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Abstract. We find analytical solutions of the Laplace equation on a rectangular domain with Dirichlet-Neumann
boundary condition type transition occurring on a side of the rectangle. The problem can be tackled
either by cutting the domain in two parts and solving the obtained coupled Laplace equations using a
Fourier series approach, or by creating a conformal mapping based on Christoffel-Schwarz and Möbius
transformations between the original domain and another rectangular domain where the solution of
the problem is less challenging. Apart from solving for the temperature field, we also compute a
coefficient, dependent only on the geometry of the domain, from which the thermal resistance of a
system with the given cross-section can be computed. We conduct an experiment to confirm the
validity of our model. Using our results from the Christoffel-Schwarz method, we derive regularity
results for the Fourier coefficients of the coupling method. We not only determine the order of decay,
but also find formulas for explicit upper bounds of the absolute value of the coefficients. These
results can be used to obtain maximum error bounds for a numerical computation considering only
a finite number of Fourier coefficients. Furthermore, we prove that the solutions obtained via the
coupling method converge to the actual solution.

Figure 1: Sketch of the original problem.

1. Introduction. The motivation behind this study was an experimental setup (created for
use in a Physics Olympiad / European Olympiad of Experimental Science problem) consisting
of a thin, hot aluminium strip between two thermally insulating plates (for a more detailed
description see Section 5), with a cross section as shown in Figure 1. It was of interest to
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Figure 2: Sketch of the transformed problem.

analytically compute the temperature distribution u(x, y) and a coefficient β quantifying the
heat loss per unit height depending only on the geometry of the system (in other words, in
terms of the lengths a, b, and c). Due to symmetry, it is possible to transform the problem
to a rectangular domain as shown in figure Figure 2 by investigating only one quarter of the
original system. Analytical solutions for the 2D Laplace equation in rectangular domains are
well-known [10], also for mixed Neumann and Dirichlet boundary conditions on different sides
of the rectangle [14, 15]. However, in our case, we are confronted with a mixed boundary
condition on parts of the same side of the rectangle (a Dirichlet condition along c and a
Neumann condition along b).

We solve the resulting problem using two different methods.
1. It is possible to separate the domain into two rectangles without a boundary condition

type transition on any side by making a horizontal cut at y = 0. We solve the
Laplace equation in both parts by separation of variables. A sequence of unknown
Fourier coefficients remains as a degree of freedom for each part. These coefficients
can be determined through continuity conditions along the cut, which involves an
infinite system of equations relating the coefficients from both parts to each other. We
approximately solve that system of equations by inverting a matrix after dropping all
but a finite number of coefficients.

2. It is possible to create a conformal mapping (consisting of Christoffel-Schwarz and
Möbius transformations) between the domain and another rectangle without a bound-
ary condition type transition on any side. In the transformed domain, the Laplace
equation has an easy solution. As the solutions of the Laplace equation are invariant
under conformal mappings, the solution in the transformed domain can be mapped
back into the original domain to obtain the solution of the original problem.
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Apart from solving for the temperature field, we also compute a coefficient, dependent
only on the geometry of the domain, from which the thermal resistance of a system with the
given cross-section can be computed. We conduct an experiment to confirm the validity of
our model.

Using our results from the Christoffel-Schwarz method, we derive regularity results for the
Fourier coefficients of the coupling method. We do not only determine the order of decay, but
also prove formulas for explicit upper bounds of the absolute value of the coefficients. These
results can be used to obtain maximum error bounds for a numerical computation considering
only a finite amount of Fourier coefficients.

The paper is organized as follows: The Fourier solution is computed in Section 2, and the
Christoffel-Schwarz solution is derived in Section 3. In Section 4, the regularity results are
obtained, and in Section 5, the experimental results are described and compared to theoretical
calculations. Section 6 shows our conclusions.

2. Coupled Fourier series solution of the PDE. The Laplace equation will be solved
separately for y < 0 and y ≥ 0, with the boundary condition along the x-axis being that both
the temperature and its y-derivative must be continuous (therefore these Laplace equations
are referred to as coupled, as the boundary condition of each equation cannot be written down
explicitly without knowing the particular solution of the other one).

We use an approach based on Fourier series to write down formulas for u(x, y) for y < 0
and y ≥ 0 in terms of unknown coefficients An and Bn. The two equations enforcing continuity
and continuity of the y-derivative along the x-axis may be written down in matrix form when
viewing the coefficient sequences as vectors. The solution of the system of equations (for An
and Bn) can now be obtained by inverting a matrix.

Let u(x, y) be the temperature at location (x, y). Define ux = ∂u
∂x , uy = ∂u

∂y , uxx = ∂2u
∂x2

and uyy = ∂2u
∂y2

. The Laplace equation can be written down as

(2.1) uxx + uyy = 0

2.1. Coupling Laplace equations. The solution (for the setup in Figure 2) needs to fulfill
the following boundary conditions:

1. u = 0 on the right side
2. u = 0 on the top side
3. u = τ along c
4. ux = 0 along b
5. uy = 0 along a
6. u is continuous along the x-axis
7. uy is continuous along the x-axis

It is known that there exists a unique solution for the boundary value problem formed by
these conditions and equation (2.1) which is harmonic [9] [5, pp. 92-94] [13].

It should also be explained why the continuity of u and uy along the x-axis imply that 
the Laplace equation is fulfilled along the x-axis (and are thus these conditions are sufficient). 
The intuition behind Lemma 2.2 is the following: To be able to glue two separately obtained 
solutions together at y = 0 and reach an equilibrium, the temperature of the pieces that
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are glued together must be the same (meaning u is continuous) and the heat flux out of the
lower part through a certain segment of the boundary at y = 0 must match the heat flux
into the upper part due to energy conservation (meaning uy is continuous). However, this
does not automatically ensure that the Laplace equation is also satisfied along the x-axis. An
additional condition is required.

Lemma 2.1. Let I be an interval, x0 ∈ I and f : I → R be a continuous function which is
differentiable on I \ {x0}. If limx→x0 f

′(x) exists, then f is differentiable at x0 and f ′(x0) =
limx→x0 f

′(x).

Proof. We need to show the limit

lim
x→x0

f(x)− f(x0)

x− x0
exists and compute its value. For x > x0, according to the mean value theorem there exists
xm with x0 < xm < x and

f ′(xm) =
f(x)− f(x0)

x− x0
.

The proof for the case x < x0 proceeds analogously. Because x → x0 implies xm → x0, the
statement follows.

Lemma 2.2. Given a piecewise combination of two separately obtained solutions for the
Laplace equation for y ≤ 0 and y ≥ 0 which are twice continuously differentiable on (0, a) ×
(−c, 0] and (0, a)× [0, b), respectively, and satisfy the boundary conditions 1-5, conditions 6-7
hold if and only if the Laplace equation is satisfied along the x-axis (and therefore on the whole
domain).

Proof.
⇐ This is obvious because the Laplace equation requires its solutions to be twice differentiable
with respect to space in the interior of the domain.
⇒ The solutions retrieved for the separate areas y ≥ 0 and y ≤ 0 are real and harmonic in the
interior, therefore they are also real-analytic in the interior automatically [3, p. 19]. However,
the additionally given condition that the solutions are in C2 for y ≥ 0 and y ≤ 0, respectively,
is required such that it is also ensured they are smooth enough on the boundary y = 0. Then
uxx(x, y) is continuous and in particular continuous with respect to y for the two separate
regions y ∈ [0, b], y ∈ [−c, 0]. Because u(x, y) is continuous on the x-axis with respect to
y, the functions u(x, 0) (and their x-derivatives of arbitrary order) provided by the generally
different solutions for y ∈ [0, b] and y ∈ [−c, 0] must match. So uxx(x, y) may not have a
discontinuity at y = 0 and therefore must be continuous on the whole domain y ∈ [−c, b]. We
may write

lim
y↗0

uxx(x, y) = lim
y↘0

uxx(x, y) = uxx(x, 0),

or, in combination with equation (2.1)

lim
y↗0

uyy(x, y) = lim
y↘0

uyy(x, y) = lim
y→0

uyy(x, y) = −uxx(x, 0).

Applying Lemma 2.1 for the continuous function uy in dependence of y (while keeping x
constant), it follows that

uyy(x, 0) = −uxx(x, 0),
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which is the Laplace equation at y = 0 as desired.

2.2. Separation of variables. Using separation of variables, the following formulas are
found [10] to satisfy all boundary conditions for arbitrary coefficients An, Bn apart from the
conditions of continuity and continuity of the y-derivative on the common boundary. For
y ≥ 0:

(2.2) u(x, y) =

∞∑
n=0

An cos

(
π

(
n+

1

2

)
x

a

)
sinh

(
π
(
n+ 1

2

)
(y − b)

a

)
.

For y < 0:

(2.3) u(x, y) = −τ x− a
a

+
∞∑
n=1

Bn sin
(πnx

a

)
cosh

(
πn(y + c)

a

)
.

2.3. Continuity conditions. We find that the conditions of continuity and continuity of
the y-derivative hold if and only if

(2.4) B∗m = − 8

π
coth

(πmc
a

) ∞∑
n=0

A∗n
(
n+ 1

2

)
(2n+ 1)2 − 4m2

,

as well as

(2.5) A∗m = − 8

π
coth

(
π
(
m+ 1

2

)
b

a

)(
1

π(2m+ 1)2
−
∞∑
n=1

B∗nn

(2m+ 1)2 − 4n2

)
,

where

(2.6) A∗m =
Am
τ

cosh

(
π
(
m+ 1

2

)
b

a

)
,

(2.7) B∗m =
Bm
τ

cosh
(πmc

a

)
.

We obtain this result by imposing the two conditions (2.8) and (2.9):

(2.8)

0 =

∞∑
n=0

An cos

(
π

(
n+

1

2

)
x

a

)
sinh

(
π
(
n+ 1

2

)
b

a

)
−

τ
x− a
a

+
∞∑
n=1

Bn sin
(πnx

a

)
cosh

(πnc
a

)
,

(2.9)

0 =−
∞∑
n=0

An

(
n+

1

2

)
cos

(
π

(
n+

1

2

)
x

a

)
cosh

(
π
(
n+ 1

2

)
b

a

)
+

∞∑
n=1

Bnn sin
(πnx

a

)
sinh

(πnc
a

)
.

To solve the problem, one needs to find the value of the coefficients An, Bn such that equations 
(2.8) and (2.9) are fulfilled for all x ∈ [0, a]. This system of equations can be rewritten
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using (generalized) Fourier series, due to the orthogonality properties of sine and cosine. Let
m,n ∈ N:

(2.10)

∫ a

0
sin
(πnx

a

)
sin
(πmx

a

)
dx =


a

2
if m = n

0 if m 6= n,

(2.11)

∫ a

0
cos

(
π
(
n+ 1

2

)
x

a

)
cos

(
π
(
m+ 1

2

)
x

a

)
dx =


a

2
if m = n

0 if m 6= n.

Applying the orthogonality property (2.11) to equation (2.8), and equivalently applying (2.10)
to (2.9), we obtain (2.5) and (2.4), as desired.

To find a solution, equation (2.4) is written in matrix form after replacing ∞ with a large
number N−1 to find an approximate solution. The convergence of this method will be proven
in Subsection 4.2. The resulting matrix equations are

(2.12) ~B∗ = M1
~A∗,

(2.13) ~A∗ = M2
~B∗ = M−1~v,

where ~A∗, ~B∗ ∈ RN and M1 ∈ MatN×N (R) and

(2.14) M1,ij :=

−
8

π
coth

(
πic

a

) (
j + 1

2

)
(2j + 1)2 − 4i2

if i > 0

0 if i = 0,

(2.15) M2 =

(
8

π

j

(2i+ 1)2 − 4j2
coth

(
π
(
i+ 1

2

)
b

a

))
∈ MatN×N (R),

(2.16) ~v =

(
8

π2(2i+ 1)2
coth

(
π
(
i+ 1

2

)
b

a

))
∈ RN ,

(2.17) M = M2M1 − I.

The closed form expression for M is

(2.18) Mik = −δik −
64

π2

N−1∑
j=1

j
(
k + 1

2

)
coth

(
π(i+ 1

2)b
a

)
coth

(
πjc
a

)
((2i+ 1)2 − 4j2) ((2k + 1)2 − 4j2)

.

Lemma 2.3. The matrix M ∈ MatN×N (R) as defined by equation (2.18) using an arbitrary
N ≥ 2 is invertible for all possible parameter values a, b, c ∈ R>0.

Proof. We may decompose the matrix as M = −D−1(I + S)D where D and S are a
diagonal and a symmetric matrix, respectively, defined by

Dii =

√
2i+ 1

2 coth
(
π
(
i+ 1

2

)
b
a

) ,
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Sik =
N−1∑
j=1

djCjiCjk,

where

dj =
64

π2
j coth

(
πjc

a

)
,

Cji =
1

(2i+ 1)2 − 4j2

√(
i+

1

2

)
coth

(
π

(
i+

1

2

)
b

a

)
.

For an arbitrary vector z ∈ RN ,

zTSz =
N−1∑
i=0

N−1∑
k=0

N−1∑
j=1

djCjiCkizizk =
N−1∑
j=1

dj

(
N−1∑
i=0

Cjizi

)2

≥ 0.

Therefore, S is positive semi-definite. As I is a positive definite matrix, I + S is positive
definite and thus invertible, which implies M is invertible.

Figure 3 shows the temperature field given by equations (2.3) and (2.2) with coefficients
determined by exact numerical inversion of the matrix defined by (2.18) (using N = 100) after
transforming the problem back to the original statement shown in Figure 1.

Figure 3: Temperature field derived by matrix inversion (a = 2.1cm, b = 1.25cm, c = 0.75cm,
τ = 50K, N = 100).

2.4. Heat flux. We want to compute a coefficient β depending only on the geometry of
the setup and quantifying the heat flux ∆P through the heated side (parallel to the yz-plane
and containing the line c) in a setup as shown in Figure 2 extended to a height ∆z along the
z-axis. Define

(2.19) ~w =

(
tanh

(
πic

a

))
∈ RN ,
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and

(2.20) β =
∆P

λτ∆z
,

where λ is the thermal conductivity. We claim that equation (2.21) holds, where 〈·, ·〉 is the
standard scalar product.

(2.21) β =
c

a
− 〈M1M

−1~v, ~w〉.

The heat flux through the area dA can be computed by

(2.22) ∆P =
∂Q

∂t
= −λ

∫
dy∆zux(0, y),

where

(2.23) ux =
∂u

∂x
= −τ

a
+
π

a

∞∑
n=1

Bnn cos
(πnx

a

)
cosh

(
πn(y + c)

a

)
.

Therefore,

(2.24)

∆P = −λ∆z

∫ 0

−c

(
−τ
a

+
π

a

∞∑
n=1

Bnn cosh

(
πn(y + c)

a

))
dy

=
λ∆z

a

(
τc− a

∞∑
n=1

Bn sinh
(πnc
a

))
.

Combining equations (2.19), (2.24), (2.12), (2.20) and (2.7), equation (2.21) follows.

3. Christoffel-Schwarz solution of the PDE. Using the Christoffel-Schwarz mapping, we
can transform the problem from Figure 2 to a simpler domain where it is easier to find the
solution. The idea is the following:

1. Shift the rectangle from Figure 2 so that the bottom side lies on the horizontal axis
and it is centered around the vertical axis. Scale it appropriately and transform it into
the upper half plane with vertices −1/k, −1, 1, 1/k where 0 < k < 1 using the inverse
of the Christoffel-Schwarz mapping. The point on the left edge of the rectangle where
the boundary condition changes gets mapped to −1/m in the upper half plane, where
k < m < 1.

2. Map the quadruple of points −1/k, −1/m, −1, 1 to −1/l, −1, 1, 1/l where 0 < l < 1
using a Möbius transformation. It must be assured that the line segments between
each pair of points also gets mapped to the correct corresponding line segment in the
transformed domain to preserve the order of boundary conditions. Note that the point
−1/k gets mapped to some unknown place right of 1/l, but this does not matter as
the boundary condition does not change at this vertix.

3. Map the quadruple of points −1/l, −1, 1, 1/l to another rectangle in the upper half
plane.

4. Solve the Laplace equation in the new rectangle (which is extremely easy, we will show
that the solution in this domain is an affine linear function).
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(a) (b)

(c) (d)

Figure 4: Idea for the Christoffel-Schwarz solution method: The original domain is shown
in (a), which is mapped to the upper half plane (b) using an inverse Christoffel-Schwarz
transformation; a Möbius transformation is used to reposition the vertices in the upper half
plane (c), and after applying a Christoffel-Schwarz transformation, we receive rectangle (d).
Here, 0 and τ denote Dirichlet boundary conditions (the temperature is 0 or τ , respectively).
N denotes a Neumann boundary condition (the derivative of the temperature is 0).

3.1. Inverse Christoffel-Schwarz transformation. To determine the correct scaling factor,
we need to solve the system of equations (3.1), (3.2)

(3.1)

(3.2)

a = 2αK(k),

b + c = αK ′(k), 
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where K is the complete elliptic integral of the first kind, and K ′(k) = K(
√

1− k2). This
gives an expression which allows k to be determined from the given half-period ratio

(3.3)
ω2

ω1
= i

K ′(k)

K(k)
= i

b+ c

2a
.

We also get

(3.4) α =
2

aK(k)
.

The inverse of the Christoffel-Schwarz mapping from the scaled rectangle with vertices−a/(2α)+
i(b + c)/α, −a/(2α), a/(2α), a/(2α) + i(b + c)/α to the upper half plane with the vertices
being mapped to −1/k, −1, 1, 1/k is the Jacobi elliptic function sn(z, k). [8]

3.2. Möbius transformation.

Lemma 3.1. Let z1, z2, z3, z4 be a quadruple of distinct points on the real axis with z1 <
z2 < z3 < z4. There exists a unique Möbius transformation which maps this quadruple to
−1/l, −1, 1, 1/l where 0 < l < 1.

Proof. Define the cross-ratio as

(z1, z2; z3, z4) =
z1 − z3
z2 − z3

· z2 − z4
z1 − z4

.

The map

h(z) =
z1 − z3
z2 − z3

· z2 − z
z1 − z

sends z1 to ∞, z2 to 0, z3 to 1, and z4 to (z1, z2; z3, z4). Therefore, two quadruples of points
with the same cross-ratio can be mapped to each other with a Möbius map. The converse is
also true, because cross-ratio is preserved by z 7→ az, z 7→ z + b, and z 7→ 1

z , which generate
all Möbius transformations. It remains to find the quadruples 1,−1; 1/l,−1/l with given
cross-ratio. Define

r = (z3, z2; z4, z1) =
z3 − z4
z2 − z4

· z2 − z1
z3 − z1

.

Due to the given order of zi, we have 0 < r < 1. For a Möbius transformation to exist, it is
needed that

r = (1,−1; 1/l,−1/l) =
1− 1/l

−1− 1/l
· −1 + 1/l

1 + 1/l
=

(
1− l
1 + l

)2

.

The solutions of this equation are

l =
1−
√
r

1 +
√
r

and its reciprocal. [16] As 0 < l < 1, the former is the correct (and unique) solution.

Lemma 3.2. Let M(z) = (Az+B)/(Cz+D) be a Möbius transform which maps the triple
of real points (z1, z2, z3) to another triple of real points (w1, w2, w3). Then A, B, C and D
can be chosen to be real.

Proof. According to the proof of Lemma 3.1, two points can be matched to each other if
the cross-ratios match:

(z − z3)(z1 − z2)
(z − z3)(z1 − z3)

=
(w − w3)(w1 − w2)

(w − w3)(w1 − w3)
.
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This yields

M(z) = w =
w2(w1 − w3)(z − z3)(z1 − z2)− w3(w1 − w2)(z − z2)(z1 − z3)

(w1 − w2)(z − z2)(z1 − z3)− (w1 − w3)(z − z3)(z1 − z2)
,

which is a Möbius transformation of the given form, with real values of A, B, C and D.

Lemma 3.3. Let M(z) = (Az +B)/(Cz +D) be a Möbius transform, where A, B, C and
D are real. If AD −BC > 0, then M maps the upper half plane to the upper half plane.

Proof.

ImM(z) = Im
(Az +B)(Cz +D)

|Cz +D|2
= Im

ADz +BCz

|Cz +D|2
=
AD −BC
|Cz +D|2

Im z.

For z ∈ H, this is positive if and only if AD−BC > 0. Therefore, M(H) ⊆ H. As taking the
inverse of M does not change the sign of AD−BC, we can also state M−1(H) ⊆ H. Together,
this implies M(H) = H.

Lemma 3.4. Let C∗ = C ∪ ∞̃ be the extended complex plane and R∗ = R ∪ ∞̃ (∞̃ denotes
complex infinity). There exist a unique Möbius transformation M : C∗ → C∗ and a unique
real number l which fulfill the following conditions:

1. M(−1/k) = −1/l, M(−1/m) = −1, M(−1) = 1, M(1) = 1/l
2. M(R∗) = R∗
3. 0 < l < 1
4. M([−1/k,−1/m]) = [−1/l,−1], M([−1/m,−1]) = [−1, 1], M([−1, 1]) = [1, 1/l].

Proof. The first and third conditions are satisfied due to Lemma 3.1. The fourth condition
follows as a consequence of the first and second conditions: If the inversion (M(zinv) = ∞)
happens for some zinv ∈ [−1/k, 1], the order of the vertices also cannot be preserved, which
contradicts the first condition. It remains to be shown that M maps the upper half plane to
the upper half plane and the extended real axis to the extended real axis. The latter follows
directly from Lemma 3.2, which states that the Möbius transform M is real. This implies
that also the first condition of Lemma 3.3 is satisfied. Now we need to differentiate between
two cases. Let M(z) = (Az + B)/(Cz + D). If C = 0, then M is a linear function with real
parameters. AD = AD − BC must be positive, because the four points on the real axis are
mapped by M in an order-preserving way. This concludes the proof for C = 0. If C 6= 0,
we can normalize the map to C = 1 without changing it. Solving the system of equations
M(−1/k) = −1/l, M(−1) = 1, M(1) = 1/l, we get

A =
3lk − l + k + 1

l(lk + l + 3k − 1)

B =
−lk + 3l + k + 1

l(lk + l + 3k − 1)

D =
lk + l − k + 3

lk + l + 3k − 1

AD −BC =
4(1− k2)(1− l2)
l (kl + 3k + l − 1)2

.

Therefore, AD −BC > 0 also for C 6= 0.
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Lemma 3.4 proves the existence and uniqueness of the desired Möbius transformation for
all possible parameter values a, b, c. We can compute an explicit expression by solving the
system of equations given in the theorem. Plugging in the expressions for A, B, D already
computed as a part of its proof into the remaining equation M(−1/m) = −1 yields

(3.5)
−3lk + l − k +m (−lk + 3l + k + 1)− 1

l (−lk − l − 3k +m (lk + l − k + 3) + 1)
= −1,

which can be reformulated as a quadratic equation with the solutions

(3.6) l =
km+ 3k − 3m− 2

√
2
√

(1− k)(m− k)(m+ 1)− 1

(k + 1)(m− 1)
,

(3.7) l =
km+ 3k − 3m+ 2

√
2
√

(1− k)(m− k)(m+ 1)− 1

(k + 1)(m− 1)
,

under the assumption that the denominator in (3.5) is not zero when l is one of the given
solutions. This assumption is true: If, for any x, the equation

(3.8)
Ax+B

Cx+D
= −1

holds, and the denominator Cx+D equals zero, (3.8) may be rewritten as Ax+B = Cx+D =
0, which is impossible to be satisfied as AD −BC > 0.

The given solutions for l are reciprocals of each other, therefore, one of them is the correct
solution 0 < l < 1, and the other one is greater than 1. The denominator is always negative
as m < 1. This means the second solution is the smaller and thus the correct one.

3.3. Christoffel-Schwarz transformation. The Christoffel-Schwarz mapping from the up-
per half plane with vertices −1/l, −1, 1, 1/l to a rectangle located in the upper half plane
(with the bottom side on the real axis and horizontally centered around the imaginary axis)
is given by an incomplete elliptic integral of the first kind [2, p. 589]

(3.9) f(z, l) =

∫ z

0

dt√
1− t2

√
1− l2t2

.

The horizontal and vertical side lengths of the rectangle are again 2K(l) and K ′(l), re-
spectively. [8]

3.4. Solution in the transformed rectangle. In the transformed rectangle, the boundary
conditions are:

1. A Neumann condition ∂u/∂x = 0 along both vertical sides
2. A Dirichlet condition u = τ along the bottom side
3. A Dirichlet condition u = 0 along the top side

The solution in this domain is simply given by

(3.10) u(w) = τ

(
1− Imw

K ′(l)

)
.

Expressing this in terms of the coordinate z = x+ iy in the original domain, we get

(3.11) u(z) = τ

(
1− 1

K ′(l)
Im f

(
Asn(z/α, k) +B

sn(z/α, k) +D
, l

))
.

The result looks visually the same as when derived using the Fourier method (Figure 3).

32



A LAPLACE EQUATION ON A RECTANGLE WITH MIXED BOUNDARY CONDITIONS

3.5. Heat flux. Equation (3.11) allows to compute expressions for the heat flux and
thermal resistance. Applying (2.22), we get

(3.12)

∆P = −λ∆z

∫ c

0
ux(−a/2 + iy)dy

=
λ∆zτ

K ′(l)

∫ c

0

∂

∂x
Im f

(
Asn((−a/2 + iy)/α, k) +B

sn((−a/2 + iy)/α, k) +D
, l

)
dy

= −λ∆zτ

K ′(l)

∫ c

0

∂

∂y
Re f

(
Asn((−a/2 + iy)/α, k) +B

sn((−a/2 + iy)/α, k) +D
, l

)
dy

=
λ∆zτ

K ′(l)
(Re f (1, l)− Re f (−1, l))

=
2λ∆zτK(l)

K ′(l)
.

Here we have used the second Cauchy-Riemann equation to express the x-derivative in terms of
an y-derivative. Note that this result shows that the heat flux in the original and transformed
domain are equal. Using (2.20), an explicit expression for β can also be computed:

(3.13) β =
2K(l)

K ′(l)
.

4. Regularity results.

4.1. Fourier coefficient bounds. The goal of this section is to find upper bounds for the
coefficients An in equation (2.2) (the same can be done for the coefficients Bn in equation
(2.3), the computation is similar).

Note that we will use the complex notation u(z) for the temperature field as defined
in Section 3. First of all, define the interior domain of the untransformed rectangle in the
complex plane to be

(4.1) Ω =
{
z ∈ C | 0 < Im(z) < b+ c,−a

2
< Re(z) <

a

2

}
,

and the z0-shifted domain as

(4.2) Ω0 = Ω− z0.

Furthermore, define

(4.3) Ân = −An sinh

(
π
(
n+ 1

2

)
b

a

)
to express the temperature along the horizontal line which interesects the point of boundary
condition change as

(4.4) u(x+ z0) =

∞∑
n=0

Ân cos

(
π

(
n+

1

2

)
x

a

)
,
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where z0 = −a/2 + ic. The coefficients Ân are given by

(4.5)

Ân =
2

a

∫ a

0
u(x+ z0) cos

(
π

(
n+

1

2

)
x

a

)
dx

= − 4

π(2n+ 1)

∫ a

0
ux(x+ z0) sin

(
π

(
n+

1

2

)
x

a

)
dx

=
4τ

K ′(l)π(2n+ 1)
Im

∫ a

0

v(x)√
x

sin

(
π

(
n+

1

2

)
x

a

)
dx

after applying integration by parts, plugging in expression (3.11) and defining

(4.6) v(x) =
g′(x+ z0)

√
x√

1− g2(x+ z0)
√

1− l2g2(x+ z0)

and

(4.7) g(z) = M(sn(z, k)) =
Asn(z/α, k) +B

sn(z/α, k) +D
.

Lemma 4.1. There exists an open set Ω′0 containing the line segment Ω0∩R such that v(x)
is holomorphic on Ω′0.

Proof. We will construct the open set as Ω′0 = Ω0 ∪Bε(0)∪Bε(a). It is obvious that v(x)
is holomorphic on Ω0 because the Christoffel-Schwarz and Möbius transformations are per
definition holomorphic in the interior of the domain, and

√
x has a holomorphic extension on

the complex plane with a branch cut along the negative real axis. It remains to be shown that
v(x) is holomorphic on Bε(0) and Bε(a).

To investigate the behavior at x = 0, write

v(x) =

√
x√

g(x+ z0) + 1
q(x) =

(
g(x+ z0)− g(z0)

x

)−1/2
q(x),

where

q(x) =
g′(x+ z0)√

1− g(x+ z0)
√

1− lg(x+ z0)
√

1 + lg(x+ z0)

is holomorphic in a neighbourhood Bε(0), as its singularities correspond to the vertices of
the rectangle that are not located at x = 0 or otherwise sn(z/α, k) + D = 0, which is the
inversion point of the Möbius transformation that must be somewhere on the upper or right
side of the (untransformed) rectangle (the Jacobi elliptic sine is not necessarily injective on
the extended domain Ω′0, but the above reasoning shows that sn(z0/α, k) 6= −D, and we can
use the continuity of the Jacobi elliptic sine at z0 to shrink ε until −D /∈ sn(Bε(0)/α, k)). g(z)
does not have other non-removable singularities, as the Jacobi elliptic sine is meromorphic
and therefore g(z)→ A at its singularities. Define

p(x) =
g(x+ z0)− g(z0)

x
,

which can be extended holomorphically by setting p(0) = g′(z0) (using the Riemann extension
theorem). Note that 0 /∈ p(Bε(0)) because

g′(z) =
AD −B

α (sn(z/α, k) +D)2
cn(z/α, k)dn(z/α, k)

=
AD −B

α (sn(z/α, k) +D)2

√
1− sn2(z/α, k)

√
1− k2sn2(z/α, k),
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which cannot be zero as AD−B > 0 according to Lemma 3.4, and the Jacobi elliptic cosine and
delta function are only zero at the vertices of the (untransformed) rectangle (another continuity
argument can be used to resolve issues with non-injectivity on the extended domain). Then
v(x) = q(x)/

√
p(x) is holomorphic on Bε(0).

At x = a, the denominator of v(x) cannot have a zero as z0 + a is not a special point
coinciding with any of the vertices of the transformed rectangle. However, we need to show
that g′(x + z0) does not have a singularity at x = a. Define h(z) = 1/g(z), which is possible
as g(z) is nonzero in a neighbourhood of z0 + a (the zero of g(z) lies on the left, hot side of
the untransformed rectangle; another continuity argument can be used to resolve issues with
non-injectivity on the extended domain). We can write

g′(x+ z0) =
−h′(x+ z0)

h2(x+ z0)
,

and

h′(z) = − AD −B
α (Asn(z/α, k) +B)2

cn(z/α, k)dn(z/α, k)

= − AD −B
α (Asn(z/α, k) +B)2

√
1− sn2(z/α, k)

√
1− k2sn2(z/α, k).

sn(z/α, k) has no singularities in a neighbourhood of z0 + a, as the only singular point in Ω is
at the center of the upper boundary of the (untransformed) rectangle. Asn(z/α, k) + B 6= 0
in a neighbourhood of z0 + a: This follows from 0 /∈ g(Bε(z0 + a)), which was proved above.
Asn(z/α, k) +B = 0 for a given value of z necessarily implies g(z) = 0, as its numerator is 0
and the denominator cannot also be 0 (otherwise, AD−B = 0 which is a contradiction to M
being a well-defined Möbius transformation). We can conclude that h′(z) is holomorphic on
Bε(z0 + a). We may write

v(x) =
−h′(x+ z0)

√
x√

h2(x+ z0)− 1
√
h2(x+ z0)− l2

.

The denominator of the above expression is nonzero when x in a neighbourhood of a, as
limx→a h(x+z0) /∈ {1,−1, l,−l}. This follows from the previously stated fact that limx→a g(x+
z0) /∈ {1,−1, 1/l,−1/l}. The square root has a holomorphic extension in the investigated
neighbourhood, as a 6= 0. It follows that v(x) is holomorphic on Bε(a). This concludes the
proof.

We can expand (4.5) to

(4.8) Ân =
4τ

K ′(l)π(2n+ 1)
(Im I1 + Im I2) ,

where we define

(4.9) I1 =

∫ a

0

v(0)√
x

sin

(
π

(
n+

1

2

)
x

a

)
dx,

and

(4.10) I2 =

∫ a

0

v(x)− v(0)

x

√
x sin

(
π

(
n+

1

2

)
x

a

)
dx.
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I1 can be expressed in terms of a Fresnel integral by using the substitution x = at2/(2n+ 1),
which yields

(4.11) I1 = v(0)

√
4a

2n+ 1
S(
√

2n+ 1).

Lemma 4.2. The Fresnel integral S(x) =
∫ x
0 sin

(
π
2 t

2
)
dt is nonnegative for nonnegative real

x, converges as x→∞, and the sequence of local maxima is decreasing monotonously.

Proof. Using the substitution z = t2, the Fresnel sine integral may be rewritten as

S(x) =
1

2

∫ x2

0

sin
(
π
2 z
)

√
z

dz.

The integral may be split up at the roots of the sine in the numerator (z = 2n where n ∈ N).
These points correspond to the local extrema of S(x), as the sign changes of the integrand
occur here. Due to the periodicity of the sine, the absolute value of the numerator behaves like
the same function in all these intervals. As the denominator is increasing with z in a strictly
monotonous way, the sequence of the absolute integral values on each interval is decreasing
in a strictly monotonous way. Using the Leibniz criterion, we can conclude that limx→∞ S(x)
converges. The integral is always nonnegative, as the sine is nonnegative on the first interval.

As a corollary of Lemma 4.2, the global maximum of |S(x)| is the value of the first local
maximum, which is Smax ≈ 0.713972 [2, p. 329]. This result gives us a simplified upper bound
for |I1|:

(4.12) |I1| ≤ |v(0)|
√

4a

2n+ 1
Smax.

We utilize integration by parts to evaluate I2,

(4.13) I2 =
2a

π(2n+ 1)

∫ a

0
w′(x) cos

(
π

(
n+

1

2

)
x

a

)
dx,

where

(4.14) w(x) =
v(x)− v(0)√

x
.

Note that the derivative w′(x) is well-defined and bounded for x ∈ [0, a] due to Lemma 4.1.
We may express it as

(4.15) w′(x) =
v′(x)√
x
− 1

2
√
x

v(x)− v(0)

x
.

Plugging (4.15) into (4.13) and taking the absolute value to find an upper bound for I2, we
obtain

(4.16) |I2| ≤
2a

π(2n+ 1)

∫ a

0

∣∣∣∣v′(x)√
x
− 1

2
√
x

v(x)− v(0)

x

∣∣∣∣dx,
which can be further approximated to

(4.17)

|I2| ≤
3a

π(2n+ 1)
sup

∣∣v′(x)
∣∣ ∫ a

0

∣∣∣∣ 1√
x

∣∣∣∣dx
=

6a
√
a

π(2n+ 1)
sup

∣∣v′(x)
∣∣
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using the mean value theorem. Combining (4.8) with (4.12) and (4.17), we present the final
regularity result for the Fourier coefficients Ân:

(4.18)
∣∣∣Ân∣∣∣ ≤ 8τ

√
a

K ′(l)π

(
|v(0)|Smax
(2n+ 1)3/2

+
3a sup |v′(x)|
π(2n+ 1)2

)
.

Similarly, we define

(4.19) B̂n = Bn cosh
(πnc
a

)
,

so that

(4.20) u(x+ z0)− τ
(

1− x

a

)
=
∞∑
n=1

B̂n sin
(πnx

a

)
.

The coefficients B̂n are given by

(4.21)

B̂n =
2

a

∫ a

0

(
u(x+ z0)− τ

(
1− x

a

))
sin
(πnx

a

)
dx

=
2

πn

∫ a

0

(
ux(x+ z0)−

τ

a

)
cos
(πnx

a

)
dx

=
2τ

K ′(l)πn
Im

∫ a

0

v(x)√
x

cos
(πnx

a

)
dx

after applying integration by parts and dropping the constant slope term (the antiderivative
of the cosine is the sine which vanishes on both endpoints). Using the same techniques as for
Ân to evaluate the result, we get

(4.22)
∣∣∣B̂n∣∣∣ ≤ 4τ

√
a

K ′(l)π

(
|v(0)|Cmax√

2n3/2
+

3a sup |v′(x)|
2πn2

)
.

Cmax is an upper bound of the absolute value of the Fresnel cosine integral. As per Lemma 4.3,
we may use the value of the first local maximum Cmax = 0.779893. [2, p. 329]

Lemma 4.3. The Fresnel integral S(x) =
∫ x
0 cos

(
π
2 t

2
)
dt is nonnegative for nonnegative real

x, converges as x→∞, and the sequence of local maxima is decreasing monotonously.

Proof. Using the substitution z = t2, the Fresnel cosine integral may be rewritten as

S(x) =
1

2

∫ x2

0

cos
(
π
2 z
)

√
z

dz.

The statments can be proved like in Lemma 4.2 using the Leibniz criterion. The only difference 
is that the first interval has only half the length as the other intervals, which makes an 
additional check necessary to show nonnegativity. Confirming that the first local minimum is 
positive [2, p. 329] concludes the proof.

The regularity results agree well with the numerically measured n−3/2 coefficient decay 
for large n.

We are not aware of a simple way to evaluate sup |v′(x)| (on the interval [0, a]) explicitly. 
However, we know that this function is analytic due to Lemma 4.1, which guarantees the 
existence of the supremum. It is computationally cheap to compute the extremal values of a 
well-behaving function like v(x) using numerical methods.
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4.2. Error bounds and convergence for coupled Laplace equations. As we have deter-
mined not only the shape of the coefficient decay, but also upper bounds for all involved
constants, the results can be used to find an upper bound of the error of a numerically com-
puted vector of N Fourier coefficients. Let A∞n and B∞n be the Fourier coefficients An and Bn
of the exact solution. According to Lemma 2.2, A∞n and B∞n satisfy (2.5) and (2.4). Equations
(2.13) and (2.12) can be corrected by adding the infinite sum remainders which were lost when
using an N ×N matrix only, such that they are exactly equivalent to (2.5) and (2.4). Define
column vectors ~∆A, ~∆B ∈ RN :

(4.23)
(
~∆B

)
i

=

0 if i = 0

− 8
π coth

(
πic
a

)∑∞
n=N

A∞n (n+ 1
2)

(2n+1)2−4i2 if i 6= 0,

(4.24)
(
~∆A

)
i

=
8

π
coth

(
π
(
i+ 1

2

)
b

a

) ∞∑
n=N

B∞n n

(2i+ 1)2 − 4n2
.

Denote with ~A∞

∣∣∣∣
RN

and ~B∞

∣∣∣∣
RN

the vectors containing the first N elements of A∞ and B∞,

respectively. Correct (2.13) and (2.12) to

(4.25) ~A∞

∣∣∣∣
RN

= −~v +M2
~B∞

∣∣∣∣
RN

+M2
~∆A,

(4.26) ~B∞

∣∣∣∣
RN

= M1
~A∞

∣∣∣∣
RN

+M1
~∆B.

The coefficients with indices up to N−1 of A∞n and B∞n must be a solution of these equations.

Solving for ~A∞

∣∣∣∣
RN

, we may write

(4.27) ~A∞

∣∣∣∣
RN

= −~v +M2

(
M1

~A∞

∣∣∣∣
RN

+M1
~∆B

)
+M2

~∆A.

According to Lemma 2.3, M is invertible, so the vector ~A∞ of coefficients A∞n with indices up
to N − 1 is the only solution.

(4.28) ~A∞

∣∣∣∣
RN

= M−1~v −M−1M2M1
~∆B −M−1M2

~∆A.

(4.29) ‖ ~A∞
∣∣∣∣
RN

−A∗‖∞ ≤ ‖M−1~∆B‖∞ + ‖~∆B‖∞ + ‖M−1M2
~∆A‖∞.

To investigate the order of convergence, first of all assume |An| ≤ CAn
−3/2 and |Bn| ≤

CBn
−3/2, where CA and CB are constants which can be determined using the results of the

previous section. To find ‖~∆B‖∞, we approximate

(4.30)
∣∣∣(~∆B)i

∣∣∣ ≤ 2CA
π

coth
(πc
a

) ∞∑
n=N

1√
n(n2 − i2)

.

38



A LAPLACE EQUATION ON A RECTANGLE WITH MIXED BOUNDARY CONDITIONS

We differentiate now between two cases. Without loss of generality, assume that N is even. If

i < N/2, we can conclude that
∣∣∣(~∆B)i

∣∣∣ = O(N−3/2) using the integral criterion. Otherwise,

we evaluate the sum using the integral criterion to obtain [17]

(4.31)
∣∣∣(~∆B)i

∣∣∣ ≤ CA
2π

coth
(πc
a

)tanh−1
(√

i
N

)
i3/2

+
4√

N(N2 − i2)

 = O(N−3/2 log(N)).

Together, this yields ‖~∆B‖∞ = O(N−3/2 log(N)).

Lemma 4.4. Let T = I + S, where S is the symmetric matrix defined in Lemma 2.3, such
that M = D−1TD. Then, ‖T−1‖op ≤ 1.

Proof. Each eigenvector of S with eigenvalue η is also an eigenvector of T with eigenvalue
λ = η + 1. Because S is positive semi-definite, η ≥ 0 and thus λ ≥ 1. T−1 has an eigenvalue
λ−1 ≤ 1. As S is symmetric, it is orthogonally diagonalizable as stated by the spectral
theorem. Therefore

‖T−1‖op = sup
x∈RN

‖T−1x‖
‖x‖

= (λ−1)max ≤ 1.

We use Lemma 4.4 to estimate the remaining terms. We may write

(4.32) ‖M−1~∆B‖∞ = ‖D−1T−1D~∆B‖∞ ≤ ‖D‖op‖T−1‖op‖D~∆B‖∞ = O(N−1 log(N)).

The last relation follows because the matrix multiplication with D results in another
√
i+ 1/2

term in the numerator of the expression for
∣∣∣(~∆B)i

∣∣∣. Similarly, we may write

(4.33) ‖M−1M2
~∆A‖∞ ≤ ‖D‖op‖T−1‖op‖DM2

~∆A‖∞,

where

(4.34)
∣∣∣(DM2

~∆A)i

∣∣∣ ≤ 8
√

2CB
π2

coth

(
πb

2a

)2 N−1∑
j=1

j
√

2i+ 1

|(2i+ 1)2 − 4j2|

∞∑
n=N

1√
n(n2 − j2)

.

(4.35)

N/2−1∑
j=1

j
√

2i+ 1

|(2i+ 1)2 − 4j2|

∞∑
n=N

1√
n(n2 − j2)

≤ O(1)

N3/2

√
2i+ 1

N/2−1∑
j=1

j

|4j2 − (2i+ 1)2|
.

The given series over j can be decomposed into two different series (j > i and j ≤ i) to
account for the absolute value function. These can be further decomposed into a total of four
series by utilizing the partial fraction decomposition

(4.36)
j

4j2 − (2i+ 1)2
=

1

4(2j + 2i+ 1)
+

1

4(2j − 2i− 1)
.

∣∣ ∣∣
Each of these four series contains at most N/2 elements. The expressions 2j + 2i + 1 and 
2j − 2i − 1 are linear in j, therefore, the elements in each series are distinct odd numbers. 
This shows that the original series has an upper bound of four times the harmonic series with

N/2 elements. Given that i is bounded by N , ∣(DM2 ~∆A)i∣ ≤ O(N−1 log(N)). The same 
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computation can be performed for the case j > N/2 − 1 using equation (4.31), which yields∣∣∣(DM2
~∆A)i

∣∣∣ ≤ O(N−1 log2(N)). Combining the results from this section, we may conclude

(4.37) ‖ ~A∞
∣∣∣∣
RN

−A∗‖∞ = O(N−1 log2(N)).

It should be noted that it is also possible to compute explicit error bounds (not only
the order of convergence). They have been omitted in this paper for the sake of brevity.
Furthermore, it is possible to plug in numerical values to compute the error bounds of a specific
computation, which may lead to a lower actual error compared to the estimates performed
in this section (this would, for example, be the case for a nearly-diagonal matrix M , which
would be expected if the parameters a, b, c are of the same order of magnitude). In contrast
to alternative methods like investigating the stability of the convergence of a computed value
as N →∞, this method provides a guarantee that the exact solution must be within the error
bounds of the numerically computed solution.

5. Experimental results. The 2D geometry investigated above can be extended along the
z-axis to receive a 3D geometry which can be constructed by placing a strip of an aluminium
sheet between two thermally insulating XPS plates (as shown in Figure 5). The aluminium
is heated on one side and cooled on the other. Five temperature sensors are placed on the
aluminium strips at different positions z. The measured equilibrium temperature values (for
a = (21.0± 0.5) mm, b = (12.5± 0.5) mm and c = (7.5± 0.5) mm) are shown in Table 1. The
last column denotes the temperature difference to the ambient temperature of (26.5± 1.0) C.

Under the assumption that the thermal conductivity of the XPS foam λXPS = 0, there
is only heat flow in the z-direction, which implies that the temperature inside the aluminium
strip τ(z) is a linear function of z. For λXPS > 0, however, heat is lost along the x- and y-axes.
It will be shown below that in this case, τ(z) is not linear and has a curvature depending on
the coefficient β computed in the previous sections.

Table 1: Measured temperature values

Sensor Position z (cm) Temperature (◦C) τ (K)

A 0.0 75.4 48.9

B 4.0 59.1 32.6

C 7.0 49.9 23.4

D 12.5 36.4 9.9

E 15.0 30.9 4.4
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The following simplifications are made:
• The thickness of the aluminium strip along the x-axis is negligible.
• The length of the setup along the z-axis is long enough such that the heat flowing

through the XPS foam boundary areas parallel to the xy-plane is negligible.
• The XPS foam boundary areas parallel to the xz- and yz-planes have the same tem-

perature as the ambient air (in other words, the heat transfer coefficient between XPS
foam and air is large).

Figure 5: 3D sketch of the experimental setup (not to scale, and temperature sensor positions
are arbitrary). Only the upper part (x ≥ 0) is shown for better understanding, exploiting
symmetry with respect to the yz-plane.

The heat equation applied along the z-direction is:

(5.1) P (z) = −λAl(2c)d
dτ(z)

dz
,

where d = (0.50± 0.05) mm is the thickness of the aluminium strip. Equation (2.20) may be
rewritten to:

(5.2)
dP (z)

dz
= −4βλXPSτ(z).

Here is also considered that the previous calculations investigated only one quarter of the
system. Taking the derivative of (5.1) and combining with (5.2):

(5.3) − λAlcd
d2τ(z)

dz2
= −2βλXPSτ(z).

The general solution of this differential equation is

(5.4) τ(z) = A sinh(µz) +B cosh(µz),

where

(5.5) µ =

√
2βλXPS
λAlcd

,
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Figure 6: Experimentally measured temperature τ (the difference between the core tempera-
ture in the aluminium strip and the ambient temperature) in terms of the position z for a 3D
version of the rectangular cross section investigated in this paper

(5.6) B = τA.

Define H = zE − zA = 15.0cm.

(5.7) A =
τE − τA cosh(µH)

sinh(µH)
.

The available values for the thermal conductivities of commercially used Aluminium 
(which does not have 100% purity) and XPS vary [4, 1, 6, 7, 12, 11]. Here we use λAl = 
(215 ± 10) Wm−1K−1 and λXP S = (0.035 ± 0.005) Wm−1K−1.

Fitting the measured values from table Table 1 to formula (5.4) with the computed con-

stants, as shown in Figure 6 yields µ = (8.60 ± 0.14) m−1. Formula (5.5) gives β = 0.85 ± 0.17, 
which is in good agreement with the computed value β = 0.890 from equation (3.13). The 
fitted value of µ has a low statistical error, most inaccuracies of the measured value of β come 
from uncertainties in the properties of the materials used as well as systematic errors (the 
temperature of the XPS surface is actually not equal to the ambient temperature, and heat 
flux through XPS perpendicular to the cross section is ignored in our model).

6. Conclusions. We solve a Laplace equation with a 180 degree Dirichlet-Neumann bound-
ary type transition via two different methods.

By cutting the domain into two parts along the horizontal line through the point of 
the boundary type transition, we are left with two parts having both Dirichlet and Neumann 
conditions on the sides of the rectangle, but never two different conditions on different segments 
of the same side of the rectangle. We find the general solution of the Laplace equation 
in each part using separation of variables. This computation yields a sequence of Fourier 
coefficients which must be determined by applying the additional conditions of continuity of 
the temperature and its derivative along the domain cut. The exact solution requires the 
inversion of an infinite matrix, but it can be well approximated by only considering a finite
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number of Fourier coefficients. The resulting temperature field is shown in Figure 3. The
geometrical heat flux coefficient β as defined in (2.20) can be retrieved using equation (2.21).

Alternatively, the problem can be solved by creating a conformal mapping - consisting
of an inverse Christoffel-Schwarz transformation, a Möbius transformation and a Christoffel-
Schwarz transformation - between the original domain and another rectangle where the so-
lution is easy to obtain (a linear function of the vertical coordinate / imaginary part). As
the Laplace equation is invariant under conformal mappings, we may transform this solution
back into the original domain. As expected, the temperature field retrieved by this method
looks visually the same as for the coupled solution. The formula for β is (3.13), which is equal
to the value of β that would be found for the linear solution in the transformed domain (the
aspect ratio of the rectangle).

Our regularity results show that the Fourier coefficients are decaying like n−3/2 for large
n, which is due to a square root singularity at the boundary condition type transition point.
Additionally, we prove formulas for explicit upper bounds of the absolute values of the coeffi-
cients. These equations include the supremum of an analytic function on a compact interval,
which must be computed numerically. The regularity results allow one to determine an upper
bound for the maximum error of a solution computed considering only a finite number of
Fourier coefficients.

We conducted an experiment consisting of a 3D object having the cross-section investigated
in this paper. Experimental results agree well with the theory. The strongest source of errors
is the inaccuracy of available values for properties of the used materials, like the thermal
conductivity of the XPS used, or the thickness of the aluminium sheet.
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