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Abstract. Most vehicles are transported by the rotation of wheels. The Department of Mathe-
matics and Statistics and Department of Engineering at James Madison University are interested
in developing vehicles that will be driven by the motion of legs rather than wheels. In this paper
we discuss the motion of five different legs: first, we derive the equations of motion for each leg;
second, we calculate the equations for velocity, acceleration, energy and power; third, we optimize
the motion by minimizing energies and forces. In order to obtain these results, we developed a
differential equation, solved it using the Parker-Sochacki Method and reached the optimal solution
using Maple’s minimization package.

1 Introduction

Most vehicles are transported by the rotation of wheels. Existing wheeled vehicles can only access
less than half of the Earth’s landmass. Meanwhile, animals and people can go almost anywhere
simply using their legs.

For this reason Boston Dynamics developed a rough-terrain robot called BigDog that carries
heavy loads while walking, running, and climbing. By traveling 12.8 miles without a stop to refuel,
BigDog holds a world’s record for legged vehicles. It carries 340 lbs, runs at 4 mph, climbs hiking
trails of up to 35 degree slopes, and walks in water and snow. The pictures below are the images
of BigDog [7].

Figure 1: BigDog In Action

The James Madison University (JMU) Engineering Department is interested in developing its
own vehicles that will be driven by the motion of legs rather than wheels. Determining the mo-
tion of these legs is an interesting research problem because of all the moving parts of a leg. In
this report we will focus on mathematically modeling the motion of two types of legs for different
transportation uses [6].

We provide a picture of the schematic of a robot leg and a computer generated image of an op-
timized modification of this leg (Figure 2). We will present the mathematical model of the original

1jonathansgraf@gmail.com, Towson University
2olga.stulov@gmail.com, State University of New York at New Paltz
3jim@math.jmu.edu, James Madison University, Department of Mathematics and Statistics

35Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



robot leg and the process we used to obtain the computerized robot leg. The red pivots in Figure 2
are fixed points of the legs. Therefore, the segments connected to them trace out a portion of a disk.
The remaining points move during the motion of the legs. The two curves on the computerized leg
represent the motion of the ‘foot’ and ‘knee’ as the leg moves.

Figure 2: Schematic (left) and Computerized (right) of Two Robot Leg Images

The outline of our paper will be as follows. We present an analysis of five different trans-
portation legs. In Section 2 we introduce the five legs, the transportation use of the leg and the
parametric equations for the motion of the legs. In this section we start by showing simple legs
(Sections 2.1 and 2.2) that lead to the construction of the more complex legs such as the ones
displayed in Figure 2. In Section 3 we give the velocities and accelerations of the critical points for
the motion of the legs. Finally, in Section 4 we use the results of Sections 2 and 3 to present our
optimized legs. We conclude with a summary of our results and a discussion of future research.

2 Leg Systems

We worked with Roger Thelwell [9], a professor in the Department of Mathematics at JMU, Florian
Otto [3] and Stefan Trumm [10], engineering students at Hochschule für Technik und Wirtschaft
des Saarlandes - University of Applied Sciences in Germany, to develop five legs. The basic idea was
to develop a four to six legged robot that would move using these legs. In this paper we present the
legs and mathematically analyze the legs for optimal engineering design. The design of the robot
is future work.

We only consider the motion of the leg in a vertical plane. The horizontal axis in the plane
will be the x-axis. The vertical axis in the plane will be the y-axis. Therefore, subscripts x and y
will be used to denote the coordinates of points and components of vectors in the horizontal and
vertical directions, respectively, in this plane. A rotating pivot attached to a line segment will drive
all legs. This line segment will trace out a portion of a disk.

2.1 Thelwell Leg

The first design of the leg that we worked with is shown in Figure 3 and is called the Thelwell
Leg. The four components of the leg are connected by the points labeled in Figure 3 where
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Figure 3: Thelwell Leg

• point O is a fixed point, which for simplicity we set as
the origin of our 2D coordinate system

• point C is a fixed point of the leg that is to model a ‘hip’

• point P moves

• point Q is the driving point of the system tracing out a
circle of radius OQ. It is driven by pivot O rotating at a
fixed speed and moves the ‘foot’

• point R is the ‘foot’ of the system.

The lengths of all four segments (CP, PQ, OQ, QR) are fixed.
We will denote components of the leg as follows:

• rOQ is constant and the radius of the circle traced out by Q

• rCP is constant and the radius of a partial circle traced out by P

• lPQ is the length of PQ and constant

• lQR is the length of QR and constant

• kPR =
lPQ+lQR

lPQ
is a length ratio used to simplify notation later.

In order to parametrize the motion of points P, Q and R we use the angles θ and β in Figure 3.
We use t as the parameter. Therefore,

• θ(t) - the angle between the positive x-axis and the radius OQ and is given

• β(t) - the angle between the positive x-axis and the radius CP and is determined by θ(t).

The x and y coordinates of the points in terms of these two angles and the origin are given in Table
1.4

Point x coordinate y coordinate

O 0 0

C x0 = −rCP y0 = lPQ
P Cx + rCP cos(β(t)) Cy + rCP sin(β(t))

Q rOQ cos(θ(t)) rOQ sin(θ(t))

R Px + kPR(Qx − Px) Py + kPR(Qy − Py)

Table 1: The Coordinates of the Thelwell Leg

We assume the angle θ is given by

θ(t) =
vt

rOQ
,

where v is a given constant speed of the driving point Q, moving around the circle centered at O,
and t is the unit of time.

4Note: Cx and Cy are the x and y coordinates of point C, respectively. The similar notation is applied to the rest
of the points as well.
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Solving for angle β:
Since PQ is a fixed length, we first solve for β0 = β(0). Using the Pythagorean Theorem

(Cx + rCP cos(β0)− rOQ)2 + (Cy + rCP sin(β0))
2 = (lPQ)2.

This quadratic equation generates two solutions for β0. We select from these the physically correct
value by taking the value between −π

2 and π
2 as this satisfies the physical constraint of the leg

system.
Since for all t, β solves this equation, we had to develop a method to obtain the physically

correct solution for β(t). To do this, we differentiated this equation with β0 replaced by β(t).
Ordinary differential equations (ODEs) of our form have a unique solution [1] as will be outlined
later. Therefore, β(t) is determined by the correct β0 from this differential equation. We used
Maple to derive the IV ODE as

dβ (t)

dt
=
rOQ

(
dθ(t)
dt

)
(Cx sin (θ (t)) + rCP cos (β (t)) sin (θ (t)))− Cy cos (θ (t))− rCP sin (β (t)) cos (θ (t))

rCP (Cx sin (β (t))− rOQ cos (θ (t)) sin (β (t))− cos (β (t)) Cy + cos (β (t)) sin (θ (t)) rOQ)
.

This IV ODE is best solved numerically. To do so we apply the Parker-Sochacki Method (PSM)
[4]. The PSM is a modified Picard Iteration algorithm used to solve systems of IV ODEs. The
PSM produces the numerical solution as piecewise Maclaurin polynomials to a chosen degree over
a chosen time step (interval). The coefficients in the Maclaurin polynomial can be either algebraic
or numeric. We demonstrate the PSM implementation step by step for our IV ODE.5

The first step is to convert the IV ODE to an equivalent polynomial system of IV ODEs by
making auxiliary substitutions. In our case, we make the following eight substitutions

y1 = β(t)
y2 = sin(β(t))
y3 = cos(β(t))
y4 = 1

y8
y5 = sin(θ(t))
y6 = cos(θ(t))
y7 = θ(t)
y8 = rCP [Cx sin(β(t))− rOQ cos(θ(t)) sin(β(t))− Cy cos(β(t)) + rOQ sin(θ(t)) cos(β(t))].

Technically, we could have done only seven substitutions putting the fourth and eighth equa-
tions together. However, using our eight substitutions gives a system that is less computationally
intensive.

The second step is to take the derivative of each substitution with respect to time
y′1 = β′(t) = rOQ· y′7(Cx· y5 + rCP · y3· y5 − Cy· y6 − rCP · y2· y6)y4
y′2 = y3·β′(t) = y3· y′1
y′3 = −y2·β′(t) = −y2· y′1
y′4 = −y24· y′8
y′5 = y6· θ′(t) = y6· y′7
y′6 = −y5· θ′(t) = −y5· y′7
y′7 = θ′(t)
y′8 = rCP [Cx· y′2 − rOQ(y′6· y2 + y6· y′2)− Cy· y′3 + rOQ(y′5· y3 + y5· y′3)].

5See www.math.jmu.edu/ jim/picard.html for more papers and codes

38Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



In order to use the PSM we have to have initial values. We set the lengths and points in the
system to get our initial values as follows:

radius length fixed point

rOQ = 25 lPQ = 62.5 O(0, 0)
rCP = 62.5 lQR = 62.5 C(−62.5, 62.5)

Table 2: Physical Constraints of the Thelwell Leg

Finally, we iterate the PSM on this system of IV ODEs to obtain a numerical solution ap-
proximated by piecewise Maclaurin polynomials. We use Maclaurin polynomials of degree 8 and
a time step h = 0.5. The piecewise polynomials are generated to approximate β on the interval
(k− 1)h ≤ kh for a natural number k. To cover a sufficient time interval we generate 315 piecewise
polynomials that approximate β(t) for 0 ≤ t ≤ 315h (315h is approximately 50π). The polynomial
generated for the 315th iteration for the interval 314h ≤ t ≤ 315h is

β(t) ≈ 0.37129798733106637539 + 5.7659381392802695795 10−14 t8 − 2.1082423172686113233 10−12 t7−
1.2828032925851222446 10−10 t6 + 5.1253133420710030286 10−10 t5 + 2.3107023057015958192 10−7 t4

+ 0.0000037099059599078413242 t3 − 0.00047369633525551557248 t2 − 0.0085763356053177989066 t.

Figure 4 shows a plot of the numerical solution for β(t) for about four periods. Each period of the
plot was constructed by continuously connecting the 315 8th degree Maclaurin polynomials.

Figure 4: β(t)

Since we can now calculate β(t), from Table 1, we can explicitly find the coordinates for each of
the moving points in the leg system (Figure 3). The only possible issue for existence and uniqueness
in the IV ODE for β is the denominator defining β′ could be zero. However, the geometry of the
leg makes this impossible. The geometry of the leg also causes other restrictions. For the fixed
point C, we have to be careful with the coordinates. By the Triangle Inequality the coordinates of
C must satisfy

||CQ|| 6 ||CP ||+ ||PQ||, ||CR|| 6 ||CP ||+ ||PR||.
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Parameterizing the four segments of the leg, we have

OQ = (Qx· t, Qy· t)
CP = (Cx + t(Px − Cx), Cy + t(Py − Cy))
PQ = (Px + t(Qx − Px), Py + t(Qy − Py))
QR = (Qx + t(Rx −Qx), Qy + t(Ry −Qy)).

We display the paths of each point in Figure 5, determined by the parametric equations above,
where the blue curve represents the path of point P, the green circle - point Q, and the black curve
- point R, respectively, using Maple.

Figure 5: Thelwell Leg and the Paths

This example illustrates how to determine the motion of the Thelwell Leg. The black curve
represents the motion of the foot (point R). Next we consider a modification to the leg system above.

2.2 Modified Thelwell Leg

The next leg considered was a modification of the Thelwell Leg. The parts of the Thelwell Leg
were basically inverted as shown in Figure 6.

Since the modified leg uses the same segments as the Thelwell Leg, we have

• rOQ is constant (the driving wheel of the leg)

• rCP is constant and the radius of a partial circle traced out by P

• lQP is the length of QP and constant

• lPR is the length of PR and constant

• kQR =
lQP+lPR

lQP
is a length ratio used for simplicity of notation.
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Figure 6: Modified Thelwell Leg

To determine the coordinates of this leg’s points, we need
three angles: θ, α, and β, all shown in Figure 6. Angle θ has
the same definition as in the Thelwell Leg, i.e. it is the angle
between the positive x-axis and the radius OQ. Here α is the
angle between the positive x-axis and the imaginary line QC,
and β is the angle between the lines QC and PC. Recall the
following coordinates from the Thelwell Leg

Ox = 0 Cx = x0 Qx = rOQ cos(θ(t))
Oy = 0 Cy = y0 Qy = rOQ sin(θ(t))

Using the Pythagorean Theorem, we obtain the length of
the line QC to be

lQC =
√
QC2

x +QC2
y ,

where

QCx = x0 − rOQ cos(θ(t)) ; QCy = y0 − rOQ sin(θ(t)).

Knowing QC allows us to solve for angle β using the Law of Cosines

cos(β(t)) =
(rCP )2 + (lQC)2 − (lQP )2

2· lQC · rCP
.

To solve for angle α, we can simply use the slope of the line QC

tan(α(t)) =
y0 − rOQ sin(θ(t))

x0 − rOQ cos(θ(t))
.

As before, using these angles we can write the parametric equations of the coordinates for the
rest of the points

Px = x0 − rCP cos(α(t) + β(t))

Py = y0 − rCP sin(α(t) + β(t))

Rx = Qx + kQR(Px −Qx)

Ry = Qy + kQR(Py −Qy).

Eventually, having the coordinates of the points allows us to find the equations of the lines
using the parametric formulas

OQ = (Qx· t, Qy· t)
CP = (Cx + t(Px − Cx), Cy + t(Py − Cy))
QP = (Qx + t(Px −Qx), Qy + t(Py −Qy))
PR = (Px + t(Rx − Px), Py + t(Ry − Py)).

Putting these equations into Maple with the initial values from Table 3 and setting θ(t) = 13π
10 t,

we obtain the graph shown in Figure 7 for both the lines and their paths.
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Figure 7: Modified Thelwell Leg with
Paths

radius length fixed point

rOQ = 25 lPQ = 62.5 O(0, 0)
rCP = 62.5 lQR = 62.5 C(50, 0)

Table 3: Physical Constraints of the Modified Thel-
well Leg

Modifying the Thelwell Leg in this manner changes
the curve drawn by the foot (point R) as can be seen
from comparing Figure 7 to Figure 5. Inverting the path
of the foot in Figure 7 would give the ‘desired engineer’
path of the foot. Doing this leads to our next leg since the
amount of time the foot is on the ground would increase
dramatically.

2.3 Otto Leg

Florian Otto [3] was designing a leg for a four-legged human transport vehicle. His desire was to
develop a leg with a better path for the foot. That is, a foot that strikes the ground tangentially
and remains on the ground for a period of time.

This leg will be more complicated. Basically, a component is added to the Modified Thelwell
Leg. This added component will be called the ‘knee’. This knee is the quadrangle FGHI as shown
in Figure 8. The point H is the fixed point for the knee.

Figure 8: Otto Leg

Observe that the top piece of the Otto Leg (points
O, Q, C, P, and R) constitute the Modified Thelwell Leg.
Consequently, all the angles, coordinates, and equations for
lines of this particular piece are the same as the Modi-
fied Thelwell Leg’s. Therefore, we only need to parame-
terize the points composing the bottom (knee) part. The
basic information for the Otto Leg is provided in Table
4.

radius length fixed point

rCP = constant lQP = constant lGI = constant Ox = 0
lPR = constant lIJ = constant Oy = 0

rOQ = constant lFR = constant kQR =
lQP+lPR

lQP
Cx = x0

(the driving lFH = constant kRG = lFR+lFG
lFR

Cy = y0

wheel lFG = constant kJG = lGI+lIJ
lGI

Hx = x1
of the leg) lIH = constant Hy = y1

Table 4: Otto Leg Data

For angles, we will use θ, α, β, as previously defined for the Mod-
ified Thelwell Leg, and add four new angles for the knee
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• µ(t) - angle between the positive x-axis and the line RH6

• σ(t) - angle between the line RH and the line FH

• δ(t) - angle between the line FH and the line GH

• ω(t) - angle between the line GH and the line HI.

In the case that the quadrangle FGHI is a parallelogram ω = δ.
To determine the angle σ we use the Pythagorean Theorem and the Law of Cosines, just as we

did for angle β. This gives {
RHx = Hx −Rx
RHy = Hy −Ry

RH =
√
RH2

x +RH2
y

cos(σ(t)) =
(lFH)2 +RH2 − (lFR)2

2·RH· lFH
.

Angle µ can be solved either using tangent or cosine. We choose cosine to generate an angle
between 0 and π. Therefore,

cos(µ(t)) =
Rx −Hx

RH
.

Using angles µ and σ, we have that the coordinates of point F are

Fx = Hx + lFH cos(µ(t) + σ(t)) ; Fy = Hy + lFH sin(µ(t) + σ(t)).

Since points R, F, and G are all on the same line, the coordinates of the last point, G, can be
derived from the other two points and are

Gx = Rx + kRG(Fx −Rx) ; Gy = Ry + kRG(Fy −Ry).

Next, the angles δ and ω can be obtained through the Law of Cosines, since the length of line
GH is

GH =
√

(Hx −Gx)2 + (Hy −Gy)2

cos(δ(t)) =
GH2 + (lFH)2 − (lFG)2

2·GH· lFH

cos(ω(t)) =
GH2 + (lIH)2 − (lGI)

2

2·GH· lIH
.

From the fixed point H and the four angles µ, σ, δ, and ω, we derive the coordinates of point I

Ix = Hx + lIH cos(µ(t) + σ(t) + δ(t) + ω(t)) ; Iy = Hy + lIH sin(µ(t) + σ(t) + δ(t) + ω(t)).

Just as we determined the coordinates of point G through points R and F, we obtain, using G
and I, the x and y coordinates for point J to be

Jx = Gx + kJG(Ix −Gx)

Jy = Gy + kJG(Iy −Gy).

Since we derived the equations of the lines for the top part of the Otto Leg (Modified Thelwell
Leg), we only have to parameterize the knee. Figure 9 shows the paths of the points determined
by the equations in Table 5 and the initial values given in Table 6.

6We are using RH as the notation here rather than lRH because this line is not a piece of the leg. Same applies
to the line GH.
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Figure 9: Otto Leg with the Paths

line x coordinate y coordinate

RF Rx + t(Fx −Rx) Ry + t(Fy −Ry)
FG Fx + t(Gx − Fx) Fy + t(Gy − Fy)
FH Fx + t(Hx − Fx) Fy + t(Hy − Fy)
GI Gx + t(Ix −Gx) Gy + t(Iy −Gy)
IH Hx + t(Ix −Hx) Hy + t(Iy −Hy)

IJ Ix + t(Jx − Ix) Iy + t(Jy − Iy)

Table 5: The Coordinates of the Otto Leg

radius length fixed point

rOQ = 25 lQP = 62.5 lFG = 100 Ox = 0
rCP = 62.5 lPR = 62.5 lIH = 100 Oy = 0

lFR = 50 lGI = 110 Cx = 50
lFH = 110 lIJ = 220 Cy = 0

Hx = 50
Hy = −230

Table 6: Physical Constraints of the Otto Leg

2.4 Thelwell Leg and Otto Leg Bottom

An interesting idea is to connect the Otto Leg bottom (knee) to the Thelwell Leg to see how it
would influence the curve traced out by the foot. Since all the necessary equations are taken di-
rectly from Tables 1 and 5, there is no extra work needed to parameterize this leg. Figure 10 is the
diagram of the leg (on the left) and the paths (on the right) for this combination using the initial
values in Table 7.

radius length fixed point

rOQ = 20 lQP = 31.25 Ox = 0
rCP = 40 lQR = 48.75 Oy = 0

lFR = 50 Cx = −32.5
lFH = 110 Cy = 37.5
lFG = 100 Hx = 0
lIH = 100 Hy = −140
lGI = 110
lIJ = 220

Table 7: Physical Constraints of the Thelwell/Otto Leg

Comparing the Thelwell bottom curve and the curve generated by the Otto bottom (Figure 10,
on the right), one can observe that it traces out the same exact curve, but enlarged and reflected
through both the x and y axes. This foot hits the ground tangentially and remains on the ground
for a short period of time.

In addition, it can be noticed that the curves traced out by the knee and the foot of the Thelwell
Leg and Otto Leg Bottom (Figure 10, on the right) are much smoother then the ones of the Otto
Leg (Figure 9). Once the prototype of the Otto Leg was built, there was a large amount of torque
between certain angles during the rotation of the driving wheel. The sharp edges of the curves
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Figure 10: Thelwell/Otto Leg and the Paths

generated by the knee and the foot of the Otto Leg (Figure 9) might indicate the reason for the
torque while testing the prototype. This physical flaw was fixed by replacing the top part of the
Otto Leg with the Thelwell Leg.

2.5 Trumm Leg

Another design that we considered was the Trumm Leg. Trumm’s project was to develop a leg
motion vehicle that can transport heavy objects small distances. His design was based on the
motion of the legs of the millipede and the kinematic sculptures of Theo Jansen [2]. As in the Otto
Leg, the Trumm Leg has a knee (HRST in Figure 11). We note that angles QHR and UST are
always right angles independent of the angle θ that the driving wheel OP makes with the positive
x-axis.

Figure 11: Trumm Leg

The Trumm Leg has eight segments and seven pivots (H,
O, P, Q, R, S, T). The point U is the foot. We have two fixed
points, H and O, where we use O as the origin of the system.
As for the angles, we need to determine three angles: one of
which was mentioned already (θ), and whose definition stays
the same as before; the next angle to be defined is α, which is
the angle between the positive x-axis and the radius HQ; and
the last angle is β, the angle between the positive x-axis and
the length HT.

Thus, the coordinates of point P are

Px = rOP cos(θ(t)) ; Py = rOP sin(θ(t)).

Since QP is a fixed length, we can solve for α0 = α(0) from

(Hx + rHQ cos(α0)− rOP )2 + (Hy + rHQ sin(α0))
2 = (lQP )2.
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Following the same procedure as in the Thelwell Leg when solving β’s ODE, we use α0 to
determine α(t) from the following IV ODE

dα (t)

dt
=
rOP

(
dθ(t)
dt

)
(Hx sin (θ (t)) + rHQ cos (α (t)) sin (θ (t)))−Hy cos (θ (t))− rHQ sin (α (t)) cos (θ (t))

rHQ (Hx sin (α (t))− rOP cos (θ (t)) sin (α (t))− cos (α (t)) Hy + cos (α (t)) sin (θ (t)) rOP )
.

As previously, we apply the PSM and make a set of substitutions in the above differential
equation

y1 = α(t)
y2 = sin(α(t))
y3 = cos(α(t))
y4 = 1

y8
y5 = sin(θ(t))
y6 = cos(θ(t))
y7 = θ(t),
y8 = rHQ[Hx sin(α(t))− rOP cos(θ(t)) sin(α(t))−Hy cos(α(t)) + rOP sin(θ(t)) cos(α(t))].

Then take the derivative of each substitution
y′1 = α′(t) = rOP · y′7(Hx· y5 + rHQ· y3· y5 −Hy· y6 − rHQ· y2· y6)y4
y′2 = y3·α′(t) = y3· y′1
y′3 = −y2·α′(t) = −y2· y′1
y′4 = −y24· y′8
y′5 = y6· θ′(t) = y6· y′7
y′6 = −y5· θ′(t) = −y5· y′7
y′7 = θ′(t)
y′8 = rHQ[Hx· y′2 − rOP (y′6· y2 + y6· y′2)−Hy· y′3 + rOP (y′5· y3 + y5· y′3)].

Fixing the lengths and points in the Trumm Leg yields our initial values listed in Table 8. From
these we solve for α(0) and use the PSM.

radius length fixed point

rOP = 0.35 lQP = 1.75 Ox = 0
rHQ = 0.75 lTP = 1.6 Oy = 0

lST = 1.5 Hx = −1.425
lHR = 1.5 Hy = 0
lHT = 1.25
lRS = 1.25

Table 8: Physical Constraints of the Trumm Leg

We again use 8th degree Maclaurin polynomials, but with a time step of 0.0625. To cover a
sufficient time interval we generate α(t) for 0 ≤ t ≤ 36h. The 36th Maclaurin polynomial generated
is

α(t) ≈ 1.085275580− 0.7198732220 t8 + 0.5096067618 t7 + 0.5325758989 t6 − 0.1332535767 t5 − 0.5393973508 t4

+ 0.5222789003 t3 + 1.327507812 t2 − 0.7256833148 t.

The approximate solution for α(t) for one period is displayed in Figure 12.
We solve for angle β again by deriving β0 through the fixed length TP. The equation for β0 is

(Hx + lHT cos(2π − β0)− rOP )2 + (Hy + lHT sin(2π − β0))2 = (lTP )2,
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β’s IV ODE is

dβ (t)

dt
= −

rOP

(
dθ(t)
dt

)
(Hx sin (θ (t)) + cos (β (t)) sin (θ (t)) lHT )−Hy cos (θ (t)) + lHT sin (β (t)) cos (θ (t))

lHT (−Hx sin (β (t))− rOP cos (θ (t)) sin (β (t))− cos (β (t)) Hy + cos (β (t)) sin (θ (t)) rOP )

and its last Maclaurin polynomial is

β(t) ≈ 1.232624953− 0.1666075280 t8 + 0.08966140768 t7 + 0.09750440851 t6 − 0.1710913627 t5 − 0.2235884396 t4

− 0.3003720213 t3 + 0.7962797792 t2 + 0.4286716279 t.

The approximate solution for β(t) for one period is shown in Figure 13.

Figure 12: α(t) Figure 13: β(t)

The angles α and β allow us to determine the coordinates of points Q, R, and T

Qx = Hx + rHQ cos(α(t)) Qy = Hy + rHQ sin(α(t))
Rx = Hx + lHR cos(π2 + α(t)) Ry = Hy + lHR sin(π2 + α(t))
Tx = Hx + lHT cos(2π − β(t)) Ty = Hy + lHT sin(2π − β(t))

Figure 14: Trumm Leg with the
Paths

We use a linear transformation to derive the coordinates of
the last two points, S and U

Sx = Rx + (Tx −Hx) Sy = Ry + (Ty −Hy)
Ux = Sx + (Hx −Qx) Uy = Sy + (Hy −Qy)

Combining all this information, we generate the graph of
the Trumm Leg with the paths of the points and show this in
Figure 14.
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2.6 Summary

We derived the parametric equations describing the position of each moving point on five different
legs that can be used for at least two different transportation purposes. Using the properties of IV
ODEs allowed us to do this. The PSM allowed us to generate piecewise polynomials describing the
angle(s) of the motion of the important pivots. In the next section we will take advantage of this
to describe the kinematics of the motion of each of the five legs.

We also point out the interesting fact that even though θ is non-periodic and unbounded, α
and β are periodic and bounded (β in the Thelwell Leg and α and β in the Trumm Leg). In fact,
neither α or β extend an entire circle. That is, they only trace out a portion of the circle. These
two phenomena are seen in Figure 4. (The periodicity is not seen in Figures 12 and 13 because we
only show the approximate solutions for one period.) Although, the denominators defining α and
β can be zero, the geometry of the legs do not allow this. The numerators of α and β, however, are
periodically equal to zero. It is also rather easy to see from the form of the differential equations
for α or β that α′ and β′ are bounded. We present a phase portrait for β for the Thelwell Leg in
Figure 15. Also notice that the sign of θ′ determines the direction the foot will move in.

Figure 15 shows the vector field for β of the Thelwell Leg. We show solutions for β0 = −0.085
(Section 2.1), β0 = 1.5 and β0 = 3 in yellow (β0 = 3 is an example of an impossible initial condition).
The horizontal blue curve represents where β′ does not exist. The vertical blue curves are where
β′ = 0.
This figure shows that β is periodic and that β′ is bounded.

Figure 15: Phase Portrait for β of the Thelwell Leg

3 Kinetic Analysis

Since the PSM gives a polynomial in t for each interval (k − 1)h ≤ t ≤ kh, where k is a natural
number and h is a time step, and since both α and β are approximated by polynomials for t ≥ 0,
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we can differentiate the parametric equations for each moving point on any of the five legs. This
allows us to obtain accurate approximations of the velocities and accelerations of these moving
points by differentiating their corresponding parametric equations in t.

The engineers define the optimal leg for each of the five legs as the leg with the foot

• that touches the ground tangentially, implying that the velocity in the y direction is nearly
zero at this time

• that travels with a large velocity in the direction parallel to the ground while on the ground

• that strikes the ground lightly, implying that the acceleration in the y direction is nearly zero
at this time.

Sarani, Buehler, Koditschek point out that this is important for the legs in their six-legged RHEX
robot [8]. However, they do not do a mathematical analysis, but mention that it is important to
do one.

In this section we give the velocity and acceleration of the foot for each of the five legs presented
in Section 2. We use

~v = (x′, y′) = (x′(t), y′(t))

for the velocity vector of a moving point and

~a = ~v′ = (v′x, v
′
y) = (x′′(t), y′′(t))

for the acceleration vector of a moving point. Therefore, the subscript x represents horizontal
motion and the subscript y represents vertical motion.

The position, velocity and acceleration graphs of the foot for all five legs are displayed in Figures
16 - 30, where the graphs of the Thelwell foot are shown in Figure 16 - 18, Modified Thelwell foot
- 19 through 21, Otto foot - 22 to 24, Thelwell/Otto foot - 25 through 27, and finally Trumm foot
- Figures 28 - 30, respectively. Throughout this section the thinner line represents either position,
velocity, or acceleration in the x direction (horizontal motion) and the thicker line in the y direction
(vertical motion).

The graphs in Figures 16 - 18 show that the Thelwell Leg is not optimal for the engineer. That
is, when the foot strikes the ground, it does not stay on the ground.

Analyzing the velocity graph of the Modified Thelwell foot (Figure 20), it is seen that from
t ≈ 37.5 to t ≈ 116.5 the velocity in the y direction is approximately zero. This is desired because
it implies that the leg is on the ground during that time period. However, the velocity in the x
direction is not zero, it is negative, which means that the foot is moving backwards to bring the
leg forward. The only time the velocity in the x direction is positive is when the leg is in the air,
since the foot is moving clockwise. The extrema on the y velocity curve occur when the foot takes
off the ground, which is desirable.

Analysis of the Otto foot graphs are similar, since they are just the inverted figures of the
Modified Thelwell foot.

In Section 2.4 we talked about combining the Thelwell top part and the Otto bottom part
together where point J is the foot of the system. Again, in the graphs of Thelwell/Otto foot the
extrema on the y velocity curve detect the t when the foot leaves the ground and the zero velocity
shows when it strikes the ground. Meanwhile, the velocity in the x direction moves the leg forward.

Finally, the shapes of the velocity and acceleration graphs of Trumm foot are similar to the
Thelwell graphs. Thus, the analysis regarding the Thelwell Leg applies to the Trumm Leg.
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4 Optimization

The definition of the optimal leg has not been standardized. However, we discussed many physical
quantities that could be optimized to fit the engineer’s optimal foot outlined in Section 3. For
example, we looked at energy, power, force, and average power. Nevertheless, we believe that
minimizing v2y + a2y where vy is the vertical component of velocity and ay is the vertical component
of acceleration of the foot corresponds to a soft (non-rigid) initial contact between the foot and the
ground and in addition rapid movement of the foot while still on the ground, thus satisfying the
optimal leg given in Section 3.7 In this section we determine this optimal solution for the leg by
minimizing

L =
1

T

∫ T

0
(v2y + a2y)dt.

For the Modified Thelwell Leg we minimize L by finding the coordinates of C = (u, v) for the foot
(point R in Figure 7). That is,

L (u, v) =
1

T

∫ T

0
(v2Ry

+ a2Ry
)dt,

where

T =
2π · rOQ
vel

with vel = 1 for simplicity. vR and aR denote the velocity and acceleration of the foot, respectively.
We used Simpson’s rule to do the integration in Maple and used Maple’s Minimize command

within the Optimization package to find the minimum of L . We found the minimum of L to
occur at (50, 0) where Figure 31 depicts L and displays the minimum. From this we conclude that
the initial placement of the fixed point C was a good one because optimization gave us this as the
answer (refer to Table 3 and Figure 7, Section 2.2).

Next, we optimized the Otto Leg, but now we used the fixed point G (knee) in Figure 8 to
optimize the position of the fixed point H. Thus, the function L is

L (u, v) =
1

T

∫ T

0
(v2Gy

+ a2Gy
)dt,

where the definition of T is the same as above and (u, v) will be the optimized coordinates of point
H. vG and aG are the velocity and acceleration of point G, respectively.

From this L we found the optimum H to be (8.5,−207.5) instead of its original coordinates
(50,−230) as shown in Table 6, Section 2.3. Figure 32 displays the graph of L and shows its
minimum. The optimized Otto Leg and the paths are shown in Figure 33.

Notice that the path of G in the optimized Otto Leg is not smooth. Therefore, there will be a
mechanical disadvantage, which means there will be engineering difficulties mostly, as we observed
experimentally, due to large torque at this point. However, in Section 2.3 the path of G in Figure
8 is smoother. Therefore, strictly minimizing this quantity will not fully optimize the mechanical
system of the leg. Certainly, because of the PSM we have many quantities that can optimized.
However, it is not computationally possible to optimize all of them.

7This measure was developed after discussions on power, energy and mechanical disadvantage with Dorn Peterson
[5], a professor in the Department of Physics at JMU.
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Figure 31: Optimization of Thelwell Modified Leg Figure 32: Optimization of Otto Leg

Figure 33: Optimized Otto Leg

5 Conclusion

We have demonstrated that it is possible to mathematically describe the motion of the foot for
many types of legs for different transportation uses. The platform we have built allows us to math-
ematically analyze important elements of the motion of the leg. Finding the optimal leg, i.e. the
best path traced out by the foot, is a computationally intensive problem. Therefore, techniques
necessary to find quantities that can be optimized and give a quality designed leg need to be de-
termined.

We did not address the issue of putting several legs of the same kind on one vehicle. Of course,
this is also an important problem in efficient vehicular motion. The Department of Engineering at
JMU is now working on this problem because of this study.
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