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Abstract. This paper concerns applications of the non-autonomous logistic equation to bioe-

conomic fishery models. We develop a generalized model which satisfies both biological and eco-

nomic principles of optimization without overexploitation. We also provide conditions to optimize

the revenue and to maximize the sustainable yield.
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1 Introduction

The autonomous logistic equation was first introduced by Pierre F. Verhulst in 1838 to study the

dynamics of human populations with self-limitations [11]. Before Verhulst, researchers simply

assumed that the rate of a population growth depends on the size of the population, which is given

by the following equation
dP

dt
= rP, P (t) = P0e

rt,

where P represents the population at time t (e.g. [5]). Verhulst noticed that the exponential growth

of a population was unrealistic over a long-term period even though it depicted the growth of some

populations over a relatively short-term interval. He introduced a new population model given by

the logistic equation:

dP

dt
= r

(
1− P

K

)
P, (1)

where r, the intrinsic growth rate, and K, the environmental carrying capacity, are constants. A

significant improvement from the exponential model to Eq. (1) is the self limitation component,

which denies the possibility of unlimited exponential growth. In addition to the population model,

the autonomous logistic function is widely used to predict the spread of contagious diseases (see

e.g [2] [5]), such as H1N1. It is also used to build bioeconomic models for natural resource

management (see e.g [4]).

In this paper, we are interested in the non-autonomous logistic equation, given by the equation

du

dt
= u(a(t)− b(t)u), t ∈ R (2)

where the carrying capacity a: R→R and the self-limitation coefficient b: R→R are positive and

continuous functions satisfying the following constraints:

0 < α≤a(t)≤A, 0 < β≤b(t)≤B, t ∈ R. (3)

While Eq. (1) can be solved explicitly by employing classical techniques, Eq. (2) becomes more

complicated to solve. However, it is a more realistic model because self-limitation and carrying

capacity fluctuate over time (see e.g [8]).

The purpose of this paper is to study the non-autonomous logistic bioeconomic models, such as

fishery models, and to provide conditions to optimize the revenue and to maximize the sustainable
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yield, which is the maximum use that an ecological resource can sustain without impairing its

renewability through natural growth [1]. This paper is organized as follows: In Section 2, we give

an explicit proof of the existence and uniqueness of the solution to Eq. (2), which was first proved

by Nkashama in [7], as a basis of our bioeconomic models. The proof shows that the solution is

bounded, positive, and does not tend to zero in the past or in the future. In Section 3, we develop

the generalized non-autonomous logistic bioeconomic model and the maximum sustainable yield

in terms of the relationship between natural growth and harvesting by valuing natural resource as

a stock. We also present the non-autonomous optimal fishery models by combining the biological

and economic models. This is the first time that the non-autonomous logistic equation has been

considered in the case of optimal fishery models. In addition, we interpret the disadvantage of

overexploitation in three ways: first, when the sustainable yield is below a maximum value, it

causes the population to approach zero; second, when the total cost is higher than the total revenue,

economic overfishing implies economic inefficiency; third, overexploitation consumes the future

value of biological resource.

2 Theoretical background of non-autonomous logistic equation

In this section, we prove the existence and uniqueness of bounded solutions of Eq. (2). In [7],

Nkashama proved for the first time that there exists a unique, bounded and positive solution of Eq.

(2) that does not tend to zero in the past or in the future. We would like to elaborate and give more

details in the proof of Nkashama.

We obtain a quantitative estimate of the blow-up time in terms of the initial condition and

bounds in (3). By blow up time we mean the following:

Definition 2.1 [10]. Let ϕ(t, x0) be the solution to the initial value problem be ẋ = p ◦ x, x(0) =
x0 (with p ∈ C1(Rn,Rn), x0 ∈ R

n) and where t ∈ I with some interval I ⊂ R containing 0.

ϕ(t, x0) is said to blow up if there exists t∗∈R+ such that for all M ∈ R, there exists ε ∈ R
+ for

which and for all t < t∗ such that t∗ − t < ε the inequality ‖ ϕ(t; x0) ‖� M holds.

Theorem 2.2 [7] Suppose that the ineq. (3) hold. Then Eq. (2) has exactly one bounded solution

u: R → R that is positive, and that does not tend to zero as t→±∞. Actually, u(t) satisfies the

inequalities
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α

B
≤ u(t) ≤ A

β
(4)

for all t ∈ R.

Proof. Observe that u = 0 satisfies Eq. (2). By the uniqueness of solutions to the initial-value

problem, any non-trivial solution to Eq. (2) must be either positive or negative on its interval of

definition. We will prove the theorem in three steps.

Step 1. Suppose that u(t) is a non-trivial solution to Eq. (2) such that u is bounded on R. We

will show that u must satisfy the inequalities

0 < u(t) <
A

β
(5)

for all t ∈ R.

Indeed, suppose by contradiction that u(t0) < 0 for some t0, then u(t) is negative and decreas-

ing for all t ∈ R for which u(t) is defined. Therefore, from Eq. (2) and conditions (3), we have

that
du

dt
≤ αu− βu2 < 0 ⇒ (αu− βu2)

−1du

dt
≥ 1.

Using partial fractions, we obtain

d

dt
ln

(
αu

βu− α

)
≥ α.

Integrating from t0 to t, with t0 ≤ t, we get

ln

(
αu(t)

βu(t)− α

)(
βu(t0)− α

αu(t0)

)
≥ α(t− t0)

Set c0 = αu(t0)/(βu(t0)− α), then

u(t)(α−βc0e
α(t−t0)) ≥ −αc0e

α(t−t0), and

u(t) ≤ c0α

c0β−αe−α(t−t0)
. (6)
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Notice that the vertical asymptote of the solution curve is given by

t∗ = t0 + α−1 ln[α(βc0)
(−1)] (7)

Therefore, u(t∗) = c0β−αe−α(t−t0) = 0.

Observe that if t0 < t < t∗, we have that

c0β−αe−α(t−t0) < c0β−αe−α(t∗−t0) = 0

c0β−αe−α(t−t0) < 0.

In addition, c0α > 0, so the right side of Eq. (6) is negative. It follows that u(t) → −∞ as t → t−∗ .

In other words, u(t) blows up in finite time forward. This contradicts the fact that u(t) is bounded.

Thus, u(t) must be positive.

Now we would like to prove that u(t) < A/β for all t ∈ R. Suppose by contradiction that

u(t) ≥ A/β for some t0 ∈ R, then u(t) is decreasing for all t ≤ t0 for which u(t) is defined.

Therefore, from Eq. (2) and conditions (3), we have that

du/dt ≤ Au− βu2 < 0 ⇒ (Au− βu2)
−1
du/dt ≥ 1.

Using partial fractions technique, we obtain

d

dt
ln

(
Au

βu− A

)
≥ A.

Integrating from t to t0, with t ≤ t0, we get that

ln

(
Au(t0)

βu(t0)− A

)(
βu(t)− A

Au(t)

)
≥ A(t0 − t).

Set c0 =
Au(t0)

βu(t0)− A
, then

u(t)(A−βc0e
A(t0−t)) ≥ −Ac0e

A(t0−t), and

u(t) ≥ c0A

c0β−Ae−A(t0−t)
. (8)

Observe that the vertical asymptote of the solution curve is

t∗ = t0 + A−1 ln[A(βc0)
(−1)] (9)
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Therefore, u(t∗) = c0β−Ae−A(t0−t) = 0.

Since t∗ < t < t0, we have

c0β−Ae−A(t0−t) > c0β−Ae−A(t∗−t0) = 0

⇒ c0β−Ae−A(t0−t) > 0.

In addition, c0A > 0, so the right side of Eq. (8) is positive. It follows that u(t) → ∞ as t → t+∗ . In

other words, u(t) blows up in finite time backward. This contradicts the fact that u(t) is bounded.

Thus, the inequality (4) must hold for every bounded solution to Eq. (2). One can see that (7)

and (9) give us quantitative estimates of the blow-up time in terms of the initial condition and the

bounds.

Step 2. We want to prove that there exists at least one bounded solution for Eq. (2). Assume

that ε ∈ R such that 0 < ε < α/B. Consider the initial-value problem{
dw
dt

= w(a(t)− b(t)w) t ∈ R

w(t0) = ε.
(10)

Since w(a(t)−b(t)w) is continuous then by the existence results of initial value problem, there

exists a solution w of problem (10) defined on R. Now we claim that w also satisfies inequalities

in (5). Indeed, w−1dw/dt > ε2 for all t ≤ t0, where ε2 = α − Bε > 0. Integrating from t to t0,

we obtain that:

ln
w(t0)

w(t)
≥ ε2(t0 − t)

w(t) ≤ w(t0)
1

eε2(t0−t)
.

Therefore,

0 < w(t) ≤ w(t0)e
ε2(t−t0) for all t ≤ t0 (11)

This implies that w(t) can be continued indefinitely in the past, and w(t) → 0 as t → −∞.

Now, let us show that 0 < w(t) ≤ A/β for all t ≥ t0 and w(t) can be continued indefinitely in the

future. Suppose by contradiction that w(t1) > A/β for some t1 > t0. Since w(t0) < α/B, then by

the Intermediate Value Theorem and the fact that w(t) is decreasing, hence w(t1) < α/B, which

lead to a contradiction since α/B < A/β . Thus, w(t) is between 0 to A/β.
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Now, let us show that there exists at least one solution for Eq. (2). Indeed, let I ⊂ R be defined

by

I = {w0 ∈ R : Eq. (1), with u(0) = w0, has a bounded solution }.

Notice that I is not empty since u(0) = w0 = 0 is in I .

Set u0 = supI , consider the following equation{
du
dt

= u(t)(a(t)− b(t)u(t)) t ∈ R,

u(0) = u0.
(12)

We claim that α/B ≤ u0 ≤ A/β. Indeed, if u0 < α/B then arguing as above, we see that there

exists a solution to problem (12) bigger than u0, which contradicts the fact that u0 is the supremum.

Therefore, u0 ≥ α/B. Now, if u0 > A/β, pick w0 ∈ R such that A/β < w0 < u0. Using (8), we

have that

w(t) ≥ c0A

c0β−AeAt
.

From step 1, w(t) → ∞ as t → −∞. Hence, w(t) blows up in finite time in the past, which violates

the fact that u0 is the supremum of initial conditions of bounded solutions. So, u(t) ≤ A/β for all

t ∈ R. Thus there exists a solution u(t) satisfying inequality (5).

Now let us show that u(t) ≥ α/B for all t ≤ 0. Indeed, suppose by contradiction that

u(t0) < α/B for some t0 < 0. Pick ε ∈ R such that u(t0) < ε < α/B. Then the solution to

Eq. (10) is bounded on R, with w(0) > u0 by uniqueness of solution to initial-value problems.

This contradicts the fact that u0 is the supremum. So, u(t) ≤ α/B for all t ∈ R. Thus Eq. (1) has

the maximal solution u(t) satisfying the inequality (4).

Step 3. We need to show that there exists a unique and bounded solution to Eq. (2) that

satisfies Eq. (5). Let J ⊂ I be defined by

J = {w0 ∈ R : w0 ∈ I and (5) holds.}

Observe that J is not empty, since α/B ≤ u0 ≤ A/β, u0 ∈ I .

Set v0 = infJ . We have that v(0) = v0. Since u0 ∈ J and v0 is the infimum, v0 < u0.

Hence α/B ≤ v0 ≤ u0 ≤ A/β. Using similar argument as in step 2, the minimal solution v(t)

also satisfies inequality (5). Hence

0 <
α

B
≤ v(t) ≤ u(t) ≤ A

β
for all t ∈ R (13)
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Now, we proceed by showing that v(t) = u(t) for all t ∈ R. Suppose by contradiction that

v(t) < u(t) for all t ∈ R, then

{
dv
dt

= v(a(t)− b(t)v)
du
dt

= u(a(t)− b(t)u)

1

v

dv

du
− 1

u

dv

dt
≥ b(t)(u(t)− v(t))

d

dt

(
ln
(v
u

))
≥ b(t)(u(t)− v(t)) > 0. (14)

Hence ln(v/u) is increasing.

v(t)

u(t)

(
v(t)

u(t)

)′
≥ b(t)(u(t)− v(t)) > 0

(
v(t)

u(t)

)′
≥ u(t)

v(t)
b(t)(u(t)− v(t)) > 0.

Hence v/u is increasing. Then

v(t)

u(t)
≤ v(0)

u(0)
≤ c < 1 for all t ≤ 0.

Since u(t) ≤ α/B,

u(t)− v(t) ≥ (1− c)u(t) ≥ (1− c)
α

B
= δ > 0 for all t ≤ 0.

Integrating Eq. (14) from t to 0, with t ≤ 0, we obtain

ln
v0
u0

− ln
v(t)

u(t)
≥ −βδt

0 <
v(t)

u(t)
≤ eβδt

v0
u0

for all t ≤ 0.

Hence, when t → −∞, v(t)−u(t) → 0. This contradicts the fact that v(t)/u(t) ≥ αβ/AB > 0

for all t ∈ R. Therefore, v(t) = u(t). �

In conclusion, we prove that the logistic equation with positive non-autonomous bounded co-

efficients has exactly one bounded solution that is positive and that does not approach the zero-

solution in the past and in the future. In a quantitative perspective, we obtain an estimate of the

blow-up time in terms of the initial condition and the bounds in (3).
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3 Empirical bioeconomic models

In this section, we develop a non-autonomous model which formulates a dynamic theory of renewable-

resource management. First we give some preliminary concepts that will be used later. Bioe-

conomics is the study of the dynamics of biological resources. Resource management has in-

creasingly become a necessity for sustainable development and the long-term benefit of humanity.

Bioeconomists attempt to use mathematical and economic models to optimally manage renewable

resources [4].

The biological resources cannot be exploited too heavily without an ultimate loss of productiv-

ity. Balance between the surplus production and sustainable yield is the perfect condition.

Now we consider the following dynamic model for the exploitation of biological resources

(see.g.[4])
dx

dt
= F (x)− h(t), (15)

where F (x) represents the natural growth rate of the population and h(t) represents the rate of

harvesting. When h(t) = F (x), the population reaches the equilibrium point. At that level, the

natural growth rate F (x) also equals the sustainable yield that can be harvested while maintaining

a fixed population level x. When h(t) is not equal to F (x), the system is not in equilibrium. In

many cases, equilibrium solutions emerge from the dynamic theory.

3.1 Generalized non-autonomous logistic bioeconomic model

Suppose that there is no human intervention, such as harvesting. The population x does not grow

exponentially due to the limitations of space, water, and other natural resources. Then F (x) can

be simplified as an autonomous logistic model. Suppose that in a certain population, the birth rate

is b and the mortality rate is m. Let us denote r = b −m. Since h(t) = 0, we have the following

logistic equation

dx

dt
= F (x) = rx(1− x

K
), x(0) = x0, (16)

where the constant r is the intrinsic growth rate, and the positive constant K is the environ-

mental saturation level. Observe that there are two equilibrium solutions to the Eq. (16): x(t) ≡ 0
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and x(t) ≡ K. A non-trivial solution to Eq. (16) is given by

x(t) =
K

1 + ce−rt
, (17)

where c = K−x0

x0
.

If x(0) > 0, and x(t) < K, then dx/dt > 0, therefore limt→∞ x(t) = K; If x(t) > K, then

dx/dt < 0. Therefore, limt→∞ x(t) = K. Thus, K is a stable equilibrium.

Now assume that h(t) �= 0, and it is considered as the rate of removal. Suppose that h(t) is

constant. Consider
dx

dt
= F (x)− h = rx(1− x

K
)− h.

Observe that 1
4
rK is the maximum value of F (x). The relationships between max F (x) and h are

as follows:

When h < 1
4
rK, we have that the generalized model possesses two equilibria, x1 and x2. At

these two points, h reaches its sustainable yield, so the solution x(t) is not decreasing or increasing

at both points. However, neither x1 nor x2 is the maximum level of sustainable yield.

When h = 1
4
rK, there is single equilibrium at x = K/2. At that time, h reaches its maximum

sustainable yield (MSY). hMSY =max F (x) with xMSY = K/2.

When h > 1
4
rK, x(t) is decreasing at all times and approaches 0 for any initial level x(0).

This is the mathematical interpretation of overexploitation. When x(t) is below the maximum

sustainable yield due to some degree of overexploitation, the only way to recover the population

is to reduce the harvest rate h below MSY to reach the corresponding value of dx/dt in terms of

existing x(t).

We are interested in the case when r is no longer a constant. We consider the following equa-

tion:
dx

dt
= r(t)x

(
1− x

K(t)

)
− h, (18)

where r(t) represents the carrying capacity and r(t)/K(t) represents the self-limitations. Suppose

0 < α ≤ r(t) ≤ A, and 0 < ω ≤ K(t) ≤ W , then

β =
α

W
≤ r(t)

K(t)
≤ A

ω
= B (19)

From section 2, there exists a bounded solution that does not tend to zero in the past or in the

future. Figure 1 shows a particular case when K is assumed to be constant.
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In summary, the relationships between the natural growth rate and the rate of removal indicate

two facts: first, the maximum sustainable yield, the ideal condition that provides human beings the

highest productions without exploiting the environment, can only be reached when the maximum

growth rate equals the rate of removal; second, in terms of its mathematical interpretation, over-

exploitation implies a resource reduced to a level below the maximum sustainable yield that x is

below xMSY . (The definition of maximum sustainable yield can be found in [4].)

Figure 1: F (t, x) = r(t)x(1− x
K
)− h, assuming that K is constant

3.2 Optimal fishery model based on economic theories

In this section, we consider a fishing model in bioeconomics. The unit of measurement is the total

number of vessel-days per unit time. Formally, it is measured by catch-per-unit-effort (CPUE) (see

[9]). Catch-per-unit effort (CPUE) is an indirect measure of the abundance of a target species, such

as in commercial fisheries. Changes in the catch-per-unit effort are inferred to signify changes

in the target species’ true abundance. A decreasing CPUE indicates overexploitation, while an

unchanging CPUE indicates sustainable harvesting.

Since CPUE is proportional to the current stock level of the fish population (more effort, more

fish), the catch rate h can be expressed as follows:

h(t) = qEx(t),

where the constant E is the effort and the constant q represents the catchability coefficient,

which is measured by per vessel day. x(t) is the fish population at time t. The logistic growth

model for fisheries is given by:
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dx

dt
= rx

(
1− x

K

)
− qEx. (20)

Figure 2 shows when E and r are both constant. Note that the equilibrium value is x1 =

K(1− qE/r).

Figure 2: dx
dt

= (r − qE)x− r
K
x2. r and E are constant.

The sustainable yield at that time is Y = h = qEx1 = qEK(1−qE/r). In practice, sustainable

yield is positive, so qE/r is less than 1, which means E < r/q. In terms of the relationship between

E and sustainable yield, to reach the maximum sustainable yield, E and other variables satisfy with

the following equations:

qEx1 = qEK

(
1− qE

r

)
.

hMSY =
rK

4
, when E =

r

2q
, x1 =

K

2
.

This is compatible to our result in 3.1. Therefore, maximum sustainable yield is the same no

matter what interpretation h(t) has as long as the logistic growth model is applied. In the short-

term, the catch rate h(t) is constantly increasing since h(t) = qEx even though E > r(t)/2q.

However, in the long run, Y might decrease in terms of different levels of E. Specifically, if

E > r(t)/2q, overexploitation happens, so in the long run, fish population decreases.

When E and r are not constant, a new non-autonomous logistic model is generated:

dx

dt
= F (x)− qE(t)x = (r(t)− qE(t))x− r(t)

K
x2. (21)

Observe that the carrying capacity is r(t) − qE(t). It is positive and bounded whenever r(t) is

bounded, unless the sustainable yield is zero. Moreover, the fish population approaches zero.
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Before modeling the optimal fishery management, we need to switch from the biological view

to an economic one. Capital-theoretic aspects of optimal renewable-resource management aim

to concentrate on the model of capital growth and consumption [3]. Based on the satisfaction of

human needs, a resource stock is simply a particular form of capital that can either be consumed

or conserved. The distinction between a biological resource and a stock of traditional capital, such

as machines, is the mechanism of growth. The biological resources grow naturally but traditional

capital can only increase through human effort. One fundamental economic theory is that the

maximum profit is obtained under the condition of the marginal revenue is equal to the marginal

cost. This profit maximization theory still works for common-property resources such as fishery.

Sometimes the exploitation of common-property resources is uncontrolled. However, the fact

is that most resources are controlled by authorities partially because of some economic reasons.

The Gorden-Schaefer model (Figure 3) explicitly explains these economic reasons:

Figure 3: Gorden-Schaefer model. The intersection is the equilibrium E∞.

TR = pY (E), where p is the price of fish. TR is usually called total sustainable revenue,

proportional to E. TC = cE is total sustainable cost, where c is constant. Equilibrium value E∞

exists when TR = TC, then in terms of Eq. (16) and TR− TC = pqEx− cE = 0, we get

E∞ =
r

q

(
1− c

pqK

)
(22)

E∞ is called bionomic equilibrium since it combines both biological and economic theories. The

corresponding stock level x∞ = c/pq. An economic interpretation of overexploitation is when

TR < TC. This is why common-property resources are controlled to reach the maximum profit.
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However, purely focusing on the TR-TC relationship still causes economic inefficiency. Be-

cause of the advanced technology, the cost of fishing reduces greatly so that an increasing number

of people go to the fishery industry and an excessive level of effort is being utilized. Cheap cost

causes economic overfishing. Recall Eq. (22). When c > pqK, fishing effort approaches zero,

which means that fishing cost is high. It is realistic for some fish species that there are no com-

mercial fishery for them because their market value is far lower than the expense of catching them.

When pqK/2 < c < pqK, economic overfishing does not occur, and E∞ is lower than EMSY

under this condition. When 0 < c < pqK/2, there exists the economic overfishing. At this time,

E∞ > EMSY . This is what usually happens in reality.

Since the bionomic equilibrium level of E∞ is inefficient, how can the optimum effort level

and the optimum sustainable yield be achieved? One method to achieve the optimum level is to

maximize TR−TC. However, both the economic and biological processes are dynamic. One static

situation cannot be kept in one level. An alternative way is to reduce the level of fishing effort. In

terms of Y = qEx, the immediate impact on Y is to decrease, then ultimately, sustainable yield

increases to achieve the maximum Y . Fishing effort is smoothly decreasing before reaching the

maximum value. Stock level x = c/pq, so before achieving maximum sustainable yield, the stock

level keeps constant. After the short-term, since Y increases and E keeps constant, x smoothly

increases in terms of the relationship between Y and qEx.

Rather than maximize TR − TC, reducing the fishing effort to achieve maximum sustainable

effort is more practical and reasonable. The effective way to reduce the fishing effort is to increase

the cost of fishing, such as imposing a fishing tax. Then fewer people participate, total fishing

effort decreases, and the sustainable yield increases to its maximum.

3.3 Non-autonomous optimal fishery model

The value of a common-property resource is the maximum present value under the consideration

of expected future revenue. Natural resource stocks have productive potential in the future and

unregulated exploitation disregards future productivity. That is the economic aspect of preventing

overexploitation [6].

Given a P value of the reserved fishing resource, its value increases exponentially according

to the economic theorem. Assume δ = ln(1 + i) and i represents the interest rate of the value of
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Figure 4: Bionomic equilibrium level E∞ corresponding to different levels of TC.The intersections

of TC2 and TR, and TC3 and TR indicate the situation of overexploitation since they are at the

right side of the equilibrium point.

fishing resource, then

Future value = Pe(δt)

Present value = Pe(−δt), (23)

where δ is the instantaneous annual rate of discount. Discount value and interest value is

synonymous when future payments are discounted or when present payments are compounded.

Then the total present value (PV) of a sequence of payments P0, P1, ..., PN ,due in years 0, 1, ...,

N , is

PV =
N∑

K=0

PK

(1 + i)K

In terms of an econometric concept, if the present value is a continuous time-stream of revenues

P (t) from zero to T , then

PV =

T∫
0

P (t)e−δtdt

This present value interpretation will be applied later in the non-autonomous optimal fishery

model. Recall that the natural growth model in the previous section was given by:

dx

dt
= F (x)− h(t), t � 0,
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where h is associated with two variables, x = x(t) and E = E(t). Denote h = aEαxβ and

a, α, and β are all positive constants [6]. For mathematical reasons, set α = 1 so that E is linear

in the optimization model. Replace axβ with G(x) and h = G(x)E. Since x is positive, G(x) is

non-zero. Suppose the price P of fish is constant, and the cost of a unit of effort is also constant.

Then the revenue of an input of effort E 
 t is

R
 t = R(x,E)
 t

= [p− c(x)]h
 t

where c(x) = c/G(x).

A unit harvest (h
 t = 1) causes a cost

cE 
 t =
c

G(x)
h
 t = c(x)h
 t = c(x)

Therefore, c(x) is defined as the unit harvesting cost when the population level is x. As men-

tioned before, the optimal model is to maximize the present value under consideration the future

value. The objective is transformed mathematically by finding the maximum of

PV =

∞∫
0

e−δtR(x,E)dt

=

∞∫
0

e−δt{p− c[x(t)]}h(t)dt, (24)

with the constraint that x(t) � 0 and h(t) � 0.

Substitute h(t) = F (x)− dx/dt into Eq. (24), we get

PV =

∞∫
0

e−δt{p− c[x(t)]}[F (x)− dx

dt
]dt (25)

Assume x = x∗, which is defined as the optimal equilibrium population level:

F ′(x∗)− c′(x∗)F (x∗)
p− c(x∗)

= δ (26)
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where F (x∗) is logistic growth model, c(x∗) is the unit harvesting cost when the population

level is x∗, and P is the price of fish. Most-rapid approach aims to achieve x∗ from any level. Use

h∗(t) that drives the population x = x(t) toward x∗ as rapidly as possible:

h∗(t) =

⎧⎪⎨
⎪⎩
hmax if x > x∗

F (x∗) if x = x∗

0 if x < x∗.

One assumption is that economic parameters remain constant, such as price. The non-autonomous

model for x∗ = x∗(t) is:

F ′(x∗)− c′(x∗)F (x∗)
p− c(x∗)

= δ
dp
dt

p(t)− c(x∗)
(27)

The interpretation of the non-autonomous optimal fishery model is related to marginal produc-

tivity of capital. F (x) represents the marginal productivity of the fish population and the second

term is a modification of the standard marginal-productivity rule F (x∗) = δ, which δ is given

discount rate. The fact that when the fish population is reduced, the costs of fishing increases. It is

reasonable to expect a modification for increased population levels.

Compared to the autonomous optimal model, the additional term at the right side of Eq. (27)

is the relative rate of growth of the marginal value of the asset. When P changes, x changes

independently from logistic growth. The last concern raised from variable P is about the price

effect on the non-autonomous optimal model. When price increases, the effectiveness of value of

δ decreases since δ is discount rate, so stock level x∗ increases, which might affect the net future

revenue.

4 Conclusion

The non-autonomous logistic equation is more realistic to model resource management than the

autonomous one. However, the pure logistic equation, either non-autonomous or autonomous,

cannot depict bioeconomics comprehensively because of human intervention. Based on the lo-

gistic growth equation, the generalized non-autonomous logistic bioeconomic model presents a

simplified relationship between natural growth and rate of removal, dx/dt = F (x) − h(t). From

the fishery model, we develop the equation to optimize fishing resource management, dx/dt =
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rx(1−x/K)− qEx. From this fishery model, a new version of the logistic equation is introduced:

dx/dt = (r − qE(t))x − rx2/K, which E(t), varying from time, determines the maximum sus-

tainable yield. Besides the biological view of optimal fishery management, which is to obtain the

maximum sustainable yield, the economic aspect is to consider any biological resource as a stock,

comparable to buildings and machines. One assumption to optimize profit is that the total revenue

equals the total cost. Therefore, the revenue from fishery should be equal to the fishing effort. The

fundamental economic idea of the optimal fishing model is to maximize the present value under

the consideration of the future revenue. Combining biological and economic theories, the present

value model is revised to apply to the optimal fishery model. Since prices of fish vary from time

to time, the non-autonomous optimal fishery model considers the relationship between variable P

and stock level x∗.

In addition, there are three ways to interpret overexploitation. When exploitation is uncon-

trolled, the sustainable yield goes below the maximum value so that the fish population will ap-

proach zero. The second way is based on the revenue-cost theory. Overexploitation means more

cost than revenue since an overwhelming number of people participate in fishing and the revenue

goes lower than what it should be. The third consideration is about the present value and the fu-

ture value. If the fish resource is overexploited today, it implies the loss of future revenue. The

maximum present value is based on the protection of the future value.
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