity analyses) 
of the computational model. Thus, rapid 
model evaluations are necessary when faced 
with time or resource constraints. Youngsoo 
Choi presented one approach for apply-
ing ROMs to design optimization [4]. The 
method adopts the classical offline–online 
strategy, wherein a database of ROMs for 
the (linear) model is constructed offline, 
and these ROMs are interpolated online on 
appropriate matrix manifolds. This meth-
od is amenable to real-time applications 
because it does not require any online 
high-fidelity simulations; however, it lacks 
convergence guarantees  and—due to the 
costly offline stage—requires the number 
of online optimization  iterations to exceed  
a ‘break-even’ threshold before compu-
tational savings can be realized. Invited 
speaker Louis Durlofsky proposed a related 
method based on the trajectory piecewise 

linear (TPWL) ROM, and showed promis-
ing results on oil-production optimization 
under water injection [6]. Matthew Zahr 
proposed an alternative approach [12] that 
eschews the typical offline–online strategy 
in favor of a trust-region approach, wherein 
the high-fidelity-model solution (and sensi-
tivities) are computed at trust-region centers 
(Figure 2). This approach guarantees con-
vergence, but is not amenable to real-time 
applications due to the ‘mixing’ of high-
fidelity and reduced-order model evalua-
tions during the solution to the optimization 
problem. Both Zahr and invited speaker 
Michael Frenklach proposed strategies 

for reducing the dimensionality of high-
dimensional parameter spaces; the former 
employed an adaptive strategy based on the 
gradient of the Lagrangian, while the latter 
applied active subspaces to a combustion-
chemistry problem. 

Other important topics were addressed, 
with contributions from Tanya Kostova, 
who presented a technique employing both 
the system state and velocity as data in 
solution-subspace computation [8]; Sumeet 
Trehan, who has applied statistical learn-
ing to construct TPWL error surrogates; 
Syuzanna Sargsyan, who has  developed 
ROMs that adapt to particular physical 
regimes [10]; and invited speaker Jaijeet 
Roychowdhury, who proposed a representa-
tion of continuous systems as boolean finite 
state machines [7].

Despite the many challenges, model 
reduction remains an exciting research area 
that is making rapid progress toward bridg-
ing the gap between high-fidelity models 
and time-critical applications in engineering 
and science.
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Figure 2. Topology optimization with reduced-order models. Optimal solution (left), ROM-based optimization solution after 2000 seconds (cen-
ter), high-fidelity-model-based optimization after 2000 seconds (right). Courtesy M. Zahr.
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Math within March Madness
Every year, a fever spreads through much 

of the United States. It peaks in mid-
March and continues through early April. 
It’s called March Madness, the National 
Collegiate Athletic Association (NCAA)’s 
Division 1 basketball tournament. The event 
garners much attention before any time has 
ticked off a game clock, prior to any ball 
being shot or dribbled. Millions of people 
create brackets to predict the outcome of 
every game in the tournament and to com-
pete against their friends and colleagues for 
pride, office pool winnings, and sometimes 
thousands of dollars.

The process of creating a bracket is limited 
to a few days since matchups are announced 
less than a week before teams play the first 
round of 32 games. A completed bracket 
contains your predicted winner for each of 
those 32 first-round games. Then you select 
winners for your 16 predicted second-round 
matchups. You continue this process until 
you reach your predicted teams vying for the 
national championship. 

In 2014, Warren Buffett insured a billion 
dollar prize for anyone who could complete a 
perfect bracket for the tournament. Correctly 

predicting the outcome of 63 bracket match-
ups is not an easy task. In 2014, every one 
of the over 11 million brackets submitted 
to ESPN’s online tournament had missed a 
prediction after the first round.

For me, this is more of a time of March 
Mathness than Madness. In 2009, along with 
my collaborator Amy Langville of the College 
of Charleston and our student researchers, I 
applied our new ranking research to March 
Madness. Our research adapted the Colley 
and Massey methods, used to help rank col-
lege football teams and determine which 
teams play in New Year’s Day bowl 
games. Both methods form a matrix 
system from the results of a season.

When forming the linear system for 
the Massey method, let’s define the 
point differential for a single game 
between a winning team W  and a losing 
team L  as d points pointsWL W L= − .  
The Massey method derives its lin-
ear system from the assumption that 
r r dW L WL− = ,  where rW and rL  are 
the Massey ratings for the winning and 
losing teams, respectively. Applying 
least-squares to this over-determined 
system results in the normal equations 
Mr p= , where r  is the ratings vector. 
The Massey matrix can also be formed 
directly from game data. The diagonal 
of M  results from placing a team’s 
total number of games, ti , on the diago-
nal m tii i= .  If gij  represents the num-
ber of times teams i  and j  have played 
each other, the off-diagonal entries in 
the Massey matrix are m gij ij= − .

For the Massey method, p contains 
information regarding a team’s point dif-
ferential for each game: 
p d di j ij k ki= −Σ Σ .  The sums over j  

and k  represent the point differential 
from games that team i  has won and lost, 
respectively. Since the sum over k  is 

subtracted from the sum over j, the sign of 
each entry in p  gives an indication of a team’s 
scoring performance over the course of a sea-
son. Unfortunately, the linear system in 
Mr p=  has infinitely many solutions for any 
season. To reduce the number of possible solu-
tions, we add the restriction that all of the rat-
ings sum to zero by replacing the last row of 
[ | ]M p  with   [ 1  1  ...  1 | 0].  
While infinitely many solutions 
are still possible, many systems 
will now have a unique solution.

Another option is to form 
the linear system for the Colley 
method, Cr b= ,  where C  is 
the Colley matrix and r  contains 
the ratings as a vector. First, C M I= + 2 .  
The vector b  contains information regard-
ing each team’s number of wins and losses: 

b w l
i

i i= +
−1
2

.  The Colley matrix C  is strict-
ly diagonally dominant, so the Colley method 
produces a unique rating vector r.

Our math-based brackets solve these linear 
systems and assume a higher-ranked team 
wins any matchup. In 2010, I was teaching a 
portion of the methods to undergraduate stu-

dents at Davidson College, one of whom cre-
ated a bracket that beat over 99.9% of more 
than 5 million brackets on ESPN that year.

There are two important pieces to these 
methods. First, linear systems allow for inter-
dependence of teams’ ratings. For example, 
if you lose to a weaker team, that game hurts 
you in the standings more than if you lose 
to a stronger team. This approach integrates 
strength of schedule into the rating method. 
Second, the new research allows predictive 
elements to be weighted. We weighted recen-

cy (among other factors), so teams that were 
playing well going into the tournament were 
rewarded. The linear systems themselves are 
created for approximately 350 teams in over 
5,000 games, which enables us to find teams 
that might otherwise be overlooked.

The success of this work got the attention 
of the media. In 2014 alone, I spoke with 

The New York Times, USA 
Today, and CBS Evening 
News about this topic. There 
is a madness to March for 
me now, with much of the 
month being spent helping 
the public and my students 
create brackets.

My work in March Madness launched my 
research into the field of sports analytics, 
a subfield of data analytics. Data analytics 
ideally affects decision-making by study-
ing data, and sports analytics applies this to 
athletics. By translating scouting notes into 
matrices that can be analyzed and studied, 
one can better inform a team about whom to 
draft, sign, or acquire in a trade. An athlete’s 
performance is studied via hits, rebounds, 
points, times, or an aggregation of such statis-
tics; often the goal is to find a trend that can 
increase the odds of winning.

Using my research, I work with over a dozen 
students to help the men’s basketball team at 
Davidson College. Throughout the season, we 
sift through a wealth of statistics on basketball 
databases to scout our opponents. We also 
record game-to-game statistics not offered on 
the web for our analysis and study the effect of 
every lineup coaches use in a game.

My research group also aids professional 
sports organizations. We work with the NBA 
using SportVU data. To create these datasets, 
cameras located in the rafters of every NBA 
arena record ( , )x y  coordinates of every 
player on the court and ( , , )x y z  coordinates 
for the ball every 25th of a second throughout 
the game. While the specifics of our research 
falls under a nondisclosure agreement, I 
can share that our studies focus on officiat-
ing in one specific instance in a game. Our 
research supports the NBA league office as 
it studies the game to ensure officiating is 
consistent and fair. We have also worked 
with NASCAR teams, which is natural given 
that many teams are located near Davidson. 
Among our various projects, we created an 
algorithm that would detect loose wheels 
on a racecar. Our method read time-varying 
pressures recorded from instrumentation con-
nected to the pneumatic torque gun (impact 
wrench), which is used during a pit stop to 
install and tighten nuts on all five bolts in less 
than 1.5 seconds.

If you’re interested in sports analytics, 
you’ll likely find the trajectory of my career 
compelling. When I entered the job market 
I had a great postdoc, had done exciting 
research at national labs, and had many pieces 
to my professional puzzle in place. Still, I like-
ly would not have been someone’s first choice 
for sports analytics research. At that time, 
my work was in numerical partial differential 
equations. Do I model the NBA as a PDE? 
No. I use linear algebra, the mathematical tool 
for my work in PDEs. My shift into sports 
analytics came via ranking methods, and what 
followed was far from my original plan.

Nevertheless, the shift was very inten-
tional. Upon receiving an Alfred P. Sloan 
research fellowship, I used the grant in part 
to move my work from PDEs to ranking. 
The shift took significant energy but fit my 
professional goals. For example, ranking, 
which merged into the larger discipline of 
sports analytics, was an area in which I could 
involve more students at earlier stages of 
their undergraduate studies; over 20 students 
have worked with me during the last year.  
We offer analytics to our college teams, pro-
fessional sports organizations, and businesses 
with national markets.

I thoroughly enjoy my research field. Still, 
I can’t tell you the stats of any current base-
ball player. I forget the officials’ signals and 
only know someone fouled or scored. I’ll 
miss a game to play with my kids or walk 
with my wife, although she isn’t always will-
ing to miss a game. What led me into this 
field is my mathematical ability and leverag-
ing what I do well. I enjoy what I do because 
I get to see students become independent 
researchers, I like helping coaches and sports 
organizations gain insight from data, and I 
investigate research questions using math-
ematical techniques that deeply interest me.

I anticipate that I will work in sports 
analytics for a while, possibly a long while. 
Yet I don’t know for certain, and can enjoy 
that unknown. Life, in a way, is its own 
research question. Dive in. Study. Get con-
fused. Discover and keep exploring. I think 
this allows for a career that isn’t a game in 
itself but can still be defined as winning, even 
with the inherent madness of life.

Tim Chartier is an associate professor of 
mathematics and computer science at Davidson 
College. He received a national teaching award 
from the Mathematical Association of America 
and has worked with Google and Pixar on their 
educational initiatives.

Sue Minkoff (sminkoff@utdallas.edu) of the 
University of Texas at Dallas is the editor of 
the Careers in Mathematical Sciences column.

Davidson College basketball team planning their game strategy. Photo credit: Tim Cowie 
(DavidsonPhotos.com).
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Cambridge Hosts 20th Anniversary Meeting 
of UKIE SIAM Section 
By Nicholas J. Higham

The SIAM United Kingdom and 
Republic of Ireland (UKIE) Section 

is celebrating its 20th year. Every January 
the section holds a one-day annual meet-
ing. Since the 1997 inaugural meeting in 
Manchester, it has gone from strength to 
strength and membership has more than 
tripled to 600 (all SIAM members resid-
ing in the UK or Ireland are automatically 
members of the section).

The 20th meeting was hosted by the 
Department of Applied Mathematics and 
Theoretical Physics (DAMTP) at the 
University of Cambridge on January 7. The 
event was organised by section officers 
Des Higham (University of Strathclyde, 
President), Jennifer Scott (Rutherford 
Appleton Laboratory, Vice President), 
Angela Mihai (Cardiff University, Secretary/
Treasurer) and local organiser Arieh Iserles 
(Cambridge). Around 80 people attended, 

about half of whom were students. As befits 
an anniversary, the event featured a stellar 
programme with invited talks from both 
senior and early career researchers, as well 
as student posters.

2014 Fields Medalist Martin Hairer 
(University of Warwick) gave the opening 
talk. Hairer described how to treat ill-posed 
stochastic partial differential equations 
(PDEs) arising in phase transition prob-
lems, emphasizing connections between 
stochastic analysis and numerical methods. 
Computer animations beautifully illustrated 
his talk, which was a superb example of 
how to communicate deep ideas with a 
minimum of equations.

Simon Tavaré, who is Director of the 
Cancer Research UK Cambridge Institute 
and holds appointments in the Department of 
Oncology and DAMTP at Cambridge, gave 
a talk entitled “How Useful is Mathematical 
Modelling in Cancer Research?” Tavaré, 
who began a two-year term as president 

of the London 
M a t h e m a t i c a l 
Society in November 
2015, focused on 
mutations in DNA 
and what they 
reveal about cancer 
evolution. Tavaré 
explained the role 
of quantitative meth-
ods in understanding 
how tumours evolve, 
giving particular 
emphasis to approxi-
mate Bayesian com-
putation. He also 
offered mathemati-
cal scientists advice 
on where to publish, 
arguing that collab-
orative research has 
the best chance of 
being noticed by 
cancer specialists 

when published in 
cancer journals.

The UKIE 
section has been 
proud to host 
SIAM presidents 
at several previous 
meetings, and did 
so once again. In 
her talk, “Models 
of Transiently 
N e t w o r k e d 
Fluids: Wormlike 
Micelles,” SIAM 
President Pam 
Cook (University 
of Delaware) dis-
cussed complex 
fluids that exhibit 
transiently net-
worked structures at the mesoscale. She 
described experiments and mathematical 
models at the macroscale (coupled nonlinear 
reaction-diffusion equations) and the meso-
scale (stochastic differential equations), with 
motivational examples from the cosmetics, 
food, and manufacturing industries.

In a lecture sponsored by the UK’s Institute 
of Mathematics and its Applications, 
Barbara Wohlmuth (Technische Universität 
München) spoke about reducing compu-
tational complexity in PDE simulations. 
Wohlmuth described dimension reduction 
techniques with the modelling of noise 
transmission through floors and walls in 
buildings as one application; the importance 
of this will be clear to anyone who lives in 
an apartment with noisy neighbours.

The meeting also featured shorter talks 
by early career speakers: Jennifer Pestana 
(Strathclyde) on “Symmetrizing Toeplitz 
Matrices and Consequences for Solving 
Linear Systems,” Sarah Mitchell (University 
of Limerick) on “Numerical Challenges 
Facing an Application of Stefan Problems: 
Continuous Casting of Metals,” and Jasmina 
Lazic (MathWorks, UK) on “MATLAB 
and the Mathematics of Our Lives: from 

Stacking Shelves in Supermarkets to 
Personalising Car Insurance Premiums.”

In the business meeting, Mihai reported 
on the section’s activities over the last year, 
which included sponsoring speakers and 
student attendees at relevant meetings in the 
UK and Ireland. The UKIE section works 
with the 11 SIAM student chapters in its 
area, all of which had been invited to send a 
representative to the section meeting.

Attendees were also invited to a dinner 
at Magdalene College. The intimate, can-
dlelit setting of The Parlour (at one time 
the Master’s drawing room) was perfect for 
post-session discussions.

The 2016 meeting realized the hope 
expressed by the SIAM News report of the 
first-ever UKIE meeting held in 1997: “May 
it be the first of many SIAM conferences to 
take place in the UK or the Republic of 
Ireland.” We look forward to many more 
years of SIAM activities in the UK.

Nicholas J. Higham is Richardson 
Professor of Applied Mathematics at the 
University of Manchester and president-
elect of SIAM.

2014 Fields Medalist Martin Hairer of the University of Warwick gave 
the opening talk entitled “Stochastic PDEs and Their Approximations.” 
Photo credit: Nicholas Higham.

Simon Tavaré of the Cancer Research UK Cambridge Institute addressed 
the question “How Useful is Mathematical Modelling in Cancer 
Research?” Photo credit: Nicholas Higham.

Pent Up: Using Pentagons to Tile a Plane
By Casey Mann, Jennifer McLoud-
Mann, and David Von Derau

Tilings, or tessellations, refers to a branch 
of discrete geometry that involves cov-

ering the plane (or space) with shapes, and 
without overlaps. The discipline finds appli-
cation in a variety of areas, including crys-
tallography, self-assembly, art and design, 
materials science, biology, and computer 
graphics, to name a few. Recreational math-
ematicians enjoy the topic as well, due per-

haps to tilings’ connection to art and games. 
Despite the potential application, the field 
abounds with fundamental open questions 
reflecting the complexity of the real world 
that tilings model.

Consider the challenge of understanding 
which convex polygons give rise to mono-
hedral tilings of the plane (monohedral 
tilings are those in which all tiles of the 
tiling are congruent to one another). Quick 
verification indicates that any triangle or 
quadrilateral, convex or not, admits tilings 
of the plane. Skipping the question of penta-

gons momentarily, the 
problem of classifying 
the convex hexagons 
that tile the plane is 
solved [5], though the 
solution is nontrivial. 
Convex polygons with 
seven or more sides do 
not admit any tilings 
of the plane [1, 4]; this 
result is also nontrivial 
and relates to Euler’s 
famous formula for 
planar graphs. Thus 
remains the problem 
of convex pentagons, 
which may be stated as 
the following: In terms 
of the measures of the 
angles and sides, clas-
sify all convex penta-
gons that admit mono-
hedral tilings of the 
plane.

It seems surprising that this simply-stated 
problem has not been solved, despite a rich 
history of effort. Attempts date back to 
Hilbert’s famous 23 problems, and include 
the spotlight of Martin Gardner’s Scientific 
American column and notable contributions 
from amateur mathematician Marjorie Rice 
[6]. Our team recently made progress on the 
problem, which we will outline here.

Pentagons admit the most complex 
monohedral tilings among convex poly-
gons; there are existing types that admit 
no tilings in which every tile is in the same 
transitivity class, with respect to the sym-
metry group of the tiling.  This was first 
demonstrated in 1968 [2]. Theoretically, our 
work focused on showing that if a pentagon 
admits tilings with i transitivity classes, 
there is a maximum number of ways that the 
tiles of such a tiling can meet one another. 
This led to the development of a computer 
algorithm that can, for each positive integer 
i, exhaustively list all such pentagons [3].

For example, if a hypothetical pentagon 
admits a tiling of the plane having three 
transitivity classes, then inside the tiling the 
pentagon must form into clusters of three 
pentagons (see Figure 1) so that the cluster 
of three pentagons tiles the plane in a tile-
transitive manner. For such a hypothetical 
pentagon, we can program a computer to list 
all labelings of the pentagons comprising 
this cluster, as well as all the ways such a 
cluster of three pentagons can tile the plane 
in a tile-transitive manner. For example, 
labeling the pentagons in the cluster of three 
in Figure 1 and requiring it to tile the plane 

in a specific tile-transitive manner yields a 
patch of tiles surrounding a centrally-placed 
cluster of three pentagons, from which we 
can comprehend relationships among the 
angles and sides.

From the resulting system of equations, 
one must then determine if an actual convex 
pentagon can satisfy this set of equations, and 
if so, if such a pentagon is among the types 

already known. In our example, the answer is 
yes, the equations can form a pentagon, and 
no, the pentagon is not among the previously-
known types. This particular pentagon was 
the first new type found since 1985 (see 
Figure 2a above and 2b on page 12).

Moving forward, there is still work to be 
done on the problem. A classification still 
eludes us, and more new pentagon types Figure 1. A hypothetical 3-block with a choice of labeling and a dem-

onstration of how a centrally placed 3-block would be surrounded in 
a choice of how it might admit a tile-transitive tiling.

Figure 2a. Pentagon type 15.

See Pentagons on page 12
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Professional  Opportunities

University of California, Los Angeles
Institute for Pure and Applied Mathematics

IPAM is seeking its next director, to begin a 
five-year term in July 2017 or 2018. Candidates 
may come from mathematics, statistics, computer 
science, or related fields, and should possess 
some of the following qualifications: 

• Scientific distinction sufficient to be offered 
a tenured faculty position at UCLA

• Scientific and mathematical interest and 
vision, and the ability to interact with a wide 
range of researchers and research topics

• Experience and capability to manage IPAM, 
including programs, staff, finances, and admin-
istration

• Ability to reach out to a broad range of 
constituents, including the math and science 
communities, the National Science Foundation, 
and the public, as well as to engage in fundraising

• A commitment to diversity in math and 
related disciplines, especially the participation 
of women and underrepresented minorities in 
research.

Salary will be commensurate with the direc-
tor’s education and experience. For a detailed 
job description and application instructions, go to 
www.ipam.ucla.edu/director. Applications will 
receive fullest consideration if received by June 
1, 2016. UCLA is an equal opportunity/affirma-
tive action employer. 

Announcements
Send copy for announcements to: marketing@

siam.org; (215) 382–9800 ext. 364. The rate is 
$2.15 per word (minimum $300.00). For details 

visit www.siam.org/advertising. 

Comparing Notes on Computing Across the Curriculum
Efforts to Enhance Course Content for Student Exposure
By Kathleen Fowler, Jeffrey 
Humpherys, Eric Kostelich, 
Suzanne Weekes, and Lee Zia

A t the 2016 Joint Mathematics Meetings, 
held in Seattle this January, SIAM 

hosted a panel in collaboration with the 
American Mathematical Society and the 
Mathematical Association of America. 
The panel focused on “Computing Across 
the Curriculum.” Motivated by the emer-
gence of data science, industrial mathemat-
ics, and mathematical modeling as nec-
essary workforce skills, faculty are now 
considering the challenges and benefits of 
incorporating computing into their courses. 
Lee Zia, Deputy Division Director for the 
National Science Foundation’s Division of 
Undergraduate Education (DUE), chaired 
the session. 

To help frame the presentations and subse-
quent discussion, panelists Kathleen Fowler 
(Clarkson University), Jeffrey Humpherys 
(Brigham Young University), Eric 
Kostelich (Arizona State University), and 
Suzanne Weekes (Worcester Polytechnic 
Institute) considered several questions. (1) 
What does the phrase “computing across 
the curriculum” mean to you? (2) What 
forms does “computing” take in this char-
acterization, and in what ways are “data 
science” or “big data” being addressed? (3) 
Describe the way(s) in which your depart-
ment has incorporated computing within 
your curriculum, and the challenges you 
have encountered in implementing such a 
vision. (4) What opportunities to collaborate 
with other disciplines have you and your 
colleagues exploited? 

Panel members described efforts to rein-
force course content by integrating comput-
ing into pre-existing courses. Humpherys 
offered examples of teaching least squares 
paired with a focus on the numerical meth-
ods used to compute solutions, such as 
QR decomposition. This idea extends to 
analysis, linear algebra, optimization, prob-
ability/statistics, differential equations, con-
trol theory, etc., as well as approximation 
theory and theoretical computer science.  
Ultimately, students are able to code a sim-
plified algorithm and compare output to an 
industrial strength version.  Once they prove 
the concept computationally, they can and 
are expected to use the industrial strength 
algorithm. Humpherys encourages the use 
of the term “predictive analytics” over 
“big data,” observing that while the latter 

term is in vogue, it obscures the important 
point that mathematical analysis is useful in 
many settings.  Even “small” examples lay 
the groundwork for understanding general 
applications of mathematical thinking.

Fowler considers the inclusion of com-
puting components as a necessary method 
for helping students grow into innovative 
problem solvers. She requires computing 
with applied projects in her large-scale 
freshmen calculus courses. Although grad-
ing is a challenge, the trade-offs are worth-
while. Students gain early experience in 
writing technically, working collaborative-
ly, and tackling open-ended problems. First-
year students typically have some experi-
ence with Excel, and advanced students 
often use Python or Matlab, exploring how 
these programs can be used with modeling 
to approach real-world problems.

At Worcester Polytechnic Institute 
(WPI), computing across the curriculum is 
a priority.  All students take calculus, which 
includes an hour in the computing lab with 
Maple exercises to reinforce or introduce 
calculus concepts. Non-faculty instructors 
and graduate teaching assistants lead these 
labs. Weekes says that all classrooms are 
equipped with computer projection systems, 
so faculty can readily demonstrate concepts 
using their favorite software. For example, 
differential equations faculty regularly use 
Matlab and Maple to demonstrate concepts 
like resonance and solutions to systems such 
as predator-prey models and the SIR model.

Weekes also spoke about higher-level 
courses such as linear programming and 
math modeling with ODEs, where students 
solve interesting problems and explore theo-
ry after an introduction to Matlab and access 
to functions such as linprog.m or pplane6.m. 
Some faculty use COMSOL and Maple in 
a lab section of a course entitled Boundary 
Value Problems to have students solve BVPs 
numerically and to, for example, demonstrate 
the collision of solitons. In Probabilistic 
Methods in OR, a colleague uses Python/
NumPy for in-class examples, and students 
use a programming language of their choice 
to simulate Markov chains and implement 
the Metropolis Hastings algorithm.

Weekes emphasized that having excellent 
computing support resources at WPI has been 
key to making computing across their curricu-
lum successful.  In particular, some university 
staff offer training sessions to introduce stu-
dents to scientific software applications; they 
do this outside of regular class time.   

Kostelich suggested that, as motiva-
tion, interested faculty look at the January/
February 2000 issue of Computing in 
Science and Engineering, edited by Jack 
Dongarra and Francis Sullivan, which pres-
ents a list of the “top 10 algorithms” of 
the 20th century;1 the list includes the 
Metropolis algorithm, the simplex method 
for linear programming, Quicksort, and the 
fast Fourier transform.  Kostelich would add 
the Kalman filter, public-key cryptography, 
and shotgun genome sequencing to their 
list – but regardless of what one’s “top 10” 
might be, Kostelich argued that all math-
ematics undergraduates should have some 
in-depth exposure to a few of them. 

The panel was well received and the 
panelists fielded questions regarding how 
to advance computing culture in audience 
members’ own home departments. In addi-
tion, each panelist spoke of his or her 
interactions with other disciplines; they all 
agreed that finding allies in different depart-
ments can help increase the number of 
students taking mathematics, which is ulti-
mately good for home departments. Panel 
members also urged mathematicians to seek 
such allies in disciplines like economics 
and biology, in addition to the more tradi-
tional ones in engineering and the physical 
sciences. Many audience members voiced 
excitement about the notion of computing 
across the curriculum, but expressed simul-
taneous concerns about making it a reality. 
Conversation indicated that a shortage of 
graduate students to serve as TAs, lack of 
support from peers and department chairs, 
inadequate computing facilities, and out-
dated course offerings are all real hurdles. 

To make a case for integrated computing 
in mathematics courses, Zia and an audi-
ence member also discussed the need for 
careful assessment. Such assessment could 
help promote change and demonstrate the 
benefits and trade-offs in this form of cur-
ricular improvement. Zia pointed out that 
DUE’s core funding program, Improving 

1  An article summarizing the list appeared 
in Volume 33, Number 4 of SIAM News.

Undergraduate STEM Education (IUSE), is 
a natural place to seek support for such work. 
He added that mathematicians have not been 
as active in submitting proposals as their 
other disciplinary colleagues, and encour-
aged the field to engage in such efforts.2 

To this end, a major takeaway from 
the session was that efforts are needed to 
prompt faculty at a wide range of colleges 
and universities into integrating more com-
puting in their curriculum. The mindset 
already exists among a majority of SIAM 
members (and the practices of many SIAM 
faculty members). With the formation of the 
SIAG on Applied Mathematics Education 
(SIAG/Ed),3 SIAM members have an 
opportunity to help share best practices, 
advice, and support with colleagues who 
have a genuine interest in making these 
changes. The 2016 SIAM Conference on 
Applied Mathematics Education, to be held 
September 30-October 2 in Philadelphia, is 
an ideal place to generate more discussion. 
The SIAM Education Committee is in the 
process of incorporating this theme into 
some of the proposed minisymposia for the 
conference. 

Kathleen Fowler is an associate profes-
sor of mathematics at Clarkson University 
and a member of the SIAM Education 
Committee. Eric Kostelich is President’s 
Professor of Mathematics at Arizona 
State University, where he runs a sum-
mer undergraduate research program. 
Jeffrey Humpherys joined the Department 
of Mathematics’ faculty at Brigham Young 
University in 2005. He also serves on the 
SIAM Education Committee, along with  
Suzanne Weekes, an associate professor in 
the Department of Mathematical Sciences 
at Worcester Polytechnic Institute. Lee Zia 
is the Deputy Division Director for the 
National Science Foundation’s Division of 
Undergraduate Education (DUE), prior to 
which he was a professor in the Department 
of Mathematics at the University of New 
Hampshire.

2      http://www.nsf.gov/funding/pgm_summ.
jsp?pims_id=505082&org=DUE&from=home

3  http://www.siam.org/activity/ed/
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ADVANCE Grants: Narrowing the Gender 
Gap in STEM Fields
By Heather Walling Doty

S IAM President Pam Cook has   
worked toward enhancing opportu-

nities for women in academia.
Babatunde Ogunnaike, dean of the College 

of Engineering at the University of Delaware 
(UD), says that ignoring the power and 
strength of diversity is like going through life 
with one eye closed. Your depth perception 
is impaired and you don’t observe the full 
richness of what the world has to offer.

SIAM President Pam Cook agrees. Unidel 
Professor of Mathematical Sciences and  
associate dean of engineering at UD, Cook 
fosters the power and strength of diversity 
in each of her roles. When interacting with 
students, faculty, and administrators, she 
aims to create an environment   that provides 
opportunities for those around her to strive 
to be their best. Cook has had a profound 
impact on women and underrepresented fac-
ulty and students. Nii Attoh-Okine, SIAM 
member and professor of civil and envi-
ronmental engineering at UD, says, “Pam’s 
honesty and boldness in tackling the issues 
of diversity in the academy have made her 
both a mentor to numerous faculty and the 
‘go-to person’ in critical issues concerning 
diversity issues in the faculty ranks.”

The National Science Foundation (NSF) 
also believes in the power and strength of 
diversity. In the year 2000, the U.S. engi-
neering workforce was over 90% male and 
three-quarters white.1 Understanding that 
such homogeneity impaired the nation’s 
potential for scientific and technological 
innovation, the NSF took action. In 2001, 
with a goal of diversifying the U.S. science 
and engineering workforce, it established 
the ADVANCE program. ADVANCE 
operates at the faculty level – its initiatives 
increase the representation and advance-
ment of women faculty in science and engi-
neering. This tactic makes sense; a diverse 
professoriate will meet the teaching and 
mentoring needs of a diverse student body, 
the workforce of the future.

The NSF’s ADVANCE program was 
inspired by actions of the Massachusetts 
Institute of Technology (MIT) in the 1990s 
that led to a measurable increase in the 
number of women faculty in their School 
of Science. MIT’s interventions focused on 
active recruitment and retention of qualified 
women faculty. The school strengthened 
faculty mentoring and ensured equitable 
allotment of resources. The MIT study, as it 
has become known, demonstrated that with 
strong leadership and intentional focus, 
change is possible.

1  AAUW, Solving the Equation: The 
Variables for Women’s Success in Engineering 
and Computing, American Association of 
University Women, 2015.

Today, NSF’s ADVANCE funds three 
types of grants. The largest, the Institutional 
Transformation (IT) grant, is geared toward 
doing just that – transforming an institu-
tion’s policies, procedures, practices, and 
climate to provide opportunity for all fac-
ulty to flourish. Social science research on 
faculty diversity is a required component 
of IT grants. The other two grants, the 
IT-Catalyst and the Partnerships or Learning 
and Adaptation Networks (PLAN), are 
smaller awards with more targeted scope 
and function.2 

Cook is principal investigator on UD’s 
NSF ADVANCE IT grant, a five-year, 
$3.3 million grant awarded in 2014. UD’s 
IT grant aims to propel women faculty 
into academic leadership. It puts special 
emphasis on women faculty post-tenure and 
women faculty of color.

The grant operates at multiple levels, 
from the upper administration to the fac-
ulty. On the administrative side, the UD 
ADVANCE team works with the provost’s 
office, providing data-driven talking points 
– digestible facts and figures on aspects 
of diversity at UD and/or nationally. UD 
ADVANCE provides workshops and net-
working for chairs to help them understand 
their role in establishing departmental cli-
mates and best practices for fair evalua-
tion of faculty, and offers clarification of 
family-friendly policies and procedures. 
For faculty, the ADVANCE team offers 
annual career-development workshops, for 
example, on the promotion and tenure 
process for assistant and associate profes-
sors and on the path to leadership for full 
professors. UD ADVANCE is develop-
ing mentoring programs specifically for 
women associate professors in STEM and 
for women faculty of color.

A decade before UD received its IT 
grant, the College of Engineering was 
already doing its part to increase women’s 
representation on the faculty. During this 
time, the then-dean of engineering hired 
Cook as associate dean to jumpstart the 
efforts. Together the dean and faculty made 
concerted efforts to positively recruit and 
retain faculty. Supported by a smaller NSF 
ADVANCE Partnerships for Adaptation, 
Implementation, and Dissemination (PAID) 
grant from 2008-2012, Cook led teams 
of UD faculty in developing workshops 
on best practices for faculty, conducted 
by faculty. The workshops were devel-
oped in collaboration with faculty from 
the University of Michigan-Ann Arbor and 
the University of Wisconsin-Madison, who 
had established similar workshops through 
ADVANCE IT grants. The resulting two 

2   See the NSF ADVANCE website for 
details on grant opportunities: http://www.nsf.
gov/funding/pgm_summ.jsp?pims_id=5383.

workshops at UD—one on best practices for 
faculty recruitment and one on best practic-
es for mentoring faculty—were interactive 
and included modules on unconscious bias, 
or the cognitive shortcuts that we all fall 
back on when we interact with and evaluate 
others. Workshops were offered annually to 
faculty search committee members and to 
senior faculty designated as formal mentors 
to assistant professors. 

The years of focused, collaborative effort 
paid off at UD, just as they did at MIT in 
the 1990s. UD’s College of Engineering 
tenured/tenure-track (t/tt) faculty grew from 
5% women in 2001 to 17% women in 
2011. Of this accomplishment Cook says, 
“What we learned from the Universities of 
Wisconsin and Michigan is that workshops 
by faculty for faculty lead to understand-
ing, buy in, and continued conversations 
by the faculty after the workshops. And, as 
the MIT experience showed, diversification 
takes constant attention and pressure from 
the administration.” 

When Cook became a faculty member in 
the Mathematics Department at UCLA, she 
was the only female t/tt professor. Another 
female faculty member was later hired, so that 
when she received tenure at UCLA she was 
one of two women t/tt faculty. Upon moving 
to Delaware (a move precipitated by a spou-
sal employment shift) she was again the only 
woman t/tt professor. And when she became 
chair of the Department of Mathematical 
Sciences, she was the first woman STEM 
department chair at UD. “A number of us 
have been solos in our discipline or work-
space for much of our lives,” Cook says.

Today things have changed at many uni-
versities. Family-friendly policies, includ-
ing parenting leave and stop-the-tenure-

clock, are becoming more common. The 
number of departments with solo women is 
shrinking, but women faculty in math and 
science are still underrepresented, espe-
cially at the full-professor level. Even at 
SIAM, an open, inclusive, and international 
organization, women comprise less than 
15% of regular members (among those who 
have identified their gender). Being such 
a minority takes its toll. At UD, faculty 
and administrators continue their work to 
diversify the faculty, now with the help of 
the ADVANCE IT award. The goal is to 
continue to raise awareness and institute 
policies, and ensure that all faculty and staff 
are aware of the policies so that the path to 
advancement is smoother for women, solos, 
and all faculty.

Pam Cook is current SIAM President 
and a SIAM Fellow. She is a fellow of the 
American Association of Science (AAAS) 
and an associate fellow of the American 
Institute of Aeronautics and Astronautics 
(AIAA). Cook’s prior positions at SIAM 
include secretary, vice president for pub-
lications, and editor-in-chief of the SIAM 
Journal on Applied Mathematics. She 
received the national Women in Engineering 
ProActive Network (WEPAN) University 
Change Agent award in 2012. Cook’s 
research interests include the mathemati-
cal modeling and simulation of fluids. Her 
early work focused on compressible fluids 
– transonic aerodynamics, while her current 
work focuses on viscoelastic (complex) flu-
ids, particularly self-assembling surfactant 
solutions, mesoscale networked fluids, and 
gel-like liquids.

Heather Walling Doty is an assistant 
professor of mechanical engineering at the 
University of Delaware.

Pam Cook (third from right), principle investigator (PI) on University of Delaware’s ADVANCE 
Institutional Transformation (IT) grant, along with the ADVANCE team (left to right): Jawanza 
Keita, Lynn McDowell, Shawna Vican, Joan Buttram, co-PIs Heather Doty and John Sawyer, 
UD ADVANCE director Emily Bonistall Postel, and co-PI Robin Andreasen. Photo credit: 
University of Delaware.
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Figure 2b. Pentagon type 15.

may yet be found. Whether any of these 
patterns will have direct applications in sci-
ence is uncertain. However, it seems that 
furthering our knowledge of how the most 
basic shapes fit together will be important 
in understanding the complexity of the real 
world.
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