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Abstract. In this project, we deduce and analyze a mathematical model for atmospheric carbon
dioxide concentrations during the time period from 1958 to 2018, as observed by NOAA at the Mauna
Loa Observatory. We approximate atmospheric CO2 during this period using a linear combination of
a constant to represent atmospheric carbon dioxide concentration at the beginning of the modeled pe-
riod, a sinusoidal function to capture annual seasonal variation in carbon dioxide concentrations, and
an exponential component to capture the observed increase in global carbon dioxide concentration in
the atmosphere from the Mauna Loa dataset. Using Bayesian inference methods, we estimate param-
eters for our model via a Markov Chain Monte Carlo method, the Adaptive Metropolis algorithm.
We present distributions for each of six important model parameters, and present predictive intervals
for projected increases in atmospheric CO2 concentration for the period from 2018 to 2120. We find
that CO2 concentrations can be predicted reasonably well using our modeling approach, and suggest
that our framework be used as an adaptable, extensible method of finding good approximations with
low variances for data of this type.

1. Introduction & Background. Since 1957, the National Oceanic and At-
mospheric Administration (NOAA) has collected and maintained a record of hourly
measurements of the earth’s atmospheric carbon dioxide (CO2) concentration (parts
per million, ppm) at its Mauna Loa Observatory in Hawaii. Begun by Charles David
Keeling, the CO2 observation program at Mauna Loa has generated data which serves
as quantitative evidence of the earth’s seasonal CO2 cycle and of rising overall av-
erage CO2 levels [2]. The data, known as the Keeling Curve, appears to follow an
exponential growth trend and oscillate sinusoidally with a period of about one year
(see Figure 1). The dataset has been used extensively to understand natural and
human-caused fluctuations in carbon dioxide levels, such as the “fertilization” process
catalyzed by shifts in terrestrial vegetation, whereby reduced plant consumption of
carbon dioxide due to winter dormancy results in increased atmospheric carbon diox-
ide concentrations [12, 6]. Relatively long-term carbon dioxide datasets similar to the
one collected at Mauna Loa are often used as drivers for modeling studies that aim
to develop scenarios for future carbon dioxide concentrations [14].

Mauna Loa CO2 data have been the subject of many modeling studies, includ-
ing predator-prey models for the interaction between carbon and living biomass [25],
models focusing on human contributions and the atmospheric response [20], and dif-
ferential equation modeling approaches using least squares regression to fit the data
to multiple model types [13]. A Gaussian process modeling approach has also been
taken to fit these data, which results in a model largely independent of potentially
dangerous assumptions on the data and its parameters (thus also excluding socioeco-
nomic components of atmospheric carbon dioxide), but allowing a final model to be
chosen which is not nearly optimal for the underlying dataset [26].
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Fig. 1: Monthly mean atmospheric CO2 concentration as observed at the Mauna Loa
Observatory. Inset: four cycles of seasonal CO2 oscillation [23].

Here, we use data from Mauna Loa to construct and evaluate a mathematical
model for global atmospheric CO2 concentrations. We provide estimates with uncer-
tainties of global atmospheric CO2 dynamics by tuning our model to the data provided
by the Mauna Loa Observatory in Hawaii during the years 1957 to 2018 (Figure 1).
We propose a model for CO2 dynamics based on observed natural patterns, and we use
Markov Chain Monte Carlo methods to determine and validate estimates for model
parameters.

In Section 2, we provide background on the dataset we use to fit our model, dis-
cussing how it is collected and why we consider it reliable. In Section 3, we formulate
a three-term mathematical model for atmospheric CO2 concentration, requiring six
model parameters, and discuss the physical meanings of these parameters. In Section
4, we provide an overview of Markov Chain Monte Carlo Methods and the Adaptive
Metropolis Algorithm and detail the implementation specific to parameter estimation
for our CO2 model. We then discuss results obtained using these methods to approxi-
mate the distributions of our parameter set. In Section 5, we discuss the implications
of our findings with respect to future increase in global carbon dioxide concentration
relative to the prediction interval we produce. We consider the possibility of future
atmospheric change, in the context of literature citing shifts in seasonal cycling of
carbon dioxide, which could be well approximated by our modeling procedure and
adjusted to make holistic predictions.

Our modeling procedure is unique because it incorporates a standard parameter
fitting procedure with the Markov Chain Monte Carlo method, which enables us to
produce a tight prediction interval for future atmospheric carbon dioxide concentra-
tions. We can be highly confident in our estimate for modeled atmospheric CO2 levels
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as a consequence of using this approach, which is easily adapted to fit different and
more complex mathematical models as well as additional or extended datasets.

2. Mauna Loa Data Collection. Data collected at Mauna Loa is available in
raw form or as series of hourly, weekly, monthly, and annual means calculated from
multiple hourly measurements made via infrared spectroscopy [23, 22]. Mauna Loa
is ideally situated as an atmospheric observatory; due to its elevation and location
it is possible to capture “background air” and obtain CO2 measurements that are
not heavily influenced by local vegetation or human activity [22]. However, even
though the Mauna Loa Observatory is surrounded by miles of bare volcanic rock and
is geographically far removed from large human populations, measurements made
there can still be subject to the influences of vegetation on the island due to upslope
winds. Hourly averages known to be impacted by upslope winds are flagged in the
dataset, as are those characterized by large variability in individual measurements,
those that differ significantly from previous hours, and any otherwise unflagged hours
surrounded by flagged hours. In 2014, 37.9% of hours were unflagged, 52.3% were
flagged, and 9.8% were missing or had no valid measurement [22].

Carbon dioxide levels on Mauna Loa are measured based upon the level of infrared
absorption in a cylinder of dry air collected at the observatory. The measurement
apparatus is calibrated multiple times per day using a series of reference and test gases
(of known CO2 concentrations), in order to maintain fidelity of the measurements.
Although raw data and hourly averages are available, daily and monthly moving
averages are also reported and often used for outside research [22].

In this study we use the preprocessed series of monthly average atmospheric
CO2 measurements, provided by NOAA’s Earth System Research Laboratory (ESRL)
Global Monitoring Division (GMD) and freely available online (see [23]).

3. Model Formulation and Parameter Interpretation.

3.1. Mathematical Model. Based on knowledge that (i) atmospheric CO2

concentrations are increasing in time, and (ii) atmospheric CO2 oscillates seasonally
due to the vegetation cycle of the Northern Hemisphere [4], we posit the following
model for atmospheric CO2 concentration,

A(t) = p1ep2(t−t0) + p3 sin(2πp4(t− p5)) + p6

= Aexp(t) +Asin(t) +A0(t),

with explanations and interpretations of each parameter as follows:
I. Parameter p1: Scale Factor. The parameter p1 scales the rate of growth of

the exponential component, Aexp, of the model over time.
II. Parameter p2: Proportionality Constant. The parameter p2 is a propor-

tionality constant between Aexp and
dAexp

dt such that
dAexp

dt = p2Aexp.
III. Parameter p3: Amplitude of Seasonal CO2 Oscillation. The parameter

p3 quantifies the magnitude of the seasonal shift in CO2 production caused by
the Northern Hemisphere’s yearly vegetation cycle (we expect this to be approx-
imately one year−1 [4] in duration). The Northern Hemisphere, being the most
concentrated area of earth’s vegetation growth, intakes a great deal of carbon
dioxide in spring for respiration as leaves are regrowing [5, 11]. This results
in an annual maximum in approximately May, just before vegetation has been
fully restored for the summer and plants resume high consumption of carbon
dioxide [10]. This pattern is both clarified and complicated by the contribution
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of global oceans, which sequester carbon dioxide to different degrees seasonally
due to increased solubility of gases at low temperatures, as well as changes in
ocean pH [15]. Thus, while oceanic contribution is an explanation for seasonal
change, it also produces variability which is more difficult to predict and de-
scribe. However, ocean contributions are substantially less important in the
Northern Hemisphere than in the Southern Hemisphere due to the influence of
warm southern tropical oceans, and sometimes other natural phenomena, such
as forest fires and volcanic activity, obscure the expected annual trend [15]. We
attempted to capture this variation in the amplitude of the seasonal trend due
to known ecological phenomena by fitting p3.

IV. Parameter p4: Reciprocated Period of Observed Oscillation. The pa-
rameter p4, one over the period of observed oscillation, corresponds to the fact
that atmospheric carbon dioxide levels correspond closely to a one-year cycle,
based on natural phenomena [23]. Because functions of the form
f(t) = sin(ω(t−γ)) have period T = 2π

ω , the oscillatory component of our model,

Asin(t) = p3 sin(2πp4(t− p5)),

will have period 1
p4

. We thus expect p4 to have a value of about 1 year−1.

V. Parameter p5: Shift. Based on prior work, there is no precedent for the
inclusion of a nonzero shift term in this differential equation model [9], but we
observe empirically that using a shift close to the model period start year may
yield more accurate results [9].

VI. Parameter p6: Historic Baseline CO2 Level. The parameter p6 represents
the earth’s historic atmospheric CO2 level prior to the period for which Mauna
Loa Data is available. We obtained an initial estimate for p6 by averaging the
inferred atmospheric CO2 levels obtained from Antarctic ice cores for the years
1948-1957, the ten years leading up to the modeled period (see Figure 2) [1].
The addition of p6 to the model provides a “baseline” CO2 level in the absence
of variability and allows for realistic model behavior as t→ t0.

4. Methods and Results. In the following, we provide a short introduction to
Markov Chain Monte Carlo (MCMC) methods and the specific method we used, the
Adaptive Metropolis Algorithm (for details, see Robert and Casella [17]), discuss im-
plementation details specific to estimating parameters for our model, and demonstrate
the results obtained by using these methods to approximate the sampling distributions
of our parameters.

4.1. Markov Chain Monte Carlo Methods. Our goal in using Markov Chain
Monte Carlo methods is to approximate the posterior density function of our param-
eter set p given our data d, which using Bayes’ Theorem can be expressed as

(1) πpost(p|d) =
πlike(d|p)πprior(p)

πmarg(d)
,

where p =
[
p1 . . . p6

]
is our model’s parameter set, d is the set of observations,

πlike is the likelihood of observing d under p, and πprior and πmarg are the densities
of p and d, respectively [24]. In this setting, πpost is unknown, and πlike, πprior and
πmarg are used to estimate it.

MCMC methods utilize Bayes’ Theorem to compute the unknown distribution of
πpost(p|d) via selective sampling from a chosen proposal distribution. The unknown
distribution πpost is traversed via a Markov Chain, which is a sequence of realizations
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Fig. 2: Atmospheric CO2 concentration for the years 1850-1957 inferred from Antarc-
tic ice cores, obtained from NASA/NOAA [1].

of the random variable p ∈ Rm possessing the Markov Property, such that on step
i+ 1 of the chain,

(2) f(pi+1|p1, . . . ,p0) = f(pi+1|pi),

where f denotes probability density. Thus each realization of the chain depends only
on the realization preceding it. On step i+1 of the MCMC iteration, we take a sample
p∗ from the proposal distribution, such that p∗ only depends on pi (in accordance
with the Markov Property), but only accept this sample, setting pi+1 = p∗, with

probability p = min
{

1,
πpost(pi+1)
πpost(pi)

}
, where πpost is computed using (1) [7]. In this

way we approximate the sampling distribution of p by sampling from the known
proposal distribution and using (1) to determine whether our samples are reasonable
realizations of p.

Simulations of the chain are performed using randomly generated or preselected
initial states p0, and each subsequent state pi is sampled from the proposal distribu-
tion with parameter pi−1. As the beginning of the sequence {pi} is highly dependent
on the initial state p0, the first k samples, where k is an integer selected case-by-case,
are sometimes discarded as part of what is known as the burn-in period, and only
the samples after the burn in period are used to approximate πpost [18]. The Markov
Chain is assumed to have a stationary distribution, and after many chains are simu-
lated the posterior distribution of p given d is inferred from the sample space {pi}
traversed by the Markov Chain [19]. This sample space {pi} can be used to obtain a
maximum a posteriori estimate for p, that is, the value of p of highest density in the
posterior distribution, and to perform uncertainty quantification.
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The particular flavor of MCMC utilized in this study is the Adaptive Metropolis
Algorithm. Like with other MCMC methods, on each iteration of Adaptive Metropo-
lis, we sample p∗ ∼ N (pi,Ci), using a multivariate normal distribution as our pro-
posal distribution, where Ci is the covariance matrix of the parameter set on step i,

and set p∗ = pi+1 with probability c = min
{

1,
πpost(p

∗)
πpost(pi)

}
, otherwise we set pi+1 = pi.

Adaptive Metropolis differs from the unmodified Metropolis algorithm in that the co-
variance matrix Ci is updated every jth iteration, where the value of j is determined
by the user, based off the distribution of the previous samples. An update to the
covariance matrix C on step i (where i is a multiple of j) of the iteration will set

Ci+1 = smcov(p0, . . . ,pi) + smεIm,

where Im is the m-dimensional identity matrix, sm is a “parameter that depends
only on dimension” m and ε > 0 is a small constant relative to the magnitude of our
samples. In practice, we use an equivalent recursive formula to obtain each realization
of Ci, see [7].

Updating Ci may yield faster convergence, but invalidates the Markov Property
(2) of the chain, since the distribution from which the each sample pi is drawn has
covariance matrix Ci, which is dependent on previous samples p0, . . . ,pk, where k is
the largest multiple of j less than i. Haario et al. showed in 2001 that despite this,
under mild assumptions the Adaptive Metropolis algorithm still possesses the ergodic
properties of regular Metropolis, i.e., it will traverse the entire space and converge to
the target distribution πpost [7].

The Adaptive Metropolis Algorithm is given in Algorithm 1. In the context of our
atmospheric CO2 model, Adaptive Metropolis outperforms regular Metropolis due to
the fact that our model parameters are highly correlated (see Figure 3, which depicts
the densities of each parameter projected to 2-dimensional space, with the intensity of
the color representing measurement frequency and the axes labeled with each param-
eter). Updating the proposal covariance matrix C throughout the iterations captures
the correlation between parameters in the current sample space, transforming C to
be non-stationary.

310



ARIANNA KRINOS AND AIMEE MAURAIS

55 60 65

0.015

0.016

0.017

55 60 65

-3

-2.5

55 60 65

0.9995

1

1.0005

1.001

1.0015

55 60 65

250

255

260

0.015 0.016 0.017

-3

-2.5

0.015 0.016 0.017

0.9995

1

1.0005

1.001

1.0015

0.015 0.016 0.017

250

255

260

-3 -2.5

0.9995

1

1.0005

1.001

1.0015

-3 -2.5

250

255

260

1 1.0015

250

255

260

Fig. 3: Two-dimensional marginal densities of parameters in our sample space. Note
the strong correlations between p1 and p6, p2 and p6, and p1 and p2. Similarly, a very
strong relationship exists between p4 and p5, shown in detail in Figure 4.

Algorithm 1 Adaptive Metropolis

Require: πlike, πprior, πprop, d, p0, j
1: i = 0, compute posterior πpost(p0|d)
2: while not done do
3: pprop ∼ N (pi,Ci)
4: compute posterior πpost(pprop|d)

5: compute c = min
(

1,
πpost(pprop|d)
πpost(pi|d)

)
6: sample u ∼ U([0, 1])
7: if u < c then
8: pi+1 = pprop

9: else
10: pi+1 = pi
11: end if
12: if mod (i, j) = 0 then
13: update Ci → Ci+1 using pi+1

14: else
15: Ci+1 = Ci

16: end if
17: i = i+ 1
18: end while
Ensure: {pi}Ki=1 samples from posterior 311
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Here U([0, 1]) indicates the uniform distribution on [0, 1].

4.2. Implementation. In our implementation of Adaptive Metropolis used to

obtain samples of our model parameters p =
[
p1, p2, p3, p4, p5, p6,

]> ∈ R6,
we used “uninformed priors” for each of the parameters p1, . . . , p6, assuming them
to be uniformly distributed on wide intervals. Letting D ⊆ R6 be the set on which
πprior(·) is nonzero, we assume that pi ∈ D on every iteration i, and as such πprior is
constant for each iteration. This assumption combined with the fact that d is fixed,
gives

πpost(p
∗)

πpost(pi)
=

πlike(d|p∗)πprior(p
∗)

πmarg(d)

πlike(d|pi)πprior(pi)
πmarg(d)

=
πlike(d|p∗)
πlike(d|pi)

,

and hence πmarg(d) and πprior(p) do not impact our calculations.
To obtain an expression for πlike(d|p), we assume that the data d ∈ Rn is a

random variable given by

d =
[
A(t1;p), A(t2;p), . . . , A(tn;p)

]
+ ε = g(t;p) + ε,

where ε ∼ Nn(0, σ2In), and σ2In is the covariance matrix of ε. According to an
n-variate normal distribution, under a parameter set p

πlike(d|p) ∝ e−
1

2σ2 εT ε.

In practice, we work with the negative log likelihood of πlike(d|p) rather than working
with πlike(d|p) directly in order to avoid computational difficulties. To analytically
obtain the maximum a posteriori (MAP) estimate for p, pmap, we maximize the poste-
rior density πpost(p|d), which under our assumptions is proportional to the likelihood
πlike(d|p), with respect to p, or equivalently minimize the negative log likelihood

− ln(πlike(d|p̂)) ∝ 1

2σ2
ε>ε

∝ 1

2σ2
(g(t;p)− d)>(g(t;p)− d)

∝ 1

2σ2
||g(t;p)− d||22,

where || · ||2 denotes the Euclidean norm. So then

pmap = arg min
p

||g(t;p)− d||22,

and finding the MAP estimate for p in this setting is equivalent to finding the least
squares estimate for p.

Combining our expressions for πprior and πlike, on each iteration of Adaptive
Metropolis we compute (using (1))

− ln(πpost(p|d)) ∝ − ln

(
πlike(d|p)πprior(p)

πmarg(d)

)
∝ − ln(πlike(d|p))− ln(πprior(p)) + ln(πmarg(d))

∝ − ln(πlike(d|p)) + ln(πmarg(d)) +

{
C p ∈ D
∞ p 6∈ D

,
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where C is a constant. As discussed above, we assume p ∈ D on every iteration. Thus
ln(πprior(p)) = C on every iteration, and ln(πmarg(d)) + ln(πprior(p)) is effectively a
constant. Therefore we have

− ln(πpost(p|d)) ∝ − ln(πlike(d|p)) + Constant

∝ 1

2
||g(t;p)− d||22 + Constant.

We use the following procedure to accept pi+1 as the next sample in the chain

with probability c = min{1, πpost(pi+1|d)
πpost(pi|d) } = min{1, πlike(d|pi+1)

πlike(d|pi)
} :

If ||g(t;pi+1) − d||22 < ||g(t;pi) − d||22, then we accept pi+1 as our next sample.

If not, then we randomly accept pi+1 with probability
πpost(pi+1)
πpost(pi)

= πlike(d|pi+1)
πlike(d|pi)

by

sampling a random number u ∼ U(0, 1) and accept the sample if

u <
πlike(d|pi+1)

πlike(d|pi)
.

In terms of the negative log likelihood, this is equivalent to

− ln(u) > − ln

(
πlike(d|pi+1)

πlike(d|pi)

)
− ln(u) > − ln(πlike(d|pi+1)) + ln(πlike(d|pi)).

By our assumption on the data distribution the condition becomes, for pi and pi+1

with errors εi and εi+1,

− ln(u) >
1

2
||εi+1||22 −

1

2
||εi||22,

−2 ln(u) > ||εi+1||22 − ||εi||22,

||εi+1||22 < ||εi||22 − 2 ln(u).

Note that since u < 1, −2 ln(u) is a positive additive term.
An initial run of the Adaptive Metropolis algorithm with six independent param-

eters p1, . . . , p6 revealed a very strong linear relationship between parameters p4 and
p5, the parameters controlling the period and phase shift of the sinusoidal compo-
nent of our model (Figure 4). We therefore imposed a linear relationship between p4
and p5 based upon information from the parameter covariance matrix to restrain and
combine their influence in following runs with five independent parameters. While
correlations also exist between p1 and p6, p2 and p6, and p1 and p2 (see Figure 3),
these correlations are not as strong as the correlation between p4 and p5 (Figure 4),
and thus the parameters p1, p2, p3, p4, and p6 remain independent in our updated
model. Because each of these parameters corresponds to an aspect of the real-world
system, we retained them to maximize transparency.
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Fig. 4: Two-dimensional density of p4 and p5 observed on initial run of Adaptive
Metropolis with six independent parameters

Note that there are two distinct linear regions of density in p4 and p5; we found
that of the 12 parallel chains of Adaptive Metropolis we ran with six independent
parameters, ten converged to distributions corresponding to the lower, more dense
p4-p5 region, while two converged to distributions in the less dense upper region. It
is plausible that since p4 and p5 control the period and phase shift of the seasonal
sinusoidal component of our model, the best fitting values may be different during
leap years, which is why we observe bimodality.

When combining the two parameters into one, we used the relationship indicated
in the lower (more dense) line in Figure 4, p5 = −2032.5 + 2008p4, but the difference
between the models produced under the two different relationships is negligible (Figure
5). Indeed, the relative error between the data and the model under the denser
parameter set is 2.70102 × 10−3, while the relative error between the data and the
model under the secondary parameter set is 2.70099 × 10−3, a relative difference on
the order of 10−5.
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Fig. 5: Mauna Loa Data and model fits under two values of p4 and p5; relative error
between CO2 concentration using each parameter value is on the order of 10−6.

Using a set of five independent parameters, we simulated 12 independent chains
of realizations of p using Adaptive Metropolis in a parallel computer environment,
with each chain of length 500,000, to obtain a sample space of 6 × 106 realizations
of p. We assumed the chains converged after 500,000 samples, based on little to no
change in the parameters well before this number of samples. On each run, we used

p0 =
[
57.245, 0.0162, −2.842, 1.001, −23.367, 256.38,

]>
,

obtained through an analytical maximum likelihood estimation, as our starting state.
Here, p0 is the maximum likelihood estimate for p in that it minimizes ||d−f(t;p)||22
and as noted previously the imposed linear relationship between p4 and p5 still holds.
We discard the first 5000 samples in each chain as our burn-in period; thus our final
sample space for p contained 5.94× 106 realizations of p.

4.3. Results. The MAP estimates pmap obtained using Adaptive Metropolis,
those of highest density in our sample space, for our 6 model parameters in the set of
5.94× 106 realizations of p are

pmap =
[
57.0155, 0.016246, −2.8426, 1.0005, −23.339, 256.6250

]
.

We found that the adjusted model for atmospheric CO2 observations approxi-
mated data collected at the Mauna Loa Observatory with relative error

|δi| = |g(ti;pmap)−di|
|di| ≤ 0.0081 over our modeled period from 1958 to 2018 (Figure 6).
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Our model arrives at a CO2 concentration of 407.2968 ppm for the final observation,
which was taken at the beginning of 2018, while the data collected at Mauna Loa
reflects a concentration of 407.98 ppm, indicating a relatively high degree of concor-
dance between modeled and observed data after using the MCMC procedure to fit
parameter values.
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Fig. 6: Modeled CO2 dynamics from 1958 to 2018 under p0 and pmap (top); relative
error between CO2 measurements at Mauna Loa and modeled results (bottom).
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We produced marginal density distributions for each of our five independent pa-
rameters (p1 through p6, excluding p5), displayed below (Figure 7). All marginal
densities appear Gaussian. The 12 processors used to arrive for these estimates for
each parameter had very high levels of agreement and demonstrated little uncertainty
in their predictions.

(a) Scale factor (b) Proportionality constant

(c) Oscillation amplitude (d) Oscillation frequency

(e) Baseline CO2 level

Fig. 7: Marginal densities of p1, p2, p3, p4, and p6 resulting from MCMC on the full
dataset (1958 - 2018, solid plots) and the reduced dataset (1958 - 2006, lined plots).
Recall that our model is given by A(t) = p1ep2(t−t0) + p3 sin(2πp4(t− p5)) + p6.

317



CO2 MODELING AND PARAMETER ESTIMATION

We used our modeled relationship to project atmospheric CO2 concentrations to
the year 2120 and include a 95% prediction interval for our model (Figure 8).
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2017 Annual Average

Fig. 8: Modeled CO2 dynamics from 1958 to 2120, where the gray shaded area depicts
the 95% prediction interval for the estimate.

In addition to using Adaptive Metropolis to estimate model parameters informed
by our entire dataset, spanning the years 1958—2018, we also performed this param-
eter estimation procedure based on a reduced dataset only spanning the years 1958 –
2006. The convergence of Adaptive Metropolis in this case was still strong, the MAP
estimates were similar (Table 1), and the marginal densities still appeared Gaussian,
although they were slightly different from those obtained using the full dataset (Figure
7). In particular, densities obtained using the full dataset demonstrate lower variance
than those from the reduced dataset, as would be expected.

p1 p2 p3 p4 p5 p6
Full dataset 57.026 0.016246 -2.8426 1.0005 -23.339 256.63

Reduced dataset 55.624 0.016544 -2.8022 1.0006 -23.267 258.06
Percent Difference (%) 2.47 1.82 1.43 0.00839 0.311 0.557

Table 1: MAP estimates for each parameter obtained via MCMC on the full dataset
and on the reduced dataset along with percent differences.

The most significant difference between reduced and full parameters is for p1.
The value obtained for p1, which scales the exponential growth in our model, is
significantly lower from the reduced dataset than from the full dataset (55.6 versus
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57.0), suggesting a perhaps steepening growth trend.

5. Discussion and Conclusions. In this paper, we present a method of fitting
data to a mathematical model via MCMC methods, and our algorithm of choice,
Adaptive Metropolis. Our results indicate that carbon dioxide data collected at
Mauna Loa are well-described by the model we propose [4, 9]. We base this con-
clusion on the confidence we have in the parameters we attained using MCMC, which
we infer from the convergence of each chain of Adaptive Metropolis to the same pa-
rameter set, including arrival at parameters that would be expected based on physical
reality, such as the 1-year period of the annual oscillation in CO2. Using the selection
condition described in Section 4.2, and a chain length of 500,000 for each of 12 chains,
we can claim reasonable confidence in the parameters estimated via our approach. The
appropriateness of our model and MCMC parameter selection is further supported
by results obtained using a reduced dataset, which were in line with those obtained
from the full dataset. We developed realistic parameter estimates, as evidenced by
our Gaussian-shaped density distributions (Figure 7), and found these distributions
to be relatively tight around expected parameter values.

We acknowledge that the seasonal rhythm observed over the course of a year is
not perfectly described by a sinusoidal function. We suggest that further thought
be invested into whether a better model exists, but simultaneously note that an im-
proved model might not lend improved insight. We compare our model to approaches
using modeling alone [13] and Bayesian inference alone [24], and find that our model
produces a tighter prediction interval for future change in carbon dioxide concentra-
tions while being heavily based on the observed data. These advantages create an
adaptable modeling framework fit to an MCMC method that can be used to make
predictions and enable management decisions. We suggest our model be used as an
estimate for future carbon dioxide concentrations in the absence of social action or
major environmental change, and note that the framework may be extended or modi-
fied easily to new CO2 concentration scenarios, as will be necessary as developed and
developing countries modify their carbon strategies [3, 8].

We note that caution should be used when interpreting our results in terms of the
environmental impact of CO2 increases, in particular because other studies address
potential mechanisms, such as ocean thermal expansion, that are not addressed in
our model, which relies upon historic “baseline” conditions [21]. However, we note
that this study provides a revised look at the current course of atmospheric increase
in carbon dioxide, as has long been predicted based on fossil fuel consumption [16],
and posit that our parameters are modular enough to accommodate developments
in our collective understanding of atmospheric regulatory mechanisms, which are to
date incomplete [21].

319



CO2 MODELING AND PARAMETER ESTIMATION

REFERENCES

[1] Global mean CO2 mixing ratios (ppm): Observations. Available at https://data.giss.nasa.gov/
modelforce/ghgases/Fig1A.ext.txt.

[2] The early Keeling curve, 2017, http://scrippsco2.ucsd.edu/history legacy/early {K}eeling
curve.

[3] W. S. Broecker, Co2 arithmetic, 2007.
[4] W. S. Cleveland, A. E. Freeny, and T. E. Graedel, The seasonal component of atmo-

spheric CO2: Information from new approaches to the decomposition of seasonal time
series, Journal of Geophysical Research: Oceans, 88 (1983), pp. 10934–10946.

[5] J. R. Ehleringer, T. Cerling, and M. D. Dearing, A History of Atmospheric CO2 and Its
Effects on Plants, Animals, and Ecosystems, Ecological Studies, Springer New York, 2006,
https://books.google.com/books?id=q7O7tycPzBgC.

[6] D. A. Graybill and S. B. Idso, Detecting the aerial fertilization effect of atmospheric CO2
enrichment in tree-ring chronologies, Global Biogeochemical Cycles, 7 (1993), pp. 81–95.

[7] H. Haario, E. Saksman, J. Tamminen, et al., An adaptive Metropolis algorithm, Bernoulli,
7 (2001), pp. 223–242.

[8] J. Hansen, D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, and G. Russell, Climate
impact of increasing atmospheric carbon dioxide, Science, 213 (1981), pp. 957–966.

[9] C. D. Keeling, R. B. Bacastow, A. Carter, S. C. Piper, T. P. Whorf, M. Heimann, W. G.
Mook, and H. Roeloffzen, A three-dimensional model of atmospheric CO2 transport
based on observed winds: 1. analysis of observational data, Aspects of Climate Variability
in the Pacific and the Western Americas, (1989), pp. 165–236.

[10] C. D. Keeling, J. Chin, and T. Whorf, Increased activity of northern vegetation inferred
from atmospheric CO2 measurements, Nature, 382 (1996), p. 146.

[11] G. W. Koch and J. Roy, Carbon Dioxide and Terrestrial Ecosystems, Physiological Ecology,
Elsevier Science, 1995, https://books.google.com/books?id=ecIAlOBbeqgC.
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