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The Race to Compute  
High-order Gauss–Legendre Quadrature
By Alex Townsend

A typical quadrature rule is the approxi-
mation of a definite integral by a finite sum 
of the form
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where x1, . . . , xn and w1, . . . , wn denote the 
quadrature nodes and weights, respectively. 

In 1814 Gauss [3] described a particu-
larly ingenious choice for the nodes and 
weights that is optimal in the sense that 
for each n it exactly integrates polynomials 
of degree 2n – 1 or less. It can be shown 
that no other quadrature rule with n nodes 
can do as well or better. Today, we call 
this Gauss–Legendre quadrature because 
of pioneering work of Jacobi showing that 
the nodes are the zeros of the degree-n 
Legendre polynomial Pn(x) and wk = 2(1 – 
x k 

2) –1[P ' n  (x k )]
–2.  

There is a catch. For large n there is 
no explicit closed-form expression for the 
Gauss–Legendre nodes or weights. And 
Gauss knew this. To demonstrate it practi-
cally, he calculated (by hand!) the nodes 
and weights to 16 digits for n = 7. Ever 
since, and especially since the advent of the 
modern computer, there has been an unof-
ficial race to compute the nodes and weights 
for larger and larger n to more and more 
digits. It’s a race that the famous Golub–
Welsch algorithm never led. Ignace Bogaert 
of Ghent University emerged recently with 
a new, winning algorithm. Here is a race 
report. (See Figure 1.) 

Hand calculations led the way for over 
a century. Tallquist (1905), Moors (1905), 
Nyström (1930), and Bayly (1938) used 
fountain pens and dogged determination to 
calculate the quadrature nodes for n ≤ 12. 
Eventually, presumably with a small army 
of human calculators, Lowan, Davids, and 
Levenson (1942) tabulated the nodes and 

weights for 1 ≤ n ≤ 16 for the Mathematical 
Tables Project.

A decade later computers were begin-
ning to dominate tedious hand calcula-
tions, and large tabulations of nodes and 
weights were profitably published. The 
most popular algorithm for computing 
Gauss nodes was the Newton–Raphson 
method for finding the roots of Pn(x) with 
a three-term recurrence used to evaluate Pn 
and P' n . Huge strides were made. Gawlik 
(1958) briefly led with n = 64 before Davis 
and Rabinowitz (1958) got n = 96, and 
finally Stroud and Secrest (1966) achieved 
n = 512. This was the golden age for 
Gauss–Legendre quadrature.  

By the 1960s orthogonal algorithms for 
eigenproblems were hot off the press and 
Gene Golub was becoming famous. The 
Golub–Welsch algorithm [5]—featuring 
both QR and Golub––was momentous. It 
quickly overshadowed the earlier (1963) 
result of Rutishauser. Contrary to popu-
lar belief, however, the Golub–Welsch 

algorithm is not, and never was, the state-
of-the-art algorithm for computing Gauss–
Legendre quadrature rules in terms of 
accuracy and speed. Yet, by elegantly 
bringing together eigenproblems and 
Gauss quadrature, it radically changed 
how the world computed integrals. Before 
1969, a few would compute quadratures 
by carefully extracting the tabulated values 
from Stroud and Secrest (1966) and calcu-
lating (1). After 1969, all were computing 
Gauss nodes and weights for themselves. 
Tabulations were already falling out of 
favor across the computational sciences; 
the Golub–Welsch algorithm made it so 
for Gauss nodes and weights as well. This 
makes 1969 a year to remember for more 
than just the moon landing.

In the years that followed, only a hand-
ful of experts noticed improvements to the 
details of the Newton–Raphson approach 
produced by Lether (1978), Yakimiw 

Figure 1. The 100-year race for high-order Gauss–Legendre quadrature. A dot represents 
published work, located by the publication year and the largest Gauss–Legendre rule reported 
therein. A red dot indicates a paper based on variants of the Golub–Welsch algorithm. The 
dot for Golub and Welsch (1969) is circled. For a list of the papers used, see http://math.mit.
edu/~ajt/GaussQuadrature/.

                            

                             See Race Report on page 3 

As a recipient of the 2014 National Medal 
of Science, Thomas Kailath of Stanford 
University was cited not only for “transfor-
mative” scientific contributions to the fields 
of information and systems science, but also 
for mentoring activities and entrepreneurial 
ventures that proved influential in industry. 

A longtime (since 1975) member of 
SIAM, Kailath has written frequently over 
the years for a variety of SIAM publica-
tions. His research monograph Indefinite-
Quadratic Estimation and Control: A 
Unified Approach to H 2 and H¥ Theories, 
with Babak Hassibi and Ali H. Sayed, 
for example, appeared in 1999 as Volume 
16 in the SIAM Studies in Applied and 
Numerical Mathematics series.

 SIAM executive director James Crowley 
fondly recalls a dinner with Kailath at an 
Indian restaurant in Palo Alto in the early 
1990s. Beyond the very pleasant meal and 
conversation, Crowley remembers Kailath’s 
description of frequent changes in his research 
focus––a new emphasis every decade––in the 
course of his career. “This is certainly borne 
out by the diversity and richness of Kailath’s 
research contributions,” Crowley says.

High Honors for Versatile 
Engineer/Mathematician

 Sayed, Kailath’s frequent co-author and 
former student, now a member of the fac-
ulty at UCLA, points out that throughout 
Kailath’s work, the interest for the SIAM 
community lies in his ability to “exploit in 
insightful and often magical ways the math-
ematical structure underlying problems in 
many areas, whether signal processing, con-
trol or information theory, or semiconductor 
manufacturing.” That high-level assessment 

                           

                                See Kailath on page 3 

Program for ICIAM 2015 
Takes Shape

Winter-worn residents of some parts of 
the world might want to think ahead six 
months to the eighth International Congress 
on Industrial and Applied Mathematics, 
which will be held in Beijing, August 10–14. 
Key elements of the program, including 
the 27 invited speakers (selected by the 
Scientific Program Committee and approved 
by the ICIAM Board), the names of the five 
ICIAM prize recipients, and details about 
Éva Tardos’s Olga Taussky-Todd Lecture, 
have been posted at www.iciam2015.cn/. 

An important date is rapidly approaching: 
Proposals for poster sessions are due no later 
than April 30, which is also the deadline 

for early registration. The full ICIAM 2015 
program will be posted by the end of May.

A reminder to the SIAM community: 
Several prize presentations and lectures that 
are normally part of the Annual Meeting 
have been worked into the ICIAM schedule. 
Jennifer Tour Chayes of Microsoft Research 
New England will give the John von Neumann 
Lecture in Beijing (her invited talk at the 
2014 SIAM Annual Meeting in Chicago can 
be viewed at SIAM Presents, https://www.
pathlms.com/siam/courses/480/sections/718). 
Carlos Castillo-Chavez, Eitan Tadmor, 
Gerhard Wanner, and other as yet unnamed 
prize recipients will also be honored. The 
AWM–SIAM Sonia Kovalevsky Lecture will 
be given at ICIAM. 

Confirmed ICIAM satel-
lite meetings in China include 
the International Conference 
on Numerical Mathematics 
and Scientific Computing in 
Nanjing, August 16–19; others 
have been scheduled for Korea 
(SIAM Conference on Applied 
Algebraic Geometry, Daejeon, 
August 3–7; see article on page 
6) and Japan (Mathematics for 
Nonlinear Phenomena: Analysis 
and Computation, Sapporo, 
August 16–18).  

2014 National Medal of Science

ICIAM sessions will be held at the China National Convention 
Center, in the Beijing Olympic Green. 

Photo courtesy of Thomas Kailath. 
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Science and Industry Advance with 
Mathematics*

These are exciting times, as we witness 
the growth of applied mathematics and 
its increasing relevance to so 
many sectors of the economy 
and to our daily lives. And 
yet a note of regret crept in 
when we learned in recent 
weeks that we will soon lose 
a staunch ally in supporting 
applied and computational math: the IMA 
at the University of Minnesota.

I am struck by a recent flood of stories on 
how mathematics and computing are mak-
ing new inroads into increasing productivity 
in the economy. One of the latest to cross my 
screen notes that “the single greatest instru-
ment of change in today’s business world, 
the one that is creating major uncertainties 
for an ever-growing universe of compa-
nies, is the advancement of mathematical 
algorithms and their related sophisticated 
software.”† The article states that “To some 
degree, every company will have to become 
a math house” in order to exploit the effi-
ciencies of algorithms for data analysis.

While it is true that the growth of data 
science is phenomenal, and that statistics 
is now reported to be the fastest growing 
STEM major,‡ we should not forget the 
important role played by other parts of our 
discipline. I am reminded of one class of 
models we (at least in this part of the world) 
hear about frequently at this time of year: 
weather prediction models.

Here in Philadelphia, a large over-
night snow storm was predicted in 
early February; the city responded with 
advanced cancellation of public transpor-
tation and many flights, only to wake up 
to a light dusting rather than the predicted 
foot-plus of snow. The essentials of the 
storm were predicted remarkably well—
the front would race across Pennsylvania, 
form a low-pressure cell off the coast, 
pull in moisture from the south, and move 
north toward New England, all of which 
happened. But the details—in particular, 
the formation of the low-pressure cell 
about 100 miles to the east of the predicted 
location—were off by enough to change 
the weather completely.

Forecasts will improve. They rely on 
models—the PDEs that describe the phys-
ics of the atmosphere––as well as on data. 
The models are solved by numerical meth-
ods run on high-performance computers. 
Improvements will come, yes, from better 
data, but they alone won’t result in better 
predictions. Improvements in the accuracy 

†“The Algorithmic CEO,” by Ram Charan, 
Fortune, January 22, 2015; http://for.
tn/1ynLsMP.

of numerical codes are also required, and 
they in turn rely on better models, greater 

resolution of the codes, and 
faster computing. This is but 
one example. Even as we 
embrace the surge of interest 
in fields like data science, we 
know that modeling, analy-
sis, and computing will con-

tinue to play important roles.
It is exciting to live at the nexus of 

advances in data science, modeling, algo-
rithms, and high-performance computing. 
At the end of January, I had the opportunity 
to share some of that excitement with the 
House Science Committee’s Subcommittee 
on Energy. I had been invited to testify 
on the value of research supported by the 
Department of Energy’s Office of Science, 
in particular by its Advanced Scientific 
Computing Research (ASCR) program.

Testifying for a congressional committee 
is an interesting experience. As one of four 
witnesses, I was humbled to share the table 
with Norman Augustine, former CEO of 
Lockheed Martin; Roscoe Giles of Boston 
University; and Dave Turek, vice president 
for technical computing at IBM. Each of us 
had five minutes to speak, facing colored 
lights that warned us as our time was end-
ing (“Red light, green light . . . all around 
the town”). A gallery of folks sitting behind 
us took notes and tweeted as we spoke. 
Following our testimony, each of the seven 
members of Congress in attendance had five 
minutes either to speak or to use for ques-
tions and answers. 

SIAM submitted written testimony, 
which was vetted through our Committee 
on Science Policy. In truth, the written tes-
timony is far more detailed than anything 
that could be communicated in a short oral 
presentation. The oral testimony and the 
accompanying written document are part 
of a process. We participate in the hope 
that the information we provide will sup-
port ASCR’s important research programs, 
especially those in applied mathematics 
and computer science.

And this takes me back to the Institute 
for Mathematics and its Applications. 
We received the IMA’s Year in Review 
report for 2014 this week. In the introduc-
tion, current IMA director Fadil Santosa 
noted that NSF funding for the IMA 
in its present form, as one of eight 
mathematics institutes, will end in two 
years. This means that the IMA, long a 
valued institute and resource for many 
in the SIAM community, will change 
dramatically or possibly even cease to 
exist. While we recognize that NSF’s 
Division of Mathematical Sciences needs 
to review and revise its portfolio, we will 
greatly miss an institute that has served 
the applied and industrial math commu-
nity since 1982. As Santosa wrote in his 
introduction, 

“The IMA has been a major force in applied 
mathematics. . . . The IMA has been an 
enabler of interdisciplinary collaborations 
involving mathematicians and has forever 
changed the culture of mathematics research. 
It has also led the way in this country in 
developing a field now recognized as indus-
trial mathematics.”

■ ■ ■

I would like to end by taking a few 
inches to thank Bob O’Malley for his 
dedicated service as editor of the SIAM 
Review Book Review section. Younger 
readers may not know that Bob is a former 
president of SIAM (1991–1992); when his 
term ended, he continued to play an active 
role in SIAM activities. In 2000 he took 
over as SIAM Review book review editor 
from Bruce Kellogg. Until the beginning 
of this year, when he was succeeded by 
David Watkins, Bob ran the section.

Tim Kelley, the editor-in-chief of SIAM 
Review, isn’t a person who panics easily, 
but he came close to that state when told 
that Bob would be stepping down. The 
reason, of course, is that Bob did a mar-
velous job as editor of the book reviews, 
and Tim realized that it would be difficult 
to find anyone who came even close to 
combining Bob’s passion for books and 
his understanding of the SIAM commu-
nity.

As his colleague Mark Kot noted, 

“When I ask Bob if he has received any 
exciting new books, he usually pulls a new 
book from one of his stacks, mentions an 
interesting connection, and tells an interesting 
story about the author. And then, more often 
than not, he says something really nice about 
the book. He continues to find new gold in 
countless old topics.” 

On behalf of the entire SIAM commu-
nity: Thanks, Bob!

TALK OF 
THE SOCIETY 
By James Crowley

‡http://fortune.com/2015/02/10/college-
major-statistics-fastest-growing/.

Bob O’Malley as SIAM President (1991–92)

*An alternative interpretation of the acro-
nym SIAM that dates back about twenty years 
but seems, periodic setbacks notwithstanding, 
at least as appropriate as ever.

We mourn the death of  
 

SIAM founding director  

and  

longtime managing director 
  

I. Edward Block.  
 

February 18, 2015 
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(1996), Petras (1999), and Swarztrauber 
(2003). While the Golub–Welsch algorithm 
was computing a few hundred nodes and 
weights, the Newton–Raphson approach 
was computing thousands. Many, still 
unaware of the developments after 1969, 
have concluded that Gauss–Legendre 
quadrature is not computationally feasible 
for large n. Attention has shifted to adaptive 
and piecewise quadrature schemes.

In 2007 Glaser, Lui, and Rokhlin 
described a ground-breaking algorithm that 
can compute a million quadrature nodes 
in a handful of seconds [4]. Accolades 

should have followed, but the algorithm 
failed to awaken much interest. A few years 
later Bogaert, Michiels, and Fostier [2] and 
Hale and Townsend [6] showed that the 
Newton–Raphson method for finding the 
roots of Pn(x) with careful evaluation of 
Pn  and Pn ' by asymptotic formulas could be 
just as fast and more accurate than anything 
the world had seen before.* The golden age 
had returned. Figure 2 shows the quadrature 
error (see equad in [6] for the exact defini-
tion) and the timings for five historically 
important algorithms. It was after careful 
numerical comparisons like these that the 

race was fully appreciated. 
The epilogue was written by Bogaert 

a few months ago [1]. He derived explic-
it asymptotic formulas for the Gauss–
Legendre nodes and weights that are accu-
rate to 16 digits for any n ≥ 20. Using his 
formulas, I just computed one billion and 
two Gauss–Legendre nodes and weights 
on my laptop. This is a world record! So 
large is this rule that nodes that are near 
neighbors of ±1 are identical to 15 decimal 
places. It now takes less than a millisecond 
to compute a thousand nodes and less than 
a tenth of a second to compute a million.  

Ignace Bogaert is the winner of the 100-
year race. Bravo! 

It was a fun race with a deserving winner. 

Figure 2. Quadrature error (left) and computational time (right) for Gauss–Legendre nodes and weights computed by the Golub–Welsch algo-
rithm [5] (GW), Newton–Raphson with three-term recurrence (REC), Newton–Raphson with asymptotic formulas [6] (HT), the Glaser–Lui–Rokhlin 
algorithm [4] (GLR), and Bogaert's formulas [1] (Bogaert). The timings given here are for implementations in different programming languages 
and cannot be used for direct comparisons.

Race Report
continued from page 1

We are now searching for applications that 
require thousands of nodes and weights. Our 
algorithms are poised for use. If you have an 
application in mind, please email ajt@mit.edu. 

One million Gauss–Legendre nodes and 
weights––no problem. But how will we use 
them?
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A Lagrange Multiplier Problem  
Without Multipliers

Here is a calculus-free solution of the 
standard vector calculus problem

Minimize

f (x, y, z) = ax2 + by2 + cz2                      
                                         (1)

subject to g (x, y, z) = x + y + z = 1, where a, 
b, and c are positive constants.

Solution. Figure 1 shows three springs 
with Hooke’s constants a, b, and c, con-
nected end to end. If each spring is assumed 
to have relaxed length of zero, (1) gives 
twice the potential energy of the system. 

If this energy is minimal, the system is in 
equilibrium and the tensions of the springs 
are thus equal:

                        ax = by = cz.                        (2)

We have solved the problem by showing 
that the minimizing lengths should be in 
inverse proportion to the corresponding coef-
ficients (“the stiffer, the shorter”), implying

             

x a

a b c

=
+ +

1

1 1 1 ,

with similar expressions for y and z. 
We can compare this with the “standard” 

solution: Lagrange’s necessary condition 
for the minimum

                       Ñf = lÑg                     (3)

yields

á2ax, 2by, 2czñ = l á1, 1, 1ñ,

which is the same as our result 
(2) (without the physical inter-

pretation).
Incidentally, Lagrange’s method (3)––for 

general functions f and g––admits a simple 
static interpretation. Consider a particle 
constrained frictionlessly to the surface g 
= constant and subject to the force field F 
= –Ñf in space; we thus interpret f as the 
potential energy, which we are trying to 
minimize. But minimality at some M means 
that M is an equilibrium, where F must be 
cancelled by the reaction force R: 

                      F = –R.                        (4)

Without friction, the reaction is normal to 
the surface: R = lÑg, and (4) is the same 
as (3). The Lagrange condition (3) is thus a 
special case of Newton’s first law. 

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University. The work from which these 
columns are drawn is funded by NSF grant 
DMS-1412542.

Figure 1. The form (1) is minimized when the 
tensions are equal.

Figure 2. Lagrange's relation (3) as the equi-
librium condition (4).

MATHEMATICAL 
CURIOSITIES
By Mark Levi

reflects a dynamic career that has, in fact, 
been characterized by periodic shifts in focus 
among different fields.

Especially gratified by the National Medal 
citation’s reference to “distinctive and sus-
tained mentoring of young scholars,” Kailath 
commented to SIAM News on the importance 
of students in his career. In the early years, 
he said, “almost all my papers were single-
authored. But then I realized that if I wanted 
to address new topical challenges, the best 
way to do that in a university was to work 
with groups of brilliant students—and that is 
what enabled me to change the major focus of 
my research roughly every decade.”

Kailath’s graduate work at MIT, from 
1957 to 1961, on the characterization and 
identification of random linear time variant 
channels and on communication via such 
channels had gained him an international 
reputation before he joined Stanford as an 
associate professor in 1963. As director of the 
Information Systems Laboratory from 1971 
to 1981, he was instrumental in building it 
into a world-class center for communications, 
control, and signal processing research. He is 
currently the Hitachi America Professor of 
Engineering Emeritus in the electrical engi-
neering department at Stanford. 

A decade-by-decade perspective on 
Kailath’s research activities at Stanford 
begins with the development of an algorithm 
for exploiting the availability of noiseless 
feedback and new techniques in the theory 
of signal detection. Linear Systems, his 
influential 1980 textbook, resulted from 
his work during the previous decade using 
state-space techniques to model and under-
stand the behavior of dynamical systems. 
That was followed by a decade’s work on 
multiple-antenna signal processing and the 
design of VLSI arrays/architectures for sig-
nal processing, along with development of 
the concept of displacement structure. 

An overview of his work on the latter 
can be found in his and Sayed’s extensive 
1995 SIAM Review article, in which they 
relate the development of fast computation-
al algorithms for matrices that have what 
Kailath named “displacement structure.” 
An important example is a fast triangular-
ization procedure for such matrices (gen-

eralizing a 1917 algorithm of Schur). As 
they point out in the abstract of their article, 
“this factorization algorithm has a surpris-
ingly wide range of significant applications 
going far beyond numerical linear algebra.” 
Examples include inverse scattering, ana-
lytic and unconstrained rational interpola-
tion theory, digital filter design, algebraic 
coding theory, and adaptive filtering. A 
collection of review articles on displace-
ment structure can be found in the volume 
Fast Reliable Algorithms for Matrices with 
Structure, edited by Kailath and Sayed and 
published by SIAM in 1999. 

Displacement structure was a focus for 
Kailath and his colleagues for a number of 
years. The group’s algorithms for solving 
complex design problems, in which the matri-
ces are very large, Sayed says, are an order of 
magnitude faster than other algorithms and 
continue to be widely studied today. And in 
the process of discovering the algorithms, he 
says, Kailath’s group discovered fascinating 
connections with several other areas of math-
ematics, including interpolation theory and 
orthogonal polynomials. 

In the 1990s, Kailath and colleagues turned 
their attention to smart antenna technology 
for wireless communication, as well as to res-
olution-enhancement techniques for optical 
lithography in semiconductor manufacturing. 
The latter work used techniques from signal 
processing and communications to break a 
barrier of 100 nm, perceived at that time as 
the minimum line width achievable by opti-
cal lithography. In 1996 Kailath and a group 
of graduate students formed the company 
Numerical Technologies, which went public 
in 2000 and was acquired by Synopsis in 2003. 

In the course of his career, Kailath and 
his students have also made a variety of 
contributions to probability and statistics. 
Kailath is an emeritus fellow of the Institute 
of Mathematical Statistics. He is also a mem-
ber of the inaugural class of SIAM fellows, 
cited for his contributions to linear algebra, 
systems and control, and their applications 
in engineering. 

Another important textbook, Linear Est-
imation, by Kailath, Sayed, and Hassibi, 
appeared in 2000. Widely used today as a 
reference in the broad area of state-space esti-
mation theory, the book offers a unified and 
motivated window on a range of results in this 
area that emanated from Kailath’s group. 

Kailath
continued from page 1

*See [6] for computing Gauss–Jacobi, 
Gauss–Lobotto, and Gauss–Radau quadra-
tures.

Students today, Sayed points out, “have the 
benefit and convenience of rushing to search 
for articles and references online”; this casts the 
rewards of his own experience with Kailath as 
an adviser in a new light. “At a time when stu-

dents used to visit libraries more often, Kailath’s 
ability to pinpoint references with precision in 
archival publications was simply amazing. His 
immersion in the science of his work was also 
contagious and lives with me to this day.”  
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Untangling the Threads of a Heroic and Complicated Life
Alan Turing: The Enigma. By Andrew 
Hodges, Princeton University Press, Princeton, 
New Jersey, 2014, 768 pages, $16.95.

The Imitation Game opened to solid 
reviews on Christmas Day and, as announced 
on January 15, received several 2015 Oscar 
nominations (including for Best Picture). 
Loosely based on Andrew 
Hodges’s 1983 book Alan 
Turing: The Enigma, the film 
stars Benedict Cumberbatch as 
Turing and Keira Knightley 
as his wartime co-worker (and 
one-time fiancée) Joan Clarke. To coincide 
with the release of the movie, Princeton 
University Press has reissued Hodges’s 
book, with a new preface by the author.

Among the finest scientific biographies 
known to this reviewer, the book chronicles 
Turing’s career in pure and applied math-
ematics, along with his many related inter-
ests, to his death, apparently by suicide, in 
1954. Hodges devotes several chapters to 
Turing’s early life, in an effort to identify 
the roots of his adult behavior. His task is 
facilitated by the numerous letters Turing 
wrote throughout his life.

                      ■ ■ ■

Mere months after his birth, in London, 
in 1912, Turing’s mother and father––the 
latter a career officer in the Indian Civil 
Service––returned to the subcontinent, leav-
ing Alan and his elder brother in the care of 
an English couple, Colonel and Mrs. Ward. 
From then until they entered university, 
the boys’ time was divided between stays 
with the Wards, a succession of boarding 
schools, and occasional family vacations 
when the parents were on leave in England.

Permanent influences on Alan included 
a book titled Natural Wonders Every Child 
Should Know. Meant to explain biological 
growth in a way that young children could 
understand, the book opened Alan’s eyes 
to the nature and allure of scientific knowl-
edge, while stressing that the human body 
and mind are machines adapted to certain 
basic tasks, but capable of untold others.

Also influential were the story of 
Snow White and the poisoned apple, and 
the death of his school friend and first 
romantic (though apparently Platonic) 
love Christopher Morcom, in February 
1930. Already friends, the two had bond-
ed while rooming together for a week 
at Trinity College, Cambridge, where 
they had gone to compete for university 
scholarships. Morcom was immediately 
successful, but Turing had to return the 
following year to secure a scholarship 
to King’s, his second choice among the 
Cambridge colleges.

Turing’s performance on the scholarship 
exams was commendable, but by no means 
without precedent. Others had won more 
lucrative scholarships, at earlier ages. Not 
until the summer of 1931, when he actually 
entered King’s––a bastion of free-think-
ers heavily influenced by John Maynard 
Keynes and the ageing Bloomsbury set––
did he truly begin to blossom. In April 
1935, at the age of 22, he was elected to a 
fellowship in King’s. His first mathematical 
paper, on group theory, was published a 
month later. The fellowship carried a sti-
pend of £300 a year, ordinarily renewable 
for an additional three years, with no spe-
cific duties. Beyond the stipend, it entitled 
him to room, board, and a seat at High Table 
whenever he chose to reside in Cambridge. 
The boys at Sherborne School––where he 
had prepped for university––were inspired 
by his success to intone that 

	 Turing
	 Must have been alluring
	 To get made a don
	 So early on.

The terms of the fellowship left him 

free to travel, and he elected to spend time 
in Princeton, then replacing Göttingen as 
the center of the mathematical universe. 
Turing arrived in Princeton in September 
1936, having just completed his magnum 
opus “On Computable Numbers, with an 
Application to the Entscheidungsproblem.” 
Page proofs reached him in October, and 

the paper was published the 
following spring.

Formulated by Hilbert, 
the entscheidungsproblem 
had already been solved by 
Alonso Church, Turing’s host 

in Princeton, using his powerful l-calculus. 
But the “Turing machine” proof, suggest-
ing the feasibility of a universal computer 
capable of performing any possible com-
putation, was far more memorable and 
portentous. 

                          ■ ■ ■

 Hodges identifies five key events in 
Turing’s professional career, spaced rough-
ly five years apart. The first two were 
Christopher Morcom’s death in 1930 and 
the conception of the Turing machine in 
1935. The others were Turing’s conquest of 
the German navy’s version of the Enigma 
device in 1940, his design for the ACE 
(Automatic Computing Engine) in 1945, 
and his formulation of the morphogenetic 
principle in 1950. Hodges further insists 
that Turing was still at the top of his game 
at the time of his death, having been able at 
last to gain hands-on experience with the 
Manchester computer.

Turing’s work on the naval Enigma 
machine was truly heroic. Great Britain 
relied on 35 million tons of imports a year; 
from July 1940, when German U-boats 
began operating from French ports, through 
October 1, they sank a million tons of 

British shipping. By the early months of 
1941, the flow of imports had been reduced 
to an annualized rate of only 28 million 
tons. Churchill acknowledged to Roosevelt 
that, unless the war in the Atlantic took an 
abrupt turn for the better, Britain would be 
forced to sue for peace within the year. Only 
by reading the German navy’s Enigma com-
munications could British codebreakers hope 
to inform convoys at sea of the whereabouts 
of German submarines in time to avoid 
contact.

During the 1920s, Polish intelligence 
had obtained an early version of the 
Enigma machine and constructed a device 
(“Bombe”) to decode its messages. By 
November 1939 Turing––who had volun-
teered for code-breaking duties the previous 
year––could refer in internal documents to 
“the machine [‘superbombe’] now being 

made at Letchworth, resembling, but far 
larger than, the Bombe of the Poles. . . .” 
Hodges offers a detailed description of 
the improvements made by Turing and his 
Bletchley colleague Gordon Welchman to 
the superbombe. In time, those improve-
ments enabled Bletchley to read virtually 
every message sent to and from the U-boat 
fleet between June 1941 and February 1942, 
when Germany added an additional rotor to 
the naval Enigma.

The resulting decryption blackout 
enabled the U-boats to reassert control of 
the sea lanes. Only the capture of U-559 
off Port Said in October 1942 provided 
the clue that––some months later––enabled 
Bletchley to resume its “same day” decryp-
tion of most U-boat messages. In the mean-

BOOK REVIEW
By James Case

Alan Turing with two colleagues and the Ferranti Mark I computer, January 1951. Photo cour-
tesy of the University of Manchester. 

Last Bastion of Purity in a Corrupt World?
Mathematics without Apologies: Portrait 
of a Problematic Vocation. By Michael 
Harris, Princeton University Press, Prince-
ton, New Jersey, 2014, 464 pages, $29.95.

According to the dust jacket, “Mathe-
matics without Apologies takes the reader 
on an unapologetic guided tour 
of the mathematical life, from 
the philosophy and sociology 
of mathematics, to its reflection 
in film and popular music, with 
detours through the mathemati-
cal and mystical traditions of Russia, India, 
medieval Islam, the Bronx, and beyond.” In 
addition, the author is a major figure in the 
Langlands program, and he makes a valiant 
effort to communicate to the lay reader both 
the goals of the program and what it’s like 
to be a participant. That will do fine as a 
summary of the book’s  contents.

Readers will find many fascinating and 
insightful nuggets in the book. Among them 
is an admirable comparison of Erdős and 
Grothendieck, the great exemplars––with 
Grigori Perelman––of the unworldly math-
ematical genius:

“Erdős had more than a few things in common 
with Grothendieck. Both men were extraor-
dinarily devoted to their mothers. Both were 
Central European Jews displaced, irreversibly, 
by World War II: Erdős left Hungary and just 
kept traveling, while Grothendieck remained 
stateless for many years by choice. While 
Grothendieck’s premonition of the avatar lad-
der reaches ceaselessly skyward, Erdős built 
a no less tangled horizontal network of col-
laborations.”

Overall, however, I can’t remember when 
I last read a book that was as “unapologeti-
cally” self-satisfied and self-congratulatory. 
A scene reported in chapter 6 exempli-
fies its general spirit. Reine Graves, who 

co-directed the Berkeley mathematician 
Edward Frenkel’s film Rites of Love and 
Math, was asked at a reception why she 
decided to make a film about mathematics. 
Graves, Harris writes,

“gave the best possible answer. Mathematics, 
she began, is un des derniers domains où il y a 

une vraie passion [one of the last 
areas where there is a genuine 
passion]. . . . Mathematics, like 
a very few other activities—she 
mentioned physics and sculp-
ture—is practiced without com-

placency [sans autosatisfaction]; instead there 
is a true exigence au travail [demanding work 
ethic]. Mathematicians seek to percer le mys-
tère. You can see it at once in l’œil qui brille 
[the eye that gleams].” 

Harris makes similar claims throughout 
the book; for instance, he writes that math is 
“one of the few remaining human activities 
not driven by commercial considerations.” 

Look, I’m as susceptible* as the next guy 
to flattery from French experimental film 
directors making oracular pronouncements 
in French; but really, what he writes, c’est 
n’importe quoi. Or, at least, it bears no 
relation to the world as I’ve encountered it. 
Over the years, I’ve known a fair number 
of mathematicians and a few physicists. 
Certainly they are for the most part deeply 
interested in what they do, but they have 
no greater vraie passion or work ethic 
than (somewhat at random) the neuroscien-
tists, historians, librarians, musicians, violin 
makers, writers, journalists, photographers, 
Quenya enthusiasts, and rock gardeners I’ve 
known. Of these, in fact, I would say that 
the rock gardeners take the prize for vraie 
passion and exigence au travail, and the  

journalists for desire to percer le mystère. 
Sad to say, I have never noticed l’œil qui 
brille; perhaps that requires a film director’s 
eye. As for autosatisfaction, I’ve rarely seen 
it so vividly on display as in Harris’s book.

Creative artists and adoring sophisticated 
women with a worshipful attitude toward 
mathematics and mathematicians are a recur-
ring presence in Harris’s book. “Is it any 
wonder,” he muses, “that, in popular cul-
ture’s serious precincts, the mathematician 
has become the romantic figure of choice?” 
Chapter 6 traces the romantic cult of the 
mathematician from the 18th century to the 
present. I am sorry to spoil Harris’s idea of 
the 18th-century mathematics students at 
Cambridge as “objects of romantic interest,” 
but the quote he cites does not mean that the 
Wranglers were admired by society ladies 
but rather that they visited brothels. In any 
case, the quote is from a satire and can hardly 
be relied on for historical accuracy.†

Harris is just as pleased with himself as 
with his chosen field. Early in the book, he 
tells us that “By granting me tenure at the 
age of twenty-seven, Brandeis University 
ratified my permanent admission to the 
community of mathematicians. . . . [T]he 

BOOK REVIEW
By Ernest Davis

                                

                                     See Turing on page 5 

*By which I mean that presumably I would 
be as susceptible, if it ever happened, which 
is exceedingly improbable, and if I spoke 
French.

†The full quote, from The Friendly and 
Honest Advice of an Old Tory to the Vice-
Chancellor of Cambridge (1751), is as fol-
lows: “The Wranglers I am told on the first 
Day of their Exercise have usually expected 
that all the young Ladies of their Acquaintance 
(whether such as have sometimes made their 
Bands, or who are more genteely employed 
in keeping the Bar at a Tavern or a Coffee-
house) should wish them Joy of their Honours. 
To give them an opportunity of doing so, 
their Manner has been to spend the Morning 
in going to several of their Houses.” Quoted 
in Social Life at the English Universities 
in the Eighteeth Century, p. 398. http://
archive.org/stream/cu31924100477466/
cu31924100477466_djvu.txt.                           

                See Mathematical Life on page 6
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time, Allied shipping suffered losses that, if 
continued, would surely have prevented the 
buildup of men and materiel needed to under-
take the Normandy landings of June 1944.

Turing, in fact, had relatively little to do 
with the final decipherment of U-boat com-
munications, having been dispatched to the 
U.S. in November 1942 with authority to 
disclose anything and everything known to 
the British about Enigma decryption. After 
several months spent conferring with U.S. 
codebreakers, he returned to England in 
March 1943. Thereafter, he devoted most 
of his time to the development of a secure 
telephone communication system, first at 
Bletchley and later at a satellite location. 
That project, which he completed almost 
single-handedly, was not finished in time to 
impact the war effort.

In October 1945, he joined a group at 
the National Physical Laboratory tasked 
with the construction of a working stored-
program computer. Later he moved to the 
University of Manchester, where a group 
led by engineer F.C. Williams had taken 
the lead in hardware development. On June 
21, 1948, by finding the largest factor of a 
given integer, the group’s prototype became 
the first “electronic computing machine” 
to successfully execute a stored program. 
The milestone had taken longer to reach 
than expected because, in the absence of 
wartime urgency, progress in all directions 
had slowed considerably. Perhaps to allevi-
ate his frustrations, Turing increased his 
involvement in long-distance running dur-
ing these years. As a marathoner, he nearly 
qualified for the London Olympics of 1948. 

In 1949, a contract was signed with 
Ferranti Ltd. to produce a commercial ver-
sion of the Manchester machine, which 
owed more to von Neumann’s design than 
to Turing’s. Known as the Mark I, it was 
delivered in May 1951, well before NPL 
produced either its “Pilot ACE,” a drasti-
cally scaled-down version of the machine 
proposed by Turing, or the less than full-

Turing
continued from page 4

scale version that eventually followed. Both 
were obsolete by the time they were com-
pleted. It was on the Manchester Mark I that 
Turing was finally able to launch experiments 
that he had long been planning. Among them 
were early versions of the Turing test of a 
machine’s ability to think, and several trials 
related to his theory of morphogenesis.

It was at about this time that he was con-
victed of gross indecency––the legal euphe-
mism for homosexuality––and given a choice 
between jail time and chemical castration. 
Choosing the latter, he endured a series of 
hormonal treatments that clearly affected his 
work and personality. The treatments were 
discontinued after a year, and he seemed 
rather quickly to resume his former lifestyle.

                           ■ ■ ■

Unlike the book, the film makes no 
attempt either to convey the substance of 
Turing’s mathematical activities, or to 
depict his life as a homosexual. Beginning 
with his arrest on suspicion of espionage, 
rather than gross indecency, The Imitation 
Game reduces Turing’s prior history to a 
series of flashbacks depicting the hazing 
he endured at boarding school, his rela-
tionship with Morcom, his lifelong attrac-
tion to long-distance running, his arrival at 
Bletchley, his romance with Joan Clarke, 
and his many battles with the military brass.

Turing’s wartime discovery process is 
boiled down to a single “Aha!”  moment 
sited, like its counterpart in the movie ver-
sion of A Beautiful Mind, in a bar. A chance 
remark made there by one of Bletchley’s 
many Morse code-reading girls sends the 
entire Bombe crew on the run to Hut #8, 
where, fed the input she describes, “Alan’s 
machine” succeeds for the first time in 
determining the Enigma machine’s current 
rotor setting, thereby sealing the fate of 
“Fortress Europe.” It is an entertaining film, 
with an excellent cast, which succeeds by 
ignoring the threads that Hodges so deftly 
unravels!

James Case writes from Baltimore, Mary- 
land.
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privileges befitting my charismatic status . . . 
included and still include regular invitations 
to research centers like the IAS [Institute 
for Advanced Study], . . . the IHES, or the 
Tata Institute of Fundamental Research 
. . . the Fields Institute in Toronto, the 
Mathematical Sciences Research Institute 
(MSRI) in Berkeley, or the Institut Henri 
Poincaré in Paris,” and so on and on, for two 
pages. Presumably this is somewhat tongue-
in-cheek, or at least Harris has convinced 
himself that it is. But the line between this 
and the garden-variety arrogance of a per-
son whose idea of conversation is to recite 
his CV is fainter than Harris may realize.

Harris pats himself on the back vigor-
ously for being too pure of soul to grok 
anything so vulgar and grasping as finance:

“It’s not the equations that make it difficult 
for a mathematician like me to grasp quanti-
tative finance. My problem is with adopting 
the psychology, the motivations, the persona 
of Investor. . . Someone who . . . has never 
aspired to playing Investor, a figure whose 
cardinal virtue is maximizing returns, is at a 
distinct disadvantage.”

I’m not buying it. I don’t understand much 
about finance myself, for the simple reason 
that I find it boring. I’d much rather spend 
my time thinking about other things, and my 
income allows me to live comfortably with-
out being clever about investing. Moreover, 
whether or not Eugene Fama is right that no 
one can ever beat the market, it would unques-
tionably require a lot of work––I would need 
to outsmart a lot of people who are pretty 
much as smart as I am and are working hard 
at it. Presumably, I am just as well off with 
my savings in an index fund. Dollars to donuts 
Harris’s actual motivations are the same. In 
any case, ignorance is never a matter for self-
congratulation; it is too easy to attain.

Harris is disgusted with the philistines 
in government who dare question that 
mathematical research should be funded 
at taxpayer expense. In an extensive his-
torical survey and deep analysis of the 
various justifications for doing math-
ematics, he primarily sets the argument 
that mathematics is beautiful or that it 
is art (Hardy’s justification) against the 
argument that mathematics has practical 
benefits (the “golden goose” justifica-
tion). He argues, obviously correctly, that 
the golden goose argument has very little 
to do with the practice or motivations of 
most pure mathematicians; he is not con-
tent with the art argument, as mathematics 
is in many ways actually not similar to 
the mainstream arts. The position he ends 
up with is that mathematics, and other 
abstract intellectual studies, are forms of 
creative play and deserve support on that 
basis. He writes,‡ 

[W]hy is it a matter of general interest . . . to 
have a small group of people working at the 
limit of their creative powers on something 
they enjoy? . . . [I]f the question is taken at 
face value, it answers itself. Indeed, if the 
notion of general (or public) interest means 
anything at all, it should be a matter of general 
interest that work should be a source of plea-
sure for as many people as possible.”

The idea that funding for philosophers or 
mathematicians is the most central category 
of the public interest does seem rather paro-
chial and self-serving. Nowhere in his long 
discussion does Harris raise or acknowledge 
the obvious question here: If the goal is to 
maximize the pleasure that people get from 
their work, is the best use of finite govern-
ment funding actually to support research 
on algebraic number theory? Might the net 
gain of utility be greater if the funds were 
spent in alleviating the working condi-
tions of migrant workers, people who pack 
things in Amazon.com warehouses, and so 
on? Harris asks, What’s the right way to 
think about mathematics? The question he 
doesn’t ask––What’s the right way to spend 
government funds?––is the problem the 
philistines are obliged to face. 

In practical terms, arguing that mathe-
matics without clear direct practical appli-
cations (essentially all of pure math and 
much of so-called applied math) should 
be funded on the basis that it is a creative 
pleasure rather than a golden goose of 
practical applications is pretty much tan-
tamount to saying that it should be funded 
at the level of the National Endowment 
for the Humanities, rather than at the 
level of the National Science Foundation.§ 
Whether Harris would be content with this 
outcome is not clear to me. To make the 
case that government funding for math 
should continue to be greater than that for 
history, comparative literature, philoso-
phy, and so on, it’s necessary to argue that 
mathematics serves the general interest 
in some ways that these other fields do 
not. The “creative pleasure” justification 
does not distinguish math from these other 
fields, and the claim that these fields are 
more corrupted by commercialism than 
math is hogwash.

The idea of math as the last bastion of 
purity in a corrupt world is a destructive 
delusion, as is the image of mathemati-
cians as an elect group of noble souls, 
deserving of being placed on pedestals by 
glamorous women. “We had fed the heart 
on fantasies / The heart’s grown brutal 
from the fare,” Yeats wrote. I am not sure 
that “brutal” is the right word here, but 
certainly “arrogant” applies.

Ernest Davis is a professor of com-
puter science at the Courant Institute of 
Mathematical Sciences, NYU.

Mathematical Life
continued from page 4

‡The immediate subject here is philosophy; 
but clearly he intends it to apply to mathemat-
ics as well.

§The 2015 budget for NSF’s Division of 
Mathematical Sciences is $224 million. The 
entire NEH budget is $167.5 million, that of the 
National Endowment for the Arts, $158 million.

Geometry, Invariants, and the Search for  
Elusive Complexity Lower Bounds

Jan Draisma, an associate profes-
sor in the Department of Mathematics 
and Computer Science at Technische 
Universiteit Eindhoven, is chair of the SIAM 
Activity Group on Algebraic Geometry. 
To give SIAM News readers an idea of 
one current research theme in the field, 
he dropped in on the semester-long (fall 
2014) program in algebraic geometry at 
the Simons Institute for the Theory of 
Computing.

In a Simons Institute Open Lecture [2] 
that marked the beginning of the pro-
gramme Algorithms and Complexity in 
Algebraic Geometry, Peter Bürgisser of TU 
Berlin gave an overview of recent devel-

opments in geometric complexity theory. 
This article is loosely based on Bürgisser’s 
lecture and on lectures by others in the pro-
gramme’s boot camp one week earlier. 

To set the stage, Bürgisser introduced 
three families of polynomials:
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known as the kth elementary symmetric 
polynomial, the determinant, and the per-

manent. If k is roughly n/2, then these 
polynomials look very similar in that their 
degrees grow linearly in n, while they have 
super-exponentially many terms. But how 
efficiently can these polynomials be evalu-
ated at given values xi or xij for the variables?

Using Gaussian elimination, we can eval-
uate detn in (n3) arithmetic operations. 
This is not optimal––and I return to this 
issue below––but at least it is polynomial in 
n. To evaluate esymk,n, we can first evaluate 
the polynomial pn(T) := (T + x1) . . . (T + xn) 
at n values for T, interpolate, and extract the 
coefficient of T n–k. Again, the complexity is 
(n3), and we can do even better by using 
the discrete Fourier transform.

Now how about permn? We can do better 
than evaluating the n! terms individually 
and adding them up; one way to reduce the 
complexity to exponential is depicted in 
Figure 1. But no polynomial-time algorithm 
is known for evaluating the permanent. 
Indeed, probably none exists: A theorem 
of Leslie Valiant states that the sequence 
(permn)n is complete in the complexity class 
VNP [17]. This class can be thought of as an 
arithmetic analogue of NP, and the common 
belief that P ¹ NP would imply that not all 
elements of VNP can be evaluated in poly-
nomial time. Yet how would it be possible 

to prove lower bounds on the complexity of 
the sequence (permn)n?

Valiant argued that a major step in this 
direction would be to prove that if permn 
is expressed as detN(A) for some N ´  N 
matrix A of affine-linear functions in the 
xij, as in Figure 1, then N must grow super-
polynomially in n. In 2004, using geometric 
properties of the hypersurfaces defined by 
detN  = 0 and by permn = 0, Mignon and 
Ressayre proved the best-known lower 
bound to date on the determinantal com-
plexity of the permanent: N ³ n2/2 [11].

The currently most active route toward 
lower bounds is the geometric complex-
ity theory (GCT) programme [12–14]. At 
a basic level, this approach involves two 
key ideas. The first is to think of detN and 
Z N–npermn (the  padded permanent}, where 
Z is a homogenising variable that can be 
taken equal to XNN) as points in the same 
vector space VN of homogeneous polyno-
mials of degree N in N 2 variables, where 
the padded determinant just happens to 
use only n2 + 1 of the variables. The group 
GLN2 of linear transformations among the 
variables acts on this space, and a stronger 
version of Valiant’s conjecture states that if 
the orbit GLN2 . ZN–npermn of the padded 
permanent lies in the topological closure 
of the orbit GLN2 .  detN, then N must be 
super-polynomial in n. Consequently, if N is 
too small, then there must be a witness poly-
nomial function F : VN ®  that vanishes on 
the orbit GLN2 .  detN, but not on the orbit 
of the padded determinant. Such a witness 
is a needle in a haystack that would not be 
found by random search.

The second key idea is to exploit the fact 
that the group GLN2 acts on the space of 
polynomial functions VN ®  and preserves 

the set of witnesses. Under this action, the 
space of polynomial functions decomposes 
into a sum of irreducible building blocks, 
and the search for F can be narrowed down 
to some of these building blocks. This leads 
to exciting questions in the representation 
theory of GLN2 that are currently generating 
a lot of research activity.

So far, this approach has not led to better 
lower bounds on the determinantal com-
plexity of the permanent. But the method 
is universal, and it applies in particular to 
another notorious question in complexity 
theory––namely, the complexity of matrix 
multiplication, which governs the complex-
ity of other linear algebra operations, such 
as the evaluation of detn.

Volker Strassen discovered that 2 ́   
2 matrices can be multiplied with seven 
instead of eight scalar multiplications, and 
that applying this multiplication scheme 
recursively decreases the complexity of 
n ́  n-matrix multiplication from (n3) to 
(nlog2 7) = (n2.81) [15]. Don Coppersmith 
and Shmuel Winograd improved Strassen’s 
result to (n2.376) [4]. In the last few 
years, several researchers have followed 
the Coppersmith–Winograd approach to 
improve the exponent [5, 6, 18]; the current 
record of (n2.3728639) was obtained by 

François Le Gall. While many researchers 
believe that the real complexity should be 
(n2 + e) for any positive e, it was recently 
proved by Andris Ambainis and Yuval 
Filmus that the Coppersmith–Winograd 
approach cannot possibly prove an upper 
bound of (n2.3078) [1]. 

But how could unconditional lower 
bounds on the complexity of matrix multi-
plication be proved?  The idea is to see n 
´ n-matrix multiplication as a point Mn in 
a space Vn := n2 Ä n2 Ä n2 of tensors, 
and––as in the determinant-versus-perma-
nent question––to find a witness polyno-
mial function F : VN ®  that gives a lower 
bound for the border rank of this tensor. 
Again, representation theory serves as a 
guide in the search for such witnesses. To 
illustrate, Jonathan Hauenstein, Christian 
Ikenmeyer, and J.M. Landsberg found a 
degree-20 polynomial F on the space V2 that 
up to scalars is preserved by the group GL4 
´ GL4 ´ GL4 and vanishes on all tensors 
of border rank at most 6 but not on M2 [8]. 
This gives a new, computational proof that 
the border rank of M2 is at least 7; Strassen’s 
result then implies that the border rank is 
exactly 7. Straightforward combinatorics 
shows that the space of degree-20 polynomi-
als on the 64-dimensional space V2 is C (63 + 
20, 20) = 8,179,808,679,272,664,720-dimen-
sional––it is striking how representation the-
ory helps us to find F and evaluate it at M2!

Bürgisser and Ikenmeyer found a 
sequence of explicit witnesses that show 
the border rank of Mn to be at least 3n2/2 –  2 
[3]. While this is slightly weaker than the 
longstanding bounds of [10, 16], it is the 
first non-trivial bound proved along the 

Figure 1. The matrix on the right is the weighted adjacency matrix of the directed graph on 
the left, with vertices 0 and 123 identified, variables along arrows as indicated, and 1's along 
loops. Its determinant equals ( –1 ) 3 – 1 perm3; one of the terms in the expansion is shown in red. 
This construction, from Bruno Grenet, generalises to show that the determinantal complexity 
of permn is at most 2n – 1 [7].

                          
                            
         See Geometric Complexity on page 8 
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Senior Health Services Investigator Opportunity

Geisinger Health System is seeking a Senior Health Services 
Investigator in Geisinger’s Institute for Advanced Application (IAA).  
We are seeking an accomplished health services scientist at the 
associate or full professor level with a record of external funding, 
peer-review publication and program building with expertise in 
identifying the problems facing healthcare and developing and 
testing solutions. The candidate will lead a software development 
team with a focus on creating healthcare software applications  
from the concept stage to a viable product. 
Geisinger’s IAA consists of 3 centers, 9 labs, a computational core 
facility, and an IT trials office. Work is under the direction of Gregory 
J. Moore, MD, PhD, Chief, Emerging Technology and Informatics,  
& Director, Institute for Advanced Application.
For more information, please visit geisinger.org/careers 
or contact: Gregory J. Moore, MD, PhD, c/o Jocelyn Heid, 
Manager, Professional Staffing, at 800.845.7112 or  
jheid1@geisinger.edu. 

Announcements

Send copy for announcements to: Advertising 
Coordinator, SIAM News, 3600 Market Street, 6th 
Floor, Philadelphia, PA 19104–2688; (215) 382–9800; 
marketing@siam.org. The rate is $1.95 per word (mini-
mum $275.00). Announcements must be received at least 
one month before publication (e.g., the deadline for the  
May 2015 issue is March 31, 2015).

Call for Nominations: 2016  
Hans Schneider Prize of the  
International Linear Algebra Society

The International Linear Algebra Society 
(ILAS) is seeking nominations for its 2016 Hans 
Schneider Prize. The prize is awarded every three 
years for research, contributions, and achieve-
ments at the highest level of linear algebra. The 
prize, which may be awarded for an outstanding 
scientific achievement or for a lifetime’s con-
tributions, consists of a plaque and a certificate 
containing the citation, along with an invitation 
to give a lecture at the ILAS meeting in Leuven, 
Belgium, July 11–15, 2016.

Nominations should include a brief bio-
graphical sketch and a statement explaining 
why the nominee is considered worthy of the 
prize, including references to publications or 
other contributions of the nominee that are 
considered most significant in making this 

assessment. 
The chair of the prize committee is Richard A. 

Brualdi of the University of Wisconsin–Madison. 
Nominations should be sent to brualdi@math.
wisc.edu by December 1, 2015. For more infor-
mation see the ILAS homepage: http://ilasic.org/.

National Math Festival 
On Saturday, April 18, 2015, attendees will 

have the chance to experience mathematics like 
never before when the USA’s first National Math 
Festival comes to Washington, DC. 

The free and public celebration will feature 
dozens of math-centered activities for visitors of 
every age––including hands-on magic, a scaven-
ger hunt, and Houdini-like getaways, as well as 
lectures by some of the most influential math-
ematicians of our time. 

Join us for an unforgettable opportunity to 
learn something new, discover the delight and 
power of mathematics, and most important, have 
fun. 

Events will take place in several Smithsonian 
museums in downtown Washington, DC, includ-
ing:

■ The Enid A. Haupt Garden
■ The S. Dillon Ripley Center
■ The National Museum of Natural History
■ The National Air and Space Museum
■ The National Museum of African Art
■ The Freer and Sackler Galleries

Follow the event on Twitter (@mathmoves). 
The National Math Festival is organized by the 

Mathematical Sciences Research Institute and the 
Institute for Advanced Study in cooperation with 
the Smithsonian Institution. 

Free handbook from the Society for  
Industrial and Applied Mathematics:

Math  
Modeling 
GettinG Started & GettinG SolutionS
K. M. Bliss, K. r. Fowler, B. J. Galluzzo

As organizers of Moody’s Mega Math Challenge, an Internet-based 
math modeling competition for high school students, SIAM worked with 
experienced modelers to create a handbook designed to help participants 
achieve greater success in the Challenge, as well as greater understanding 
about using math tools, and more appreciation and enthusiasm for STEM 
studies and careers. The handbook illustrates how to quantify factors 
around an issue and use math to model relationships between the various 
aspects in order to make better decisions—and how to use common sense 
to analyze results of your work.

Some highlights of the handbook include:
• sections on each step of the modeling process
• reference “flash cards” that give the nuts and bolts without 

all of the background details
• connections to the Common Core State Standards, detailed 

in a separate booklet

PdFs for viewing or download are available  
at http://m3challenge.siam.org/about/mm/. 

Print copies are available upon request for $15 per copy to cover printing and 
mailing. Please contact SiaM Customer Service at +1-215-382-9800 or toll-free 
800-447-SiaM (uS and Canada) to order. reference code: MiodMMGS / iSBn: 
978-1-61197-357-0

National Science Foundation

National Science Foundation

Society for Industrial  
and Applied Mathematics

M3Challenge.siam.org

® Moody’s Mega Math Challenge
A contest for high school students

®

This material was produced with funding from The Moody’s Foundation  
in conjunction with M3 Challenge, and from the NSF.

Check out our new website:

sinews.siam.org
  

Each issue of SIAM News appears online the day  
the print issue is mailed. 

Conversion of archived issues (1998–2012)  
to the new platform is underway.
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general lines of the GCT programme. The 
lower bound record, however, is currently 
held by Landsberg and Giorgio Ottaviani: 
In a 2011 paper [9], guided by algebraic 
geometry tailored to the border rank of Mn, 
they found witnesses that prove a lower 
bound of 2n2 – n on the border rank of Mn.

The geometric and representation-theo-
retic approach to complexity lower bounds, 
as Bürgisser concluded in his lecture, is 
starting to pay off. By attracting many of the 
world’s experts on geometric complexity 
theory to its current programme, the Simons 
Institute for the Theory of Computing has 
created ideal conditions for further progress.

Applications of algebraic geometry to 
complexity theory will also be one of the 
many topics on the programme of the 
upcoming SIAM Conference on Applied 
Algebraic Geometry (http://camp.nims.
re.kr/activities/eventpages/?id=200&
action=overview), August 3–7, 2015, at 
the National Institute for Mathematical 
Sciences and the Korea Advanced Institute 
of Science and Technology in Daejeon, 
South Korea. 
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MAA Chauvenet Prize  
Awarded to Dana Mackenzie

At SIAM News we’re always happy (but 
not particularly surprised) to have outside 
confirmation of the talents of our writers. A 
case in point is the awarding of the MAA’s 
Chauvenet Prize to Dana Mackenzie at the 
Joint Meetings in San Antonio in January.

The illustration shown here is from “A 
Tisket, a Tasket, an Apollonian Gasket” 
(American Scientist, Vol. 98, January–
February 2010), the paper for which 
Mackenzie was honored. Here’s his sum-

mary of the paper: “Start with three mutu-
ally tangent circles, insert a fourth circle 
tangent to all three, and iterate. If the four 
circles have curvatures that are integers, 
then all subsequent curvatures are integers 
too, and the construction yields an integral 
Apollonian circle packing.”

An earlier (2012) recipient of the Joint 
Policy Board for Mathematics Comm-
unication Award, Mackenzie nonetheless 
points out that gratification for writers can 
be long delayed or nonexistent. For SIAM 
News he often chooses the topics he’d like to 
write about; what usually captures his atten-
tion is some new mathematical approach to 
a physical problem. A few recent examples 
of his articles are: “Synthetic Biology, Real 
Mathematics” (December 2014), “Kadison–

Singer Problem Solved” (January/February 
2014), and “Smells Like a Traffic Jam” 
(November 2013).

A compliment to a writer is never amiss. 
Suggested topics matched to the interests 
of our writers are always welcome too—at 
siamnews@siam.org.

The numbers represent the curvatures (1/radius) of each circle, with the boundary circle having 
curvature 1 and the two largest circles having curvature 2 (radius 1/2).

Twelfth Conference on Frontiers in Applied and
Computational Mathematics (FACM ‘15)

June 5-6, 2015
New Jersey Institute of Technology

Newark, New Jersey
Program: The twelfth FACM conference will focus on mathematics applied to problems in
fluid dynamics, including complex fluids, bio-fluidynamics, waves in fluids, and numerical
methods. There will also be minisymposia in the areas of applied and bio-statistics.  This year
there will be an honorary minisymposium for Denis Blackmore (organized by Stefan
Llewellyn-Smith (UCSD)) on the occasion of Denis’ 70th birthday. 

Plenary Speakers: Anne Juel (University of Manchester, UK), Randall  LeVeque (University of
Washington), Xiao-Li Meng (Harvard University), and Jean-Luc Thiffeault (University of
Wisconsin, Madison). 

Minisymposium Speakers (partial list): Paulo Arratia (U Penn), Christopher Batty (U
Waterloo), Howard Bondell, (NC State), Rich Braun (U Delaware), Morten Brons (Technical
University of Denmark), Marion Darbas (Université de Picardie Jules Verne), Olivier
Desjardins (Cornell U), Lian Duan (NJIT), Souvik Ghosh (LinkedIn), Dimitris Giannakis
(Courant/ NYU), Frederic Gibou (UCSB), Johnny Guzman (Brown U), Bill Henshaw (RPI),
Ian Hewitt (Oxford U), Mark Hoefer (U Colorado Boulder),  Eugene Huang (Emory U),
Howard Karloff (Yahoo Labs), Scott Kelly (UNC Charlotte), Shilpa Khatri (UNC), Xiaolin Li
(SUNY at Stony Brook), Stefan Llewellyn-Smith (UCSD), Enkeleida Lushi (Brown U),
Shuangge (Steven) Ma (Yale U), Kara Maki (RIT), Kyle Mandli (Columbia U), Nick Moore
(Florida State), Jean-Christophe Nave (McGill U), Paul Newton (USC), Limin Peng (Emory
U), Zhen Peng (UNM), Bryan Pfister (NJIT), Thomas Powers (Brown U), Jian-Jian Ren (U
Maryland), Leif Ristroph (Courant/ NYU), Gareth Russell (NJIT), David Salac (U Buffalo),
Themis Sapsis (MIT), Kenneth Shirley (AT&T Labs-Research), Jennifer Siggers (Imperial
College), Saverio Spagnolie (U Wisconsin, Madison), Jiguang Sun (MTU), Chad Topez
(McAlister College London), Lan Xue (Oregon State),  Helen Zhang (ASU).

Organizers: Shahriar Afkhami and Yuan-Nan Young (Chairs), Linda Cummings, Lou Kondic,
Michael Siegel and Stefan Llewellyn-Smith (UCSD).  

Sponsored and Supported by: Department of Mathematical Sciences, NJIT; Center for
Applied Mathematics and Statistics, NJIT; National Science Foundation (pending).

Travel Awards: Applications are solicited for contributed talks from postdoctoral fellows 
and graduate students. Selected applicants will receive full support for travel. Other
contributed papers for the conference will be presented as posters. Funds are available for
partial support of travel expenses for graduate students, postdoctoral fellows, and junior
faculty poster presenters. The deadline for all applications and submission of titles and short
abstracts is April 15, 2015.

Contact: See the FACM’15 URL for full details:  http://m.njit.edu/Events/FACM15/.
Local contact: Fatima Ejallali, Department of Mathematical Sciences, New Jersey Institute
of Technology, Newark, NJ 07102, USA; email: ejallali@njit.edu; tel.: 973-596-3235.

NEW JERSEY INSTITUTE OF TECHNOLOGY
UNIVERSITY HEIGHTS, NEWARK, NJ 07102-1982   

SIAM News
4 5/8 x 7 5/8”

The Science & Technology 
University of New Jersey

1_5_15_MathConf_SIAM.qxp_1_5_15_MathConf_SIAM  1/8/15  3:43 PM  Page 1


