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Abstract

Within the scientific computing community, there is a growing interest in using lower precision for-
mats, such as single and half precision, given the potential for increased speed, reduced energy, and
reduced communication costs. Mixed precision algorithms, which combine different precisions, offer a
promising avenue to balance speed and accuracy. However, the applicability of mixed precision algo-
rithms varies across different problem domains, thus requiring domain-specific investigations. This paper
addresses a gap in the domain of sparse preconditioned saddle-point problems, proposing two mixed
precision variants of the Minimal Residual (MINRES) method that vary the arithmetic and storage pre-
cision of the preconditioner solves and the matrix-vector products. Using CUDA C, these variants are
implemented and then used to make performance measurements on NVIDIA’s GeForce RTX 3070 Ti
graphics card for Maxwell and Stokes saddle-point problems. Our numerical results suggest that low
precision preconditioning is an effective optimization strategy for reducing the runtime of the MINRES
iterative solver when applied to the chosen saddle-point problems while also maintaining the desired
accuracy of the final solution.

1 Introduction

Most numerical algorithms are implemented in double precision, corresponding to a 64-bit floating-point
number format. Although double precision has benefits, there has been a growing interest in incorporating
lower precision formats, such as single, half, and even quarter precision, into numerical algorithms [10]. Much
of this interest originates from the increased speed, minimal energy usage, and reduced communication costs
that lower precision offers relative to its higher precision counterpart [10]. However, lower precision can
decrease accuracy because the fewer bits available compared to higher precision make it more susceptible to
numerical instabilities and issues like underflow and overflow [14]. As such, to strike a balance between the
speed of low precision formats and the accuracy of high precision formats, recent studies have explored mixed
precision algorithms that combine two or more precisions within their implementation [10]. One example
includes the GMRES-based iterative refinement for solving non-singular linear systems, which uses three
different precisions instead of one [6].

Although mixed precision algorithms sound appealing in theory, their usefulness highly depends on the
problem to which they are applied [10]. This implies that different problem domains will require their
own investigations on the applicability of mixed precision algorithms. Specifically, the domain of sparse
preconditioned saddle-point problems, arising in a variety of applications across computational sciences
and engineering [3], remains less explored in this context. Given that saddle-point problems can often be
expressed using a symmetric block matrix, the Minimal Residual (MINRES) method is often used as the
iterative solver for such problems [3].

To address this gap, this paper proposes two mixed precision variants of MINRES that vary the arithmetic
and storage precision of the preconditioner solves and the matrix-vector products respectively. Each of these
variants was implemented in CUDA C and then applied to the Maxwell and Stokes saddle-point problems
to obtain performance measurements on the GeForce RTX 3070 Ti graphics card. As such, the major
contributions of our work include:

• A CUDA C implementation of MINRES for solving sparse preconditioned saddle-point systems with
user-specified precisions for the arithmetic and storage of the preconditioner solves and matrix-vector
products;
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• An experimental evaluation of the GPU-based performance gains for two different mixed precision
variants of MINRES relative to a baseline variant when applied to the Maxwell and Stokes saddle-
point problems.

The remainder of this paper is organized as follows. We first provide relevant background relating to floating-
point arithmetic, saddle-point problems, and the MINRES algorithm in section 2 and summarize the relevant
literature in section 3. We then describe our CUDA C implementation of MINRES and our mixed precision
variants in section 4 before discussing our numerical experiments and results in sections 5 and 6 respectively.
We finally conclude with a summary and suggestions for future work in section 7.

2 Background

2.1 Floating-Point Arithmetic

Most current computers use the IEEE Standard for Binary Floating-Point Arithmetic, which provides binary
floating-point formats and precise rules for carrying out arithmetic on them [14]. The most recent iteration
of the standard consists of the following four floating-point number formats:

• 16-bit half precision: 1 sign bit, 10 significant bits, 5 exponent bits;

• 32-bit single precision: 1 sign bit, 23 significant bits, 8 exponent bits;

• 64-bit double precision: 1 sign bit, 52 significant bits, 11 exponent bits;

• 128-bit quadruple precision: 1 sign bit, 112 significant bits, 15 exponent bits.

An important quantity when dealing with floating-point arithmetic is the distance from 1 to the next larger
floating-point number [14]. This quantity is known as the machine epsilon ϵ and is computed as follows:

ϵ = β1−t

where t is the precision (number of significant bits including the sign bit) and β is the base of the system,
which is 2 on almost all current computers [14].

As a result of having more significant bits and thus a smaller machine epsilon, higher precision formats
can represent a larger proportion of small numbers [10]. Moreover, having more bits available enables
high precision formats to represent a wider rage of numbers than their low precision counterparts [10].
Nonetheless, the same features that allow higher precision formats to obtain higher accuracy cause them
to have reduced speed and higher energy consumption relative to their lower precision counterparts [10].
Specifically, given their reduced number of bits, numbers in lower precision formats lead to reduced data
transfer and a faster movement of data through the data hierarchy [5]. These contrasting advantages of high
precision for accuracy and low precision for computational efficiency have thus motivated the development
of mixed precision algorithms, which harness the strengths of both formats to optimize performance and
precision across various computing tasks [10].

2.2 Saddle-Point Problems

A saddle-point problem is one that can be expressed as a block 2× 2 linear system of the form[
A BT

1

B2 −C

] [
x
y

]
=

[
f
g

]
where A ∈ Rn×n and B1, B2 ∈ Rm×n and C ∈ Rm×m [3]. To be considered a saddle-point problem, the
above system needs to satisfy at least one of the conditions outlined in [3]:

1. A is symmetric A = AT
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2. The symmetric part of A is positive semidefinite

3. B1 = B2 = B

4. C is symmetric and positive semidefinite

5. C = O (the zero matrix).

The focus of this paper is on the most standard case of a saddle-point problem, which occurs when all of the
conditions above are satisfied. This results in a symmetric linear system of the form[

A BT

B O

] [
x
y

]
=

[
f
g

]
. (1)

Both the Maxwell problems, arising from electromagnetics, and the Stokes problems, arising from fluid
dynamics, can be expressed as a system satisfying the form in equation 1 and are thus used as the selected
problems for our numerical experiments.

2.3 Minimal Residual (MINRES) Method

MINRES is a Krylov subspace method based on Lanczos tridiagonalization that iteratively finds the solution
to a symmetric linear system by minimizing the 2-norm of the residual over Krylov spaces of increasing
dimensions [15]. The algorithm is a specialized version of the Generalized Minimal Residual (GMRES)
method, which also supports non-symmetric matrices. As a result of working with a symmetric system,
MINRES has constant memory usage and involves a short recurrence. Relative to the Conjugate Gradient
(CG) method, an iterative solver specialized for symmetric positive-definite systems, MINRES supports both
symmetric definite and indefinite systems but with a slightly more expensive iteration cost [15].

We outline the primary steps of the MINRES method in Algorithm 1, which starts with x0 ∈ Rk as a
vector of zeros by default, and direct interested readers to [15] for a more detailed derivation. Here, Qk is
a matrix with orthogonal columns whose column space gives an orthonormal basis for the Krylov subspace
Kk(S, b) = span{b, Sb, . . . , Sk−1b}, and T̃k is a k×k tridiagonal matrix such that QT

k+1SQk = T̃k. Note that
this transformation can be viewed as a (partial) similarity transformation that reduces the matrix S to a
tridiagonal form.

Algorithm 1 MINRES Method

Require: S is a symmetric matrix.
1: q1 = b/∥b∥
2: for k = 1, 2, 3, ... do
3: Perform step k of the Lanczos Algorithm to compute new entries for Qk and T̃k.
4: Find y minimizing ∥T̃ky − ∥b∥e1∥ where e1 is the first standard basis vector.
5: Update xk = Qky and check for convergence.
6: end for

Note that step 4 is solving the tridiagonal least squares problem minx∈Kk(S,b) ∥b− Sx∥. To see this, we first
note that:

QT
k+1b =


qT1 b
qT2 b
...

qTn+1b.


By construction from step 1, we have q1 = b/||b|| and so qTj b = 0 for any j > 1 due to the orthogonality

256



between the vectors qi and qj for i ̸= j. As a result, we see that:

∥Sxk − b∥ = ∥SQky − b∥
= ∥Qk+1T̃ky − b∥
= ∥T̃ky −QT

k+1b∥
= ∥T̃ky − ||b||e1∥

where e1 is the first standard basis vector.

In practice, the Givens rotations are used to solve the tridiagonal least squares problem in step 4 of Algorithm
1 and checking for convergence on step 5 is done by tracking an approximation to the residual norm that
only uses already computed values. As derived by the authors of the MINRES algorithm in [15], the residual
norm at the kth iteration can be approximated by:

∥r̃k∥ = β1s1s2 . . . sk

where β1 = ∥b∥ and sj is the sine entry of the jth Givens rotation for j = 1, ..., k. We refer to this
approximation as the computed residual norm throughout the rest of this paper.

3 Relevant Literature

We briefly summarize existing literature on introducing inexactness into Krylov methods through matrix
perturbations and then discuss recent efforts on implementing mixed precision variants of Krylov methods.

3.1 Inexact Krylov Methods

Inexact Krylov subspace methods are a general variant of (exact) Krylov subspace methods that introduce
some degree of perturbation into the method under consideration [17, 4, 7]. This perturbation is often
introduced through the matrix-vector products in the form:

Akv = (A+ Ek)v

where Ek is the perturbation matrix for the matrix-vector product computed at the kth iteration. The
matrix-vector perturbation is often formulated in the above manner (instead of using Akv = Av + ek) since
this formulation can be viewed as modelling the realistic scenario of having incomplete information about A
[4].

A notable observation from [17, 4, 7] is that the accuracy of the matrix-vector products can be relaxed
by letting ||Ek||2 grow using an appropriate relaxation strategy as the iterations progress without apparent
degradation of the convergence of the iterative Krylov method. The most general formulation of this re-
laxation strategy corresponds to having ||Ek||2 bounded by a value proportional to the 2-norm of the most
recent residual:

∥Ek∥2 ≤
lk

∥rk−1∥2
ε (2)

where lk is the proportionality constant of the kth iteration, and ε > 0 is the desired tolerance of the final
solution.

As an example, in the numerical experiments of [17], the authors introduce inexactness into the matrix-vector
products of the GMRES algorithm using the formulation in (2) with:

lk =
σmin(A)

m
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where σmin(A) is the smallest singular value of A and m is the maximum number of allowed iterations. 
Even though σmin(A) is expensive to compute, the authors justified this choice by their goal of confirming a 
theoretical bound. They also point out that in cases where avoiding this expensive computation is a must, 
using lk = 1 may be sufficient fo r gi ving a ro ugh ye t us eful ap proximate to  th is bo und. Si milarly, the 
authors in [4] introduce inexactness into their matrix-vector products using a similar bound but extend their 
numerical experiments to cover CG and BiCGStab in addition to GMRES.

Based on the collective results of [17, 4, 7], the major finding w as t hat K rylov m ethods a re generally 
robust to perturbations in matrix-vector products provided that the first f ew p roducts a re computed t o full 
accuracy. Nonetheless, the authors in [17] also point out that even though convergence may be achieved 
with the proposed relaxation strategies, the rate of convergence may deteriorate due to the possible loss of 
orthogonality in the Krylov vectors.

3.2 Mixed Precision Krylov Methods

The increase in hardware support for lower precision formats has motivated a transition to mixed precision 
algorithms in an effort to make the best use of computational resources [10]. The reason for this i s twofold. 
The first i s that most current GPUs can complete more l ow precision operations p er c lock cycle than high 
precision operations [5]. As an example, the NVIDIA GeForce RTX 3070 Ti graphics card has a theoretical 
floating-point operations per second (FLOPS) count of 20.31 TFLOPS for single precision and 317.4 GFLOPS 
for double precision. The second is that more low precision data can be held in caches relative to its high 
precision counterpart, and the low precision data can also be moved at a faster rate through the memory 
hierarchy as a result of the reduced amount of data to be transferred [5].

As such, recent effort h as b een p ut t owards e xploring m ixed p recision v ariants o f e xisting a lgorithms as 
outlined in [10]. One notable example includes the work done in [6] that proposed an iterative refinement 
algorithm based on GMRES preconditioned by LU factors (GMRES-IR) that uses three precisions for solving 
nonsingular linear systems of the form Ax = b. In this work, the authors used single precision as their working 
precision, computed their LU factors in half precision, calculated the residual at each step in double precision, 
and showed that it is still possible for the system to be solved to full single-precision accuracy. Similar results 
were obtained in the work done in [11] that used low precision Cholesky factors as preconditioners in GMRES-
IR and CG methods and the work done in [8] that adaptively changed the computation precision of the inner 
products performed in GMRES based on derived thresholds.

Most of the mixed precision works discussed above were simulated on CPUs, which offer l imited t o no 
special hardware support for low precision operations. As a result, the findings o f t hese works f ocused on 
the convergence properties of mixed precision algorithms as opposed to the actual performance gains. More 
recently, some explorations have been done on the GPU-based performance gains of mixed precision Krylov 
methods, with most works focusing on the GMRES and preconditioned conjugate gradient (PCG) methods 
[2, 1]. To the best of our knowledge, little to no exploration has been done on introducing mixed precision 
arithmetic into the preconditioned MINRES algorithm, with a focus on its applications to sparse saddle-
point problems. Our work aims to fill t his g ap by i nvestigating m ixed p recision p reconditioned MINRES 
in the context of sparse saddle-point problems and leads us to introduce inexactness through low precision 
operations into the three block matrices outlined in equation 1. We specifically carry out our exploration on 
a GPU and obtain performance measurements that would allow us to experimentally verify the performance 
gains associated with the use of low precision operations within numerical algorithms.

4 Implementation

We use the latest preconditioned MINRES implementation provided by Stanford’s Systems Optimization 
Laboratory in [13] as a reference framework and implement our mixed precision variants of MINRES in 
CUDA C as further outlined in the following sections. We provide the pseudocode for the main iteration of 
our implementation (excluding the required set-up) in Algorithm 2.
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Algorithm 2 Preconditioned MINRES iteration supporting mixed precision operations

Require: User-specified matrix-vector product precision um and preconditioning precision up.
1: while i ≤ itnlim do
2: s← 1

β
3: v ← s ∗ y

4: y ←
[
A B′

B 0

]
v ▷ Perform matrix-vector product in precision um

5: if i ≥ 2 then
6: y ← − β

βprev
r1 + y

7: end if

8: α← v · y
9: y ← −α

β r2 + y
10: r1 ← r2
11: r2 ← y

12: y ←
[
M1 0
0 M2

]
\r2 ▷ Perform preconditioning in precision up

13: βprev ← β
14: β ← √r2 · y

15: ϵprev ← ϵ ▷ Apply previous rotation
16: δ ← cs ∗ d̄+ sn ∗ α
17: ḡ ← sn ∗ d̄− cs ∗ α
18: ϵ← sn ∗ β
19: d̄← −cs ∗ β

20: γ ←
√

ḡ2 + β2 ▷ Compute next plane rotation
21: γ ← max(γ, ϵ)
22: cs← ḡ

γ

23: sn← β
γ

24: ϕ← cs ∗ ϕ̄
25: ϕ̄← sn ∗ ϕ̄

26: w1 ← w2 ▷ Update x and the computed rnorm
27: w2 ← w
28: w ← (v − ϵprev ∗ w1 − δ ∗ w2) ∗ 1

γ
29: x← x+ ϕ ∗ w
30: rnorm← ϕ̄

31:

32: if rnorm ≤ ||b||∗rtol then ▷ Check stopping condition against the computed rnorm

33: rnormk ← ||b−
[
A B′

B 0

]
x||

34: if rnormk ≤ ||b||∗rtol0 then ▷ Check stopping condition against the actual rnorm
35: break
36: else
37: rtol ← rtol/10
38: end if
39: end if

40: end while
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We specifically stay consistent with the latest implementation in [13] and implement a split-preconditioning
strategy along with direct preconditioner solves. Thus, we precompute the full Cholesky factors of each
preconditioner (i.e., M1 and M2) and store the preconditioner via these factors. We then use these factors
to perform lower and upper triangular solves in order to directly perform our preconditioner solves. Faster
procedures may be used in practice for these preconditioner solves, such as using incomplete Cholesky factors
instead of full Cholesky factors, but we leave this as future work.

Further note that Algorithm 2 primarily tracks the computed residual norm of the preconditioned system
in order to minimize the number of matrix-vector products that computing the true residual would require.
However, once the computed residual norm of the preconditioned system satisfies the stopping condition
(line 32), the true residual is computed and the stopping condition is checked once again (line 34) to ensure
that the final solution truly satisfies the user-specified accuracy. If the true residual does not satisfy the
stopping condition, the tolerance is scaled down by a factor of 10 (line 37), and the algorithm continues
to perform more MINRES iterations until the stopping condition is satisfied once again. This convergence
scheme is the same as what is implemented in [13] and is kept in our implementation to ensure consistency.

Although the majority of our implementation is consistent with the latest implementation in [13], one
difference is that we have a single stopping condition rather than multiple different ones. This choice was
made in an effort to better understand the effects of mixed precision operations on the convergence of
MINRES across our selected saddle-point problems.

4.1 CUDA C Implementation

Although MATLAB is a commonly used software within the numerical linear algebra community, it has
its limitations when exploring mixed precision algorithms, especially when dealing with sparse matrices.
Currently, MATLAB only supports double precision sparse matrices and does not support its single precision
counterparts. As a result, one is forced to convert a sparse matrix to full format, which can then be stored
in single precision for mixed precision schemes. This conversion to a full formatted matrix has significant
impacts on performance, especially for large problems. As such, we took the latest implementation of
MINRES in [13] as a reference and implemented a CUDA C version of the algorithm, which allowed us to
store our low precision matrices in sparse format and make all of our performance measurements on a GeForce
RTX 3070 Ti graphics cards. Moreover, we maintain our CUDA C implementation as an open-source project
for others to use for further investigations.

4.2 Mixed Precision Variants

Observing the steps in Algorithm 2, we note that the two most expensive operations are the matrix-vector
products (line 4) and the preconditioner solves (line 12). As such, we decided to lower the precision of these
two operations with the hopes of making performance gains while maintaining the desired user-specified
accuracy in our final solution. This resulted in us investigating the following baseline variant along with two
mixed precision variants of MINRES:

• Baseline: Double precision preconditioner solves and double precision matrix-vector products.

• Variant 1: Single precision preconditioner solves and double precision matrix-vector products.

• Variant 2: Double precision preconditioner solves and single precision matrix-vector products.

For the single precision preconditioner solves that are a part of Variant 1, we use single precision copies 
of matrices M1 and M2 (line 12) so that the overall computation is performed in that precision. We then 
cast the computed value to double precision to ensure that the remainder of the algorithm is performed in 
double precision. Similarly, for the single precision matrix-vector products that are a part of Variant 2, we 
use single precision copies of matrices A and B (line 4) so that the overall computation is performed in that 
precision and then cast the computed value to double precision.
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Table 1: Metadata on the Maxwell and Stokes saddle-point problems used in our numerical experi-
ments.

Problem Name Size Dimensions of A Size of B

Maxwell 1 1,985 1,504 × 1,504 481 × 1504

Maxwell 2 8,065 6,080 × 6,080 1,985 × 6,080

Maxwell 3 32,513 24,448 × 24,448 8,065 × 24,448

Stokes 1 2,946 2,178 × 2,178 768 × 2,178

Stokes 2 11,522 8,450 × 8,450 3,072 × 8,450

Stokes 3 45,579 33,282 × 33,282 12,288 × 33,282

Note that Variant 2 must store both single precision and double precision copies of matrices A and B. This
arises from the need to compute the actual residual to double precision accuracy on Line 33. In contrast,
this requirement does not apply to the single precision preconditioner solves, which enables us to only store
single precision copies of matrices M1 and M2.

5 Numerical Experiments

Our numerical experiments were executed with our CUDA C implementation of MINRES on an NVIDIA
GeForce RTX 3070 Ti graphics card. We focused on two classes of problems, Maxwell and Stokes, and made
performance measurements for three problems of varying sizes for each class. We provide the metadata on
the dimensionality of our chosen Maxwell and Stokes problems in table 1 and the sparsity patterns of our
selected problems in appendix A.1.

The chosen Maxwell problems arise from finite element discretization of the mixed formulation of the time-
harmonic Maxwell equations in lossless media with perfectly conducting boundaries, with the problem deriva-
tion being further described in [9]. We use the proposed block diagonal preconditioner in [9] to precondition
our Maxwell saddle-point systems:

P =

[
A+M 0

0 L

]

where A is the discrete curl-curl operator, M is the mass matrix, and L is the scalar Laplacian. We also
use the MATLAB code provided by one of the co-authors in [9], to generate the Maxwell matrices and
preconditioners.

The chosen Stokes problems arise from a classic fluid dynamics test problem, known as cavity-driven flow.
As described in [12], this problem is a model of the flow in a square cavity with the lid moving from left to
right, with different choices of the nonzero horizontal velocity resulting in different computational models.
Our selected problems specifically focus on the regularized variant with non-uniform streamlines and Q2-P1
discretization. We used the Incompressible Flow & Iterative Solver Software (IFISS) to generate the Stokes
matrices and preconditioners [16], with the block diagonal preconditioner being of the form:

P =

[
Ã 0
0 Q

]
where Ã is an approximation to A represented by its incomplete Cholesky factors and Q is the mass matrix.
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Table 2: CUDA C performance measurements for the executions of the baseline, Variant 1, and
Variant 2 of MINRES across three Maxwell and three Stokes saddle-point problems of varying sizes,
with the reported measurements reflecting the number of iterations and the time (averaged across
five runs) taken by each scenario to converge to a final solution with a tolerance of 10−6.

Problem
Name

Size
Baseline

# Iterations
Variant 1

# Iterations
Variant 2

# Iterations

Baseline
Avg Time

(s)

Variant 1
Avg Time

(s)

Variant 2
Avg Time

(s)

Maxwell 1 1,985 4 5 — 8.54e-03 5.46e-03 —

Maxwell 2 8,065 4 5 — 4.20e-02 2.85e-02 —

Maxwell 3 32,513 4 5 — 3.32e-01 2.22e-01 —

Stokes 1 2,946 59 59 59 3.44e-02 2.37e-02 3.36e-02

Stokes 2 11,522 92 93 93 1.12e-01 7.87e-02 1.11e-01

Stokes 3 45,570 196 197 198 5.51e-01 4.03e-01 5.45e-01

6 Results and Discussion

6.1 Low Precision Preconditioning

We first compare the results between the baseline variant and Variant 1, which performed the preconditioner 
solves in single precision. Observing the measurements in table 2, we note that the baseline variant and 
Variant 1 took a similar number of iterations to converge, with Variant 1 sometimes taking one more iteration 
than the baseline. On the other hand, Variant 1 always took less time than the baseline, resulting in speedup 
factors between 1.3-1.6, as shown in table 3.

We also provide the convergence plots comparing the trends in the relative residual of the preconditioned 
system between the baseline variant and Variant 1 across all test problems in figure 1 . For t he Maxwell 
problems, the baseline variant and Variant 1 start with overlapping relative residuals that diverge near the 
final f ew i terations. For t he S tokes p roblems, t he baseline variant and Variant 1  have overlapping relative 
residuals for all the iterations at the graphical scale. Furthermore, note that Stokes 3 continued performing 
more MINRES iterations even after reaching a tolerance of 1e-06. This is a byproduct of the fact that our 
MINRES implementation tracks the computed relative residual but also checks the true relative residual once 
the computed value satisfies the user-specified to lerance. As  was the case with Stokes 3,  if  the true residual 
does not satisfy the stopping condition, the tolerance is scaled down by a factor of 10 and the algorithm 
continues performing more MINRES iterations until the stopping condition is satisfied once again.

The numerical results above suggest that low precision preconditioning is indeed an effective optimization 
strategy for reducing the overall runtime of the MINRES iterative solver without sacrificing t he desired 
accuracy of the final s olution. T his o bservation c an b e r easoned b y n oting t hat t he p reconditioner itself 
acts as an approximation to the inverse matrix and that the error introduced by this approximation is likely 
to be more significant t han t he e rror i ntroduced by u sing l ow p recision a rithmetic. We f urther n ote that 
these results obtained with Variant 1 also extend to cases where a smaller tolerance is set by the user. We 
specifically t ried t olerances o f t he f orm 1 e-k f or k  i n [ -10, - 7] a nd s till o bserved c onvergence a nd speedup 
across all of our test problems. As an example, when running Maxwell 3 with a tolerance of 1e-10, a speedup 
of 1.34 was obtained.

6.2 Low Precision Matrix-Vector Products

We now compare the results between the baseline variant and Variant 2, which performed the matrix-vector 
products in single precision. For the Maxwell problems, none of the executions of Variant 2 converged, with 
the actual relative residual plateauing at approximately 3.0e-05, 1.0e-04, and 5.0e-04 for problems 1 through 
3 respectively. In contrast, for the Stokes problems, executions of Variant 2 did indeed converge and often 
took the same number of iterations as the baseline. However, as shown in table 3, the speedup gained from
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Table 3: Speedup factors for Variant 1 and Variant 2 relative to the baseline across all Maxwell and
Stokes test problems. Note that Variant 2 does not have speedup factors for the Maxwell problems
since none of the executions converged.

Problem Name Variant 1 Speedup Variant 2 Speedup

Maxwell 1 1.56 —

Maxwell 2 1.48 —

Maxwell 3 1.49 —

Stokes 1 1.45 1.02

Stokes 2 1.42 1.01

Stokes 3 1.37 1.01

Variant 2 is relatively negligible, suggesting that the switch to single precision matrix-vector products does 
not offer much performance gains.

For the sake of comparison, we also provide the convergence plots comparing the trends in the relative residual 
of the preconditioned system between the baseline variant and Variant 2 across the Maxwell and Stokes 
problems in figure 1 . Note that the Maxwell problems continued performing MINRES i terations even after 
the computed relative residual satisfied t he t olerance o f 1 e-06. This o ccurred b ecause our implementation 
checks both the computed and true relative residuals, with the latter failing to meet the tolerance. When 
the true residual does not satisfy the stopping condition, the tolerance is reduced by a factor of 10, and the 
algorithm continues. In the case of the Maxwell problems, the true residual never met the tolerance, leading 
us to conclude that none of the executions of Variant 2 converged for these problems.

The absence of convergence in some executions of Variant 2 may initially seem unexpected, but existing 
numerical experiments and the relevant literature discussed in Section 3 indicate that these results are not 
surprising. In fact, the loss of orthogonality in the Krylov basis vectors is a characteristic of all Krylov 
methods implemented in finite precision a rithmetic. This loss of orthogonality occurs in a ll Krylov methods 
implemented in finite p recision a rithmetic, a nd w hile i t i mpacts c onvergence i n s ome c ases, i t d oes not 
necessarily do so in others.

Previous conjectures regarding the loss of orthogonality, such as those from the GPU-based experiments by 
[2, 1], align with this understanding. In [2], the authors examined the effects of storing the diagonals of the 
preconditioner in different precisions and observed that applying the preconditioner at lower precisions could 
lead to a loss of orthogonality in the Krylov vectors. Similarly, in [1], the authors stored Krylov vectors 
computed by the GMRES algorithm in different p recisions, while p erforming a ll a rithmetic o perations in 
double precision. They noted that the orthogonality of the Krylov basis vectors degraded when stored in 
lower precision formats, although this degradation is an inherent aspect of all Krylov methods in finite 
precision arithmetic and not just a consequence of using low precision formats.

The literature, including [17] and [4], further discusses that inexact Krylov subspace methods may exhibit 
a lack of convergence due to this loss of orthogonality. This could explain why the relative residual for the 
Maxwell problems plateaued at a value larger than the user-specified t olerance, t hus l eading Variant 2’s 
executions of the Maxwell problems to not satisfy the bound specified i n e quation 2  f rom S ection 3 .1 and 
not converge. Regardless, both [17] and [4] also suggest that it is possible to introduce inexactness into 
the matrix-vector products in Krylov subspace methods while still achieving convergence, provided that the 
orthogonality loss is appropriately managed.

A key observation from [17] and [4] is that the amount of inexactness introduced into a matrix-vector product 
is inversely proportional to the norm of the computed residual, as highlighted by the formulation in equation 
2. This suggests that the accuracy of the matrix-vector products can be relaxed in later iterations so that 
the specified b ound i s s atisfied, wi th [4 ] emphasizing th at th e fir st few  Kry lov vec tors mus t be computed 
with full accuracy. We further explore this idea in the following subsection.
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Figure 1: Convergence plots tracking the trajectory of the computed relative residual of the pre-
condtioned system between the baseline and Variants 1 and 2 across all test problems. The dashed
horizontal line in each plot indicates the user-specified tolerance for the final solution (1e-06). Note
that none of the executions of Variant 2 for the Maxwell problems converged because the true rela-
tive residual failed to meet the user-specified tolerance.

6.3 Adaptive Precision Matrix-Vector Products

Although both [17] and [4] increased the inexactness in their matrix-vector products through a perturbation 
matrix, we believe that these results can also be extended to the inexactness that is introduced by performing
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the matrix-vector products in lower precision. To numerically confirm this, we implemented an adaptive
version of Variant 2 that performed the matrix-vector products of the first two MINRES iterations in double
precision and the products of the remaining iterations in single precision. This adaptive scheme for the
Maxwell problems was developed through trial and error, but more flexible approaches that are applicable
to a broader range of problems can also be implemented. For instance, one could design an adaptive scheme
that dynamically selects the precision for each iteration to best satisfy the bound specified in equation 2
from Section 3.1, as is similarly done in the numerical experiments of [8]. We leave further exploration of
such adaptive schemes as future work.

We applied our adaptive scheme to the Maxwell problems with the corresponding convergence plots being
provided in figure 2. In contrast to the original version of Variant 2, the Maxwell problems did indeed
converge with the adaptive version of Variant 2, confirming their need to perform the first few matrix-vector
products to full accuracy before transitioning to a lower precision.

To verify whether the loss of orthogonality had an impact on these convergence behaviours, we also measured
the absolute value of the dot product between the two most recently computed Krylov vectors (vk and vk−1)
as a proxy measure for the loss of orthogonality. Given that the Krylov vectors are supposed to be orthogonal
in the absence of floating-point issues, a positive value of this measure indicates a loss in orthogonality. Note
that we only computed the dot product between the two most recently computed Krylov vectors (as opposed
to including all the previous Krylov vectors) since each iteration of our MINRES implementation already
computes vk−1 (line 3 in Algorithm 2) and vk (product of y from Line 12 and 1/β from line 14 in Algorithm
2). As such, no additional storage nor significant computation costs were added to our MINRES iterations
as a part of tracking this proxy measure.

We provide the trajectory plots of our proxy measure for the baseline, Variant 2, and the adaptive version
of Variant 2 across all Maxwell test problems in figure 3. As expected, we observed that the baseline and
the adaptive version of Variant 2 had similar orthogonality trajectories. In contrast, Variant 2 experienced
an oscillating behaviour and diverged from the similar trajectories of the two other variants, empirically
confirming the need to perform the first few matrix-vector products to full accuracy before transitioning to
a lower precision.

Figure 2: Convergence plots tracking the trajectory of the computed relative residual of the precon-
ditioned system between the baseline and the adaptive version of Variant 2 across all Maxwell test
problems. The dashed horizontal line in each plot indicates the user-specified tolerance for the final
solution (1e-06).
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Figure 3: Orthogonality trajectory plots tracking the (absolute value of) the dot product between
the two most recently computed Lanczos vectors (vk and vk−1) for the baseline, Variant 2, and the
adaptive version of Variant 2 across all Maxwell test problems. Note that Variant 2 never converged
and reached the maximum number of allowed iterations (500), but the trajectory plots only exhibit
the behaviour up to iteration 10.

7 Conclusion

In this paper, we proposed two mixed precision variants of MINRES for solving preconditioned sparse saddle-
point systems and implemented them in CUDA C. Our first variant (Variant 1) performed the preconditioner 
solves in single precision while our second variant (Variant 2) performed the matrix-vector products in single 
precision. We then made performance measurements for both these variants on NVIDIA’s GeForce RTX 
3070 Ti graphics card for three Maxwell and three Stokes saddle point problems of varying sizes, with our 
mixed precision results being compared against a baseline implementation that performed all operations in 
double precision.

We found that Variant 1 with single precision preconditioning obtained speedup factors ranging between 
1.3-1.6 while still obtaining a final s olution w ith a  t olerance o f 1 0−6. I n c ontrast, we d id n ot o btain sig-
nificant speedup f actors using Variant 2  with s ingle precision matrix-vector p roducts. Moreover, Variant 2 
did not even converge for any of our Maxwell problems. As suggested by the existing literature and our 
numerical experiments, this was most likely caused by the loss of orthogonality in the Krylov vectors and 
could potentially be mitigated by lowering the precision of the matrix-vector products at later iterations. 
Following this recommendation and lowering the precision of the matrix-vector products from double to 
single precision after two iterations, we indeed observed convergence using the adaptive version of Variant 2 
across all three Maxwell problems. Regardless, further investigation is required on when this transition from 
high to low precision matrix-vector products should exactly occur.

As for future work, we plan to investigate performance measurements on larger saddle-point problems in 
order to explore how the speedup factors for our mixed precision variants vary when the dimensionality of 
the system under investigation increases. In addition, we plan to investigate performance measurements 
for the same problems covered in this paper on different GPU a rchitectures i n a n e ffort to  hi ghlight how 
the specs of the underlying architectures can impact the performance gains of mixed precision algorithms. 
Finally, we also plan to extend our exploration by experimenting with different adaptive s chemes t o select 
the precision of the matrix-vector products and using incomplete Cholesky factors instead of full Cholesky 
factors for the direct preconditioner solves.
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A Appendix

A.1 Sparsity Patterns

Figure 4: Sparsity patterns of the Maxwell and Stokes saddle-point problems used in our numerical
experiments.

268


	Introduction
	Background
	Floating-Point Arithmetic
	Saddle-Point Problems
	Minimal Residual (MINRES) Method

	Relevant Literature
	Inexact Krylov Methods
	Mixed Precision Krylov Methods

	Implementation
	CUDA C Implementation
	Mixed Precision Variants

	Numerical Experiments
	Results and Discussion
	Low Precision Preconditioning
	Low Precision Matrix-Vector Products
	Adaptive Precision Matrix-Vector Products

	Conclusion
	Appendix
	Sparsity Patterns


