
Fast & Fair: Efficient Second-Order Robust Optimization for Fairness in
Machine Learning∗

Allen Joseph Minch† , Hung Anh Dinh Vu‡ , and Anne Marie Warren§

Project Advisor: Dr. Elizabeth Newman¶

Abstract. This project explores adversarial training techniques to develop fairer Deep Neural Networks (DNNs)
to mitigate the inherent bias they are known to exhibit. DNNs are susceptible to inheriting bias
with respect to sensitive attributes such as race and gender, which can lead to life-altering outcomes
(e.g., demographic bias in facial recognition software used to arrest a suspect). We propose a robust
optimization problem, which we demonstrate can improve fairness in several datasets, both synthetic
and real-world, using an affine linear model. Leveraging second order information, we are able to
find a solution to our optimization problem more efficiently than with a purely first order method.

Key words. machine learning, fairness, robust optimization, adversarial training, optimization

MSC codes. 65F10, 65F22, 65K05, 90C47

1. Introduction. Machine learning has become an integral part of data analysis with its
powerful ability to reveal underlying patterns and structures in data. Deep Neural Networks
(DNNs) in particular are the gold standard classifying complex data; however, there is a
tendency for DNNs to inherit bias from the datasets on which they train. Bias in this sense
is not statistical bias, but the ways in which individual advantages or disadvantages manifest
in data. This can be especially problematic in areas where machine learning is used to make
life-altering decisions such as criminal justice [4] and corporate hiring [7].

The ever-expanding use of machine learning poses a significant ethical question when
models are known to perpetuate societal biases [7]. While an in-depth discussion of these
ethical concerns is beyond the scope of this work, they motivate our efforts to improve fairness
within the models themselves. The unfortunate truth is that the harmful biases we see in our
models and in our data come from deep-rooted societal structures that are at present beyond
the abilities of machine learning to correct. However, we feel that in the face of these larger
issues it is our duty within our means to work towards fairer outcomes.

One way to potentially achieve fairer outcomes is to use adversarial training to introduce
robustness to a model. Robust optimization aims to make the model less susceptible to small
variations in data, known as adversarial attacks, but in doing so decreases model accuracy.
Recently, the Fair-Robust-Learning framework was proposed to reduce this unfairness problem
in adversarial training [13]. The authors demonstrated that a combination of fairness and
adversarial regularization yielded fairer models on benchmark image classification datasets.

∗Submitted to the editors January 31, 2024.
Funding: This work is supported in part by the US NSF award DMS-2051019.

†Department of Mathematics, Brandeis University, Waltham, MA (allenminch@brandeis.edu)
‡Department of Mathematics, University of Maryland, College Park, MD (hvu1@terpmail.umd.edu)
§University of Minnesota, Minneapolis, MN (warre659@umn.edu, https://anniewarren.github.io)
¶Department of Mathematics, Emory University, Atlanta, GA (elizabeth.newman@emory.edu).

Copyright © SIAM

Unauthorized reproduction of this article is prohibited

 179

mailto:allenminch@brandeis.edu
mailto:hvu1@terpmail.umd.edu
mailto:warre659@umn.edu
https://anniewarren.github.io
mailto:elizabeth.newman@emory.edu

180 A. J. MINCH, H. A. VU, AND A. WARREN

Our research shares the goal of addressing fairness issues in DNNs through the use of
adversarial training techniques, but focuses on an additive bias rather than out-of-distribution
bias or other forms. We define fairness on different metrics (independence, separation, and
sufficiency vs. average and worst-class boundary, robust, and standard errors) to measure
additive bias with respect to sensitive ’hidden’ attributes. Without aiming to cater to specific
types of data, we explore the effects of adversarial training on this definition of fairness. A
simultaneous focus is to improve the efficiency of solving robust optimization problems. To this
end, we use second-order information to accelerate training, a concept that was not addressed
in previous work [13].

We implement a second-order method, termed the “trust region subproblem” (TRS), de-
signed explicitly to address inner optimization challenges encountered when introducing robust
training. Our experiments, spanning both synthetic and real-world datasets, demonstrate the
capabilities of robust optimization in enhancing fairness. We employ three distinct optimiz-
ers for these tests, allowing us to compare their performance. Notably, the integration of
hessQuik [8], has proven instrumental in efficiently deriving exact Hessians. This approach
surpasses the projected gradient descent (PGD) method in terms of time efficiency while pro-
ducing the same solution. For transparency and further community engagement, we’ve made
our Python implementation, including all our experiments, available on our GitHub repository
at Fast-N-Fair (https://github.com/elizabethnewman/fast-n-fair).

The paper is organized as follows: Section 2 introduces DNNs and the necessary notation,
robust optimization, and our choice of fairness metrics. Section 3 describes our proposed sec-
ond order method, our implementation, and is followed by an analysis of the error produced
by approximations used in our methods (Subsection 3.2). In Subsection 3.3, we introduce
alternate methods of solving the robust optimization problem that are implemented as a com-
parison to our proposed approach. Section 4 first describes the setup of a synthetic dataset
along with the preliminary fairness results, and then extends the discussion to several real
world datasets. We also examine the relative computational efficiency of our different meth-
ods of performing robust optimization. Lastly, Section 5 concludes the paper and discusses
potential future work.

2. Background. First we must discuss DNNs and some necessary notation, robust opti-
mization, and our choice of fairness metrics.

2.1. Notation. Deep neural networks (DNNs) can be represented by a parameterized
mapping fθ : X × Θ → Y from input-target pairs (x,y) ∈ D, where D ⊆ X × Y is the
data space, X ⊆ Rnin is the input space, and Y ⊆ Rnout is the target space, and Θ ⊂ Rnθ

is the parameter space. Our goal is to learn the weights θ ∈ Θ such that fθ(x) ≈ y for all
input-target pairs. Typically, learning the weights is posed as the optimization problem

(2.1) min
θ

1

|T |
∑

(x,y)∈T

L(fθ(x),y) +R(θ)

where T ⊂ D is the training set and R : Θ → R is a regularization term to enforce desirable
properties on the weights.

For many problems with a well-chosen optimizer, we can solve (2.1) well. However, this
can lead to problems such as overfitting, where the model fits the training data well but does

https://github.com/elizabethnewman/fast-n-fair

FAST & FAIR 181

Ŷ “ 1

Ŷ “ 0

w J
z`

b “
0

r

δz
z

δz

z

δz

z

Figure 1: Robust optimization, visualized in the case of a linear classifier (black line) in two
dimensions w⊤z+b = 0. The black data points z ≡ fθ(x) are the network outputs for various
data inputs. The white circles indicate output features within a radius of r of the network
outputs. The direction of perturbation δz that maximizes the inner optimization problem is
normal to the linear classifier defined by w. Any network outputs in the white channel, r
away from the linear classifier, change the predicted class. Robust optimization encourages
network outputs to live outside of the white channel to avoid ambiguous class predictions.

not generalize to unseen data, or a lack of robustness, where small changes to the data result
in significantly different results (e.g., incorrect classifications).

2.2. Robust Optimization. Adversarial training promotes robustness in DNNs by intro-
ducing a perturbation δx for each input x and solving the minimax problem

min
θ

1

|T |
∑

(x,y)∈T

L(fθ(x+ δx(θ)),y) +R(θ)(2.2a)

s. t. δx(θ) ∈ argmax
∥δx∥2≤r

L(fθ(x+ δx),y) for each (x,y) ∈ T(2.2b)

We perturb the inputs x by δx and maximize the Euclidean norm of the perturbation ∥δx∥2
(inner optimization problem (2.2b)) while optimally fitting the data (outer minimization prob-
lem (2.2a)). We build neighborhoods of radius r around our training points where we can
rely on our model classifying anything within the neighborhood similarly. See Figure 1 for a
visualization.

The complexity of our new minimax problem is a large consideration for the applicability
of our results to large scale real-world situations. To address this, we use second order in-
formation to solve the inner optimization problem efficiently in terms of computational time.

182 A. J. MINCH, H. A. VU, AND A. WARREN

Solving this problem well means satisfying first order optimality conditions. Following [2], we
first negate the loss to produce an equivalent minimization problem and set up a Lagrangian.

L(δx, λ) = −L(fθ(x+ δx),y) + λ(12∥δx∥
2
2 − 1

2r
2)(2.3)

Here λ is a Lagrangian multiplier and we use an equivalent version of the constraint 1
2∥δx∥

2
2 ≤

1
2r

2 that we can differentiate more easily. The perturbation δx that maximizes the inner
optimization problem of (2.2) necessarily satisfies the Karush-Kuhn-Tucker (KKT) conditions
below [9].

∇δxL(δx, λ) = −∇δxL(fθ(x+ δx),y) + λδx = 0 (stationarity)(2.4a)

∥δx∥2 ≤ r (primal feasibility)(2.4b)

λ ≥ 0 (dual feasibility)(2.4c)

λ(∥δx∥2 − r) = 0 (complementary slackness)(2.4d)

Satisfying the KKT conditions ensures that gradients of the outer optimization problem are
accurate; in particular, for each training sample, we have

∇θL(fθ(x+ δx(θ)),y) = [∇θ′fθ′(x+ δx(θ))∇fL(fθ′(x+ δx(θ)),y)]θ′=θ(2.5)

+
[
∇θ′δx(θ

′)∇δxL(fθ(x+ δx(θ
′)),y)

]
θ′=θ

The first term in (2.5) is the traditional gradient that we want to preserve. The second
term comes from considering the perturbation as a function of the network weights, δx(θ).
From the stationarity condition (2.4a), we get that ∇δxL(fθ(x + δx),y) is parallel to δx if
the perturbation is a maximizer. If the constraint is inactive (λ = 0), then ∇δxL(fθ(x +
δx),y) = 0 and the second term is zero. If the constraint is active (λ > 0), then from
primal feasibility (2.4b) we know that the perturbation must satisfy the constraint even when
undergoing changes incurred from [∇θ′δx(θ

′)]θ′=θ. With a sufficiently small perturbation of
the weights θ, the change in perturbation will follow the boundary of the constraint, nearly
orthogonal to the direction of the gradient ∇δxL(fθ(x+δx),y). This again makes the second
term zero. Thus, if we solve the inner optimization problem well and thereby satisfy the KKT
conditions, we can ignore the contribution of the second term.

2.3. Fairness. We use three different fairness metrics defined in [1] in our experiments. All
of these fairness metrics pertain to fairness of a classifier with respect to a sensitive attribute,
in terms of true labels against the classifier’s predictions. In all of our experiments, the
sensitive attribute s, true label Y , and classifier prediction Ŷ are all binary. For convenience,
in defining the fairness metrics, we treat Y as a random variable representing an object’s true
label and Ŷ as a random variable representing its prediction.

2.3.1. Independence. For a classifier to satisfy independence its prediction Ŷ must be un-
correlated with the sensitive attribute s. This requires an equal rate of positive classifications
across all sensitive groups.

(2.6) P (Ŷ = 1|s = 0) = P (Ŷ = 1|s = 1) = P (Ŷ = 1)

FAST & FAIR 183

For instance, if the classifier was being used to recommend hiring decisions (so Ŷ = 1 means a
candidate should be hired, and Ŷ = 0 means a candidate should not), satisfying independence
would mean that if the classifier hires 20% of applicants in class s = 1, then it also hires 20%
of applicants in class s = 0.

2.3.2. Separation. Separation is similar to independence; for separation to be satisfied Ŷ
must be conditionally independent of s given the value of Y .

P (Ŷ = 1|Y = 1, s = 0) = P (Ŷ = 1|Y = 1, s = 1)(2.7)

P (Ŷ = 1|Y = 0, s = 0) = P (Ŷ = 1|Y = 0, s = 1)

Separation enforces equality of true and false positive rates. If again Ŷ determines hiring rec-
ommendations, then Y might indicate an individual’s true qualifications. Separation requires
that individuals with similar qualifications have an equal chance of being hired, regardless of
sensitive attribute.

2.3.3. Sufficiency. Sufficiency enforces the conditional independence of Y and s given Ŷ .

P (Y = 1|Ŷ = 1, s = 0) = P (Y = 1|Ŷ = 1, s = 1)(2.8)

P (Y = 1|Ŷ = 0, s = 0) = P (Y = 1|Ŷ = 0, s = 1)

Sufficiency requires that the rates of individuals with the same predicted label also having the
same true label is equal across different sensitive groups. If sufficiency is satisfied, then an
individual from one group who is hired by the classifier is as likely to be truly qualified as a
hired individual from another group.

3. Our Approach. Next we introduce our proposed second order method, and discuss its
implementation. Our approach relies on approximation, so an analysis of the error produced by
this approximation follows in Subsection 3.2. Then in Subsection 3.3, we introduce alternate
methods of solving the robust optimization problem and their implementations to test against
our proposed approach.

3.1. Trust Region Subproblem (TRS). Our main algorithm (Algorithm 3.1) solves an
approximation of the inner optimization problem (2.2b) using second order information. For
each training sample (x,y) ∈ T , we fix θ and expand the loss function using a quadratic
Taylor series approximation about x in the direction of δx.

(3.1) min
∥δx∥2≤r

−L(fθ(x),y)− (∇xL(fθ(x),y))
Tδx − 1

2δ
T
x∇2

xL(fθ(x),y) δx

To fit our constraint, we construct a Lagrangian term by squaring our initial constraint and
scaling the Lagrange multiplier by one-half. This gives us a function that depends on δx and
λ.

(3.2) L̃(δx, λ) = −L(fθ(x),y)−(∇xL(fθ(x),y))
Tδx−

1

2
δTx∇2

xL(fθ(x),y) δx+
λ

2
(||δx||2−r2)

We approximate the optimal δ∗x to the inner optimization problem as the optimal δx solution
to the quadratic problem (3.1). The KKT conditions are the same as (2.4) except for the

184 A. J. MINCH, H. A. VU, AND A. WARREN

Algorithm 3.1 Trust Region Subproblem

Require: network fθ : X × Θ → Y, loss function L : Rnout × Y → R, batch Ti ⊂ T , trust
region radius r

Ensure: Candidate perturbation per sample S ∈ Rnin×|Ti|

1: Initialize S as empty array
2: for each sample (x,y) ∈ Ti do
3: Evaluate loss and derivatives, L(fθ(x),y), ∇xL(fθ(x),y), and ∇2

xL(fθ(x),y)
4: Define perturbation as a function of Lagrange multiplier δx(λ) ▷ Equation (3.4)
5: Compute unconstrained perturbation sx = δx(0)
6: if ∥sx∥2 > r then
7: Set λlow = 0, compute λhigh ▷ Subsection 3.1.1
8: Solve for λ∗ using bisection method on the function g(λ) ▷ Equation (3.5)
9: Choose optimal search direction sx = δx(λ

∗)
10: end if
11: Concatenate S and sx
12: end for

stationarity condition.

(3.3) −∇xL(fθ(x),y)−∇2
xL(fθ(x),y) δx + λδx = 0 (stationarity)

This gives us an explicit relation of δx to λ.

(3.4) δx(λ) = −(∇2
xL(fθ(x),y)− λI)−1∇xL(fθ(x),y)

There are two cases to (3.4). If λ = 0, then the optimal δx for (3.1) can be found by solving a
system of linear equations involving the gradient and the Hessian. Alternatively, if λ ̸= 0, then
complementary slackness enforces ∥δx∥2 = r, so we need to find λ such that ∥δx(λ)∥2 = r.

We note that Algorithm 3.1 and our derivation uses a “per-sample” option. This means
the trust region constraint is applied independently for each sample in the input dataset; i.e.,
for each data point, we solve a separate trust region optimization problem and perturb. This
is beneficial when different data points require different level of adjustment. An alternative
approach would be to use a “global” option; i.e., a single constraint is applied to the entire
batch of data. The “per-sample” approach is beneficial because we can optimize the adversarial
perturbation for each samples (i.e., increase robustness) and offers the potential to use a
different trust region radius per sample (we have not programmed this adaptability into our
code yet). The trade off is that the “per-sample” method is run sequentially over the batch
samples, which can be slow. There is a potential for parallelization; however, this is non-trivial
to code, particularly when ensuring the gradients track properly for automatic differentiation.
We consider as a future improvement of the repository. During our experiments, we had a
choice to use either but we mainly used “per-sample” which is why it was included.

3.1.1. The Bisection Method Bracket. To find a value for λ such that ∥δx(λ)∥2 = r, we
build a univariate function g(λ) := ∥δx(λ)∥2 − r and find a root of this function. Applying

FAST & FAIR 185

some linear algebra to (3.4), one can show that

g(λ) = ∥δx(λ)∥2 − r(3.5a)

= ∥ − (∇2
xL(fθ(x),y)− λI)−1∇xL(fθ(x),y)∥2 − r(3.5b)

= ∥(QDQ⊤ − λI)−1∇xL(fθ(x),y)∥2 − r(3.5c)

= ∥Q(D − λI)−1Q⊤∇xL(fθ(x),y)∥2 − r(3.5d)

= ∥(D − λI)−1Q⊤∇xL(fθ(x),y)∥2 − r(3.5e)

where ∇2
xL(fθ(x),y) = QDQT is the eigendecomposition of the Hessian. Because the Hessian

is symmetric, by the Spectral Theorem, we know Q is orthogonal and D is diagonal and real-
valued.

We use the bisection method [5] to find a root of g(λ) = 0. We do recognize that it may not
seem appropriate to use a bisection method here because g is not continuous at eigenvalues of
the Hessian of L. However, given the complexity of the function g and of robust optimization
in general, we wanted to use a straight-forward approach to find a root of g. In practice, we did
not seem to run into any numerical issues in our code using the bisection method. Moreover,
we obtained the same final fairness and accuracy results using a first order projected gradient
descent (PGD) method, outlined later, as using a bisection method with our new second-
order optimization approach. Considering these things, we considered the bisection method
to be adequate for the purposes of this work, and we leave it for future work to improve the
root-finding strategy of our optimization method.

In order to use the bisection method, we need to establish a bracket [λlow, λhigh] such that
g has different signs at the endpoints; that is, g(λlow)g(λhigh) < 0. If λ = 0, then constraint is
satisfied. Thus, g(0) ≥ 0 and, in practice, positive, so λlow = 0 is a good candidate. To find
the upper bound, we first bound the norm

∥(D − λI)−1Q⊤∇xL(fθ(x),y)∥2 ≤ ∥(D − λI)−1∥2∥∇xL(fθ(x),y)∥2(3.6)

=

√√√√ nin∑
i=1

1

(di − λ)2
∥∇xL(fθ(x),y)∥2(3.7)

Following from [9], as λ → d+max, the upper bound approaches +∞ and as λ → ∞, the upper
bound approaches 0. This guarantees that there is some λ ∈ (dmax,∞) such that the upper
bound is less than r. If we let

λhigh = |dmax|+
√
n∥∇xL(fθ(x),y)∥2

r
(3.8)

then (di−λhigh)
2 ≥ n∥∇xL(fθ(x),y)∥22

r2
for i = 1, . . . , nin. Substituting into the upper bound,

we get √√√√ nin∑
i=1

1

(di − λ)2
∥∇xL(fθ(x),y)∥2 ≤

√
nr√

n∥∇xL(fθ(x),y)∥2
∥∇xL(fθ(x),y)∥2 = r.(3.9)

Thus, we have found a bracket for the bisection method.

186 A. J. MINCH, H. A. VU, AND A. WARREN

3.2. Algorithm Analysis. When solving the inner optimization problem using a second
order approximation, we would like to know how well this approximation actually solves
this problem. For specific classes of models, loss functions, and activation functions, we can
confine the error explicitly to depend on high orders of the perturbation δx and loss function
derivatives.

3.2.1. Affine model. An affine model fw,b(x) = w⊤x + b with weight vector w and a
scalar bias b combined with a logistic regression loss function L and a sigmoid activation
function σ is convex with respect to inputs. The loss is given explicitly as

(3.10) L(fw,b(x), y) = −y ln[σ(w⊤x+ b)]− (1− y) ln[1− σ(w⊤x+ b)]

with σ(z) = (1+e−z)−1. Introducing the perturbation δx results in a specific case of the inner
optimization problem in (2.2b). To solve this optimization problem without approximation,
we introduce as before a Lagrange multiplier λ with the constraint ∥δx∥2 − r2 ≤ 0.

Laff(δx, λ) = −y ln(σ(w⊤(x+ δx) + b))− (1− y) ln(1− σ(w⊤(x+ δx) + b))

+
1

2
λ(∥δx∥22 − r2)

(3.11)

The first order optimality conditions for (3.11) tell us that at the optimal δx,

(3.12) ∇δxLaff(δx, λ) = (−y + σ(w⊤(x+ δx) + b))w + λδx = 0.

To compare the exact solution from equation (3.12) to the approximation made when solving
using the trust region method of section 3.1, we find the second order approximation of the
loss function L(fw,b(x), y) by a Taylor expansion in x in the direction of δx.

(3.13) L(fw,b(x+ δx), y) ≈ L(fw,b(x), y) +∇⊤
xL(fw,b(x), y)δx +

1

2
δ⊤x∇2

xL(fw,b(x), y)δx

where the gradient and Hessian are

∇xL(fw,b(x), y) = (−y + σ(w⊤x+ b))w

∇2
xL(fw,b(x), y) = wσ′(w⊤x+ b)w⊤.

(3.14)

The associated Lagrangian is
(3.15)

L̃aff(δx, λ) = L(fw,b(x), y) +∇⊤
xL(fw,b(x), y)δx +

1

2
δ⊤x∇2

xL(fw,b(x), y)δx +
1

2
λ(∥δx∥2 − r2).

As before, take the gradient with respect to δx and set it equal to zero to solve using
first-order optimization conditions.

∇δxL(δx, λ) = (−y + σ(w⊤x+ b))w +wσ′(w⊤x+ b)w⊤δx + λδx = 0(3.16)

Comparing (3.12) (LHS) and (3.16) (RHS), the discrepancy between the exact solution and
the approximation is restricted to

(3.17) σ(w⊤(x+ δx) + b) ̸= σ(w⊤x+ b) + σ′(w⊤x+ b)w⊤δx.

FAST & FAIR 187

Figure 2: Flattening behavior of sigmoidal function, σ, derivatives.

Now, appling a Taylor expansion centered at x in the ball x+ δx to the LHS, we obtain:

(3.18) σ(w⊤(x+ δx) + b) ≈ σ(w⊤x+ b) + σ′(w⊤x+ b)w⊤δx +
1

2
δ⊤xwσ′′(w⊤x+ b)w⊤δx

We have recovered the RHS of (3.17), so the error is due to the truncation of the second-order
and higher terms of (3.18). In this case with a sigmoidal loss function, that means this error
depends on the magnitude of |σ′′(z)| and the δx for which we solved.

For any sigmoidal function, their structure gives first and second order derivatives of the
classes shown in Figure 2. For our sigmoid function defined as σ(z) = (1 + e−z)−1 with
|σ′′(z)| ≤ 0.1, and in general for any choice of sigmoidal function this flattening of higher-
order derivatives will be observed. By nature δx is bounded by the data since it defines the
perturbation from a given point, and a perturbation larger than the size of the data space
in any given dimension would be meaningless. For data in the form of continuous numerical
values normalized to be between 0 and 1, as in our case, each component of δx must be
less than 1. In practice, δx tends to be much smaller than that. This bound means higher
order terms are generally quite small, and for this combination of loss function, activation
function, model, and radii on the order of 10−1, the approximation error is on the order of
∥δx∥2|σ′′(z)| ≈ 10−3.

3.3. Other Methods. We compare our trust region subproblem (TRS) algorithm to ran-
dom perturbation to examine whether or not it is important to solve the inner optimization
problem well. We also use random perturbation, along with a projected gradient descent
(PGD) method, to verify that our second order TRS approach has greater computational
efficiency than only using lower order information.

3.3.1. Random Perturbation. For each data point, we sample the perturbation δx ran-
domly from a multivariate standard normal distribution and rescale to the length of the trust
region radius. This method acts as a control in our experiments to show the advantages of
solving for an optimal perturbation.

3.3.2. Projected Gradient Descent (PGD). In order to test that our second order TRS
approach is computationally faster than using purely first order information, we also imple-
mented a version of gradient descent for our inner optimization problem. Since our inner
problem has the constraint ∥δx∥2 ≤ r, we cannot use vanilla gradient descent, and instead

188 A. J. MINCH, H. A. VU, AND A. WARREN

use projected gradient descent (PGD) [3, 10]. PGD operates similarly to standard gradient
descent, but once it has found its optimal step it projects the step onto the constrained set
before returning it. Mathematically, this looks like:

(3.19) δ
(k+1)
x = P

[
δ
(k)
x + α(k) · ∇xL(fθ(x+ δx),y)

]

where δ
(k)
x is the kth iterate, α(k) is the step size at the kth iteration, and P is the projection

operator P (x) = argminz:||z||2≤r ||x − z||22. This projection operator turns out to be very
simple, returning the inputted point if the point already satisfies the constraint, or scaling the
point inward to the boundary of the constraint if it is outside it. In particular,

(3.20) P (x) = min

{
1,

r

||x||2

}
x.

Numerical experiments on how PGD performs with adversarial training [13, 6] have shown
that PGD is a reliable method when it comes to solving robust optimization problems.

4. Numerical Results. Now we present results of our numerical experiments pertaining to
fairness, accuracy, and computational time. Subsections 4.1, 4.2, and 4.3 discuss fairness and
accuracy results on three datasets. For each dataset, we compute the fairness and accuracy re-
sults for nonrobust training, for robust training with various radii, and random perturbations.
We measure the absolute difference across sensitive attributes for analysis of each fairness
metric, and the closer this difference is to zero, the fairer the classifier is with respect to that
metric. Subsection 4.4 presents our results on relative computational time across our various
methods for solving the inner optimization problem.

4.1. Synthetic Data (Unfair2D). The primary dataset we used for carrying out numerical
experiments was a synthetic dataset. Individuals belonging to two different groups, labeled
with respect to a sensitive attribute A or B, are being hired on the basis of two numeric scores
x1 and x2. Individuals have a binary label that is either “should be hired” or “shouldn’t be
hired,” and we train a linear classifier to decide whether or not to hire an individual. The data
is initially fair (Figure 3a), and we introduce unfair bias into the data by artificially raising
the scores of all Bs while lowering the scores of all As (Figure 3b). In the real world, this
could be a manifestation of structural unfairness in which Bs are more likely to belong to a
wealthy socioeconomic class, and thus can afford training that boosts their scores, whereas
As do not have this opportunity. In fact, As may not only lack the advantage of Bs, but also
have an active disadvantage, such as an increased likelihood of needing to work longer hours,
impeding time for study and test prep, lowering their scores.

FAST & FAIR 189

(a) Pre-shift data (b) Sample of post-shift data

Figure 3: Points are colored based on their original location in the blue region (Y = 1) or
red region (Y = 0). Post shift, note the unfair presence of red Bs in the blue region and blue
As in the red region.

Y, Ŷ = 0 Y, Ŷ = 1 Accuracy

T
ra
in
in
g
se
t

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 0

Traing Fairness Diffrences vs. Radius, 2d

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.00

0.05

0.10

0.15

0.20

0.25

0.30

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 1

Traing Fairness Diffrences vs. Radius, 2d

0.10 0.12 0.14 0.16 0.18 0.20
Radius

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Training Accuracy vs. Radius, Unfair 2d
Robust Accuracy
Nonrobust Accuracy

(a) (b) (c)

T
es
t
se
t

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 0

Test Fairness Diffrences vs. Radius, 2d

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 1

Test Fairness Diffrences vs. Radius, 2d

0.10 0.12 0.14 0.16 0.18 0.20
Radius

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy vs. Radius, Unfair 2d
Robust Accuracy
Nonrobust Accuracy

(d) (e) (f)

Figure 4: Synthetic fairness and accuracy results. For fairness, values closer to zero are
desirable.

190 A. J. MINCH, H. A. VU, AND A. WARREN

(a) Nonrobust Classifier

Diff: Y = 0, |S1− S0| Y = 1, |S1− S0|
Ind. 0.152 0.152

Sep. 0.248 0.179

Suff. 0.213 0.190

Training Accuracy: 79.5%
Test Accuracy: 78.0%

(b) Robust Classifier (r=0.18)

Diff: Y = 0, |S1− S0| Y = 1, |S1− S0|
Ind. 0.025 0.025

Sep. 0.019 0.127

Suff. 0.142 0.038

Training Accuracy: 73.5%
Test Accuracy: 73.0%

Figure 5: Comparative Analysis of Non-Robust and Robust Classifiers

We compare nonrobust training on this synthetic dataset with robust training (using the
TRS method) and random perturbation for 11 different perturbation radii, with the radius
increasing in 0.01 increments from 0.1 up to 0.2. These experiments were run with a total of
10 training epochs and a learning rate of 0.01 in the outer optimization problem. Four plots of
fairness metric differences versus radius are shown in Figure 4, as well as plots of the training
and testing accuracy versus radius. For many radii in the lower end of the plotted range,
many of the fairness differences are worse in the training data with robust training than with
nonrobust. However, some fairness improvement can be seen with robust training.

In all cases, at least two of the three fairness metrics show a downward trend for robust
training. This suggests that while robust training may worsen fairness for a very small radius,
fairness improvement is possible at more appropriate radii. At a radius of 0.18, all of the
robust fairness differences are better than the corresponding nonrobust ones in the training
data, although it does lead to a decrease in test accuracy from around 78% to 73% (Figure 5).
The nonrobust classifier is visualized in Figure 5a versus the robust classifier in Figure 5b.
In Figure 5b, robust optimization is improving fairness by raising the bar, giving a positive
classification to only the most qualified individuals. It eliminates nearly all of the false positive
Bs that exist with the original dashed classifier and greatly increases the quantity of blue Bs
in the red region, equalizing false negative rates. Increasing the radius even further to 0.2
with 20 epochs of training, the robust classifier eventually classifies nothing positively. Our
robust classifier is not helping the disadvantaged As in the process of improving fairness – it

FAST & FAIR 191

Ind (y = 0) Sep (y = 0) Sep (y = 1) Suf (y = 0) Suf (y = 1)
Fairness Metric

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
iff

er
en

ce

Training Fairness Differences For Each Method, 2d example, r = 0.18
Non-robust
Rand Pert
Robust

(a) Training fairness differences

Ind (y = 0) Sep (y = 0) Sep (y = 1) Suf (y = 0) Suf (y = 1)
Fairness Metric

0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
iff

er
en

ce

Testing Fairness Differences For Each Method, 2d example, r = 0.18
Non-robust
Rand Pert
Robust

(b) Test fairness differences

Figure 6: Fairness differences (r=0.18). Left bar is nonrobust, middle is random, right is
robust.

is only hurting the advantaged Bs. While this does not provide an indication of how robust
training would work on every dataset, it does illustrate that robust optimization may improve
fairness in an unexpected or unintended way.

There is an advantage to solving the inner optimization problem well instead of just
using random perturbations. In Figure 4, the fairness differences for random perturbations
are either the same or stay close to the nonrobust differences. This stands in contrast to
robust training, where fairness differences are initially high and then get significantly lower,
surpassing nonrobust differences. Figure 6 also exhibits this advantage.

4.2. Adult Dataset. We also extended our numerical experiments to real-world datasets.
The Adult dataset [11] consists of demographic data about individuals that are used to classify
whether their annual income is more than $50, 000. Note that the dataset predominantly
consists of white males in the age range of 25-60. It contains 48,842 instances and each
instance is described using 15 attributes. We want to look at the 5 continuous numerical
attributes (age, education-num, capital-gain, capital-loss, hours-per-week) for analysis. The
income (salary) data is converted into binary form (1 for ≤ 50k, 0 for > 50K), and the
protected attribute can be sex or race.

Unlike our synthetic data, the adult example yielded mixed results in terms of fairness
improvement. For the training data, Figure 7a and Figure 7b show that only three out of
the six differences were measured to be better with robust training. There was a similar
result for the test data as seen in Figure 7c and Figure 7d. Despite only having a 50%
improvement rate, the majority of the fairness metrics exhibit a downward trend, and when
there is an improvement robust optimization outperforms random perturbation significantly.
The expected accuracy-robustness trade-off is present (Figure 7e), with both the training
and test robust accuracy decreasing with increasing radii. However, unlike in the synthetic
dataset, the decay appears to be linear and does not spike at certain radii, and does not yield

192 A. J. MINCH, H. A. VU, AND A. WARREN

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 0

Training Fairness Differences vs. Radius, Adult example

(a)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 1

Training Fairness Differences vs. Radius, Adult example

(b)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.00

0.05

0.10

0.15

0.20

0.25

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 0

Test Fairness Differences vs. Radius, Adult example

(c)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 1

Test Fairness Differences vs. Radius, Adult example

(d)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Tr
ai

n
Ac

cu
ra

cy
 (%

)

Train Accuracy vs. Radius, Adult
Robust Accuracy
Nonrobust Accuracy

0.10 0.12 0.14 0.16 0.18 0.20
Radius

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy vs. Radius, Adult
Robust Accuracy
Nonrobust Accuracy

(e) Adult robust training accuracy.

Figure 7: Fairness ((a)-(d)) and accuracy (e) trends in the adult dataset for nonrobust and
robust training.

better accuracy for smaller radii. Overall, there is still reasonable case for improving fairness
metrics at the expense of classifier accuracy.

4.3. LSAT Data. Another extension to a real-world dataset comes from the Law School
Admissions Council (LSAC) [12]. This dataset was collected to explore the reasons behind
low bar passage rates among racial and ethnic minorities. We train our classifier to predict
whether or not a student will pass the bar, based on their Law School Admission Test (LSAT)
score and undergraduate GPA. We are using GPA and LSAT scores because they are the
strongest predictors for passing the bar examination. Our primary interest lies in examining
five key features of the dataset: the bar exam pass/fail prediction made by a DNN, the gender
of the student, their LSAT score, the true bar exam pass/fail value for the student, and their
race. For the purpose of our experiment, the race feature is made binary to indicate a student
as either white or non-white, which is used as the sensitive attribute.

Unlike the two previous examples, there is not a lot of fluctuation with LSAT robust
results (Figure 8). Surprisingly, robust optimization seems not to deviate from nonrobust
training. As we have seen, using a random perturbation yields fairness results that are very
similar to the results of non-robust training. For this dataset, robust optimization also per-
forms very similarly to just picking a random perturbation. This is especially the case with

FAST & FAIR 193

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 0

Training Fairness Differences vs. Radius, LSAT example

(a)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.0

0.1

0.2

0.3

0.4

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 1

Training Fairness Differences vs. Radius, LSAT example

(b)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.10

0.15

0.20

0.25

0.30

0.35

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 0

Test Fairness Differences vs. Radius, LSAT example

(c)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

M
ag

ni
tu

de
 o

f d
iff

er
en

ce
 y

 =
 1

Test Fairness Differences vs. Radius, LSAT example

(d)

0.10 0.12 0.14 0.16 0.18 0.20
Radius

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Te
st

 A
cc

ur
ac

y
(%

)

Test Accuracy vs. Radius, LSAT
Robust Accuracy
Nonrobust Accuracy

0.10 0.12 0.14 0.16 0.18 0.20
Radius

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Tr
ai

n
Ac

cu
ra

cy
 (%

)

Train Accuracy vs. Radius, LSAT
Robust Accuracy
Nonrobust Accuracy

(e) LSAT robust training accuracy.

Figure 8: Fairness ((a)-(d)) and accuracy (e) trends in the LSAT dataset for nonrobust and
robust training.

the independence and separation metrics. The only two notable deviations come from the
sufficiency metric in Figure 8a and Figure 8b of the training dataset. This might be attribut-
able to our definion of the sensitive attribute as white vs nonwhite, which creates a very small
dataset due to the dominance of white individuals in the original dataset. For this specific
example, robust optimization does not improve fairness, and in fact performs worse since it
loses accuracy when yielding the same fairness results.

4.4. Efficiency Comparison. We gathered time data to see if the TRS method converged
faster than PGD on our datasets. On each of the three datasets above - synthetic, Adult,
and LSAT - we computed for each radius the average epoch time elapsed for TRS, PGD, and
random perturbation. To compare the speed of the TRS method and PGD, we examine the
ratio of the average PGD epoch time to the average TRS epoch time, looking at the extreme
values of this ratio to get a range of how much faster the trust region subproblem was than
PGD across all radii. The results are shown in Table 1.

Random perturbation is the fastest adversarial training method in all three datasets. This
is expected, as it does not actually solve the optimization problem; its only computation task
is generating a random vector and rescaling it. It is also noteworthy that using the TRS
method consistently is computationally faster than using PGD. Over all radii shown, training

194 A. J. MINCH, H. A. VU, AND A. WARREN

Table 1: Average Epoch Times. For each dataset, the first three rows show the average epoch
times for each of the three robust optimization approaches, where a lower value indicates faster
computational performance. The fourth row shows the ratio of PGD to TRS time, where a
ratio greater than 1 indicates that the TRS approach was faster than the PGD approach for
the given radius. The gray values highlight the minimum ratio of PGD to TRS time over all
radii, while the yellow values highlight the maximum ratio.

Radii .10 .12 .14 .16 .18 .20

S
y
n
th

e
ti
c PGD 2.680 3.597 4.228 4.486 5.061 5.080

TRS 1.945 1.875 1.806 1.891 1.742 1.752
RND 0.0387 0.0366 0.0387 0.0389 0.0387 0.0375

PGD/TRS 1.377 1.919 2.340 2.373 2.904 2.900

A
d
u
lt

PGD 512.970 593.173 697.399 1146.856 1689.761 1854.932
TRS 60.372 61.557 57.723 58.707 57.492 59.061
RND 0.0947 0.101 0.0972 0.0919 0.0974 0.0939

PGD/TRS 8.497 9.636 12.082 19.535 29.391 31.407

L
S
A
T

PGD 1.129 1.559 2.844 3.575 3.347 2.752
TRS 0.396 0.396 0.421 0.371 0.414 0.385
RND 0.0107 0.0123 0.0154 0.0122 0.0162 0.0104

PGD/TRS 2.852 3.936 6.762 9.639 8.094 7.150

with TRS is between 1.4 and 2.9 times faster than PGD in the synthetic dataset, between
8.5 and 31.4 times faster in Adult, and between 2.9 and 9.6 times faster in LSAT. The very
short average epoch times for the LSAT dataset are due to the significantly smaller scale of
the input data. All of the smallest factors of time improvement of TRS relative to PGD
(highlighted in gray) are greater than 1 suggesting that the trust region subproblem has a
consistent advantage over PGD in computational speed.

Looking at the PGD/TRS ratios, the factor of improvement that TRS has in computa-
tional time over PGD appears to be higher in the real-world datasets than in the synthetic
dataset. The real-world datasets, and especially Adult, are trained on larger amounts of data,
so the advantage of TRS over PGD seems to scale with the size of the dataset. This advantage
of the trust region subproblem also improves with larger perturbation radii. In particular,
the minimum factor of improvement (gray) always occurs with the smallest radius, and the
maximum factor of improvement (yellow) always occurs with one of the three largest radii.

5. Conclusion. In our affine linear model setup, we were able to see improvement in
fairness by using robust optimization. In the synthetic dataset, whenever there was an im-
provement, the gain was a significant reduction in fairness difference magnitudes (which are
ideally zero). In our numerical experiments extending to real-world datasets, we have shown
that robust training performs similarly to non-robust training even in the worst-case scenario
(LSAT dataset). Across all three datasets, the accuracy of robust optimization decreased
as the radius increased, the majority of the fairness metrics displayed a downward trend as
the perturbation radius increased, and when fairness improved with robust training, precise

FAST & FAIR 195

solutions to the inner optimization problem outperformed randomly selected solutions. Fur-
thermore, we were able to quantify the fact that, with the help of hessQuik, using second-order
information is much faster for solving our class of optimization problem.

We acknowledge that while we were able to achieve positive results with our experiments in
both synthetic and real-world datasets, there are a few mathematical limitations to our results
that prevent generalization to higher-dimensional applications. We used a neural network in
our training with only one hidden layer, our experiments were conducted using a linear and
binary classifier, and our sensitive attribute was binary. This motivates future exploration
of extending our approach to deeper neural networks, multinomial classification, and other
fairness metrics relevant to those cases. It may help to improve fairness even further to
introduce a regularization term to our approach to penalize violations of our fairness metrics,
which is another avenue for further work. There limitations of our implementation. For
PGD, we used an arbitrary step size instead of varying the step size as training proceeds.
Additionally, we did not solve our inner optimization problems in parallel. Parallelizing the
computations for our inner optimization problem could provide a significant reduction in
overall computation time.

Despite these limitations, this work demonstrates initial promise for the ability of robust
training to bring about fairness improvement in machine learning models, and motivates
further research on similar methodologies.

Acknowledgments. This work was supported by NSF award DMS-2051019 and was com-
pleted during the “Computational Mathematics for Data Science” REU/RET program in the
summer of 2023. We would like to thank Dr. Elizabeth Newman, our mentor, and the rest of
the faculty who participated in the program for their feedback and support.

REFERENCES

[1] S. Barocas, M. Hardt, and A. Narayanan, Fairness and Machine Learning: Limitations and Op-
portunities, fairmlbook.org, 2019. http://www.fairmlbook.org.

[2] A. Beck, Introduction to Nonlinear Optimization, Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, 2014, https://doi.org/10.1137/1.9781611973655, https://epubs.siam.org/
doi/abs/10.1137/1.9781611973655, https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/
1.9781611973655.

[3] A. Beck, First-order methods in optimization, SIAM, 2017.
[4] N. Furl, P. Phillips, and A. J. O’Toole, Face recognition algorithms and the other-race ef-

fect: computational mechanisms for a developmental contact hypothesis, Cognitive Science, 26
(2002), pp. 797–815, https://doi.org/https://doi.org/10.1016/S0364-0213(02)00084-8, https://www.
sciencedirect.com/science/article/pii/S0364021302000848.

[5] A. Kaw, Numerical methods with applications (kaw), University of South Florida, 2011, https://math.
libretexts.org/Under Construction/Numerical Methods with Applications (Kaw).

[6] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, Towards deep learning models
resistant to adversarial attacks, in International Conference on Learning Representations, 2018, https:
//openreview.net/forum?id=rJzIBfZAb.

[7] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan, A survey on bias and
fairness in machine learning, CoRR, abs/1908.09635 (2019), http://arxiv.org/abs/1908.09635, https:
//arxiv.org/abs/1908.09635.

[8] E. Newman and L. Ruthotto, ‘hessquik‘: Fast hessian computation of composite functions, Journal
of Open Source Software, 7 (2022), p. 4171, https://doi.org/10.21105/joss.04171, https://doi.org/10.

http://www.fairmlbook.org
https://doi.org/10.1137/1.9781611973655
https://epubs.siam.org/doi/abs/10.1137/1.9781611973655
https://epubs.siam.org/doi/abs/10.1137/1.9781611973655
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973655
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973655
https://doi.org/https://doi.org/10.1016/S0364-0213(02)00084-8
https://www.sciencedirect.com/science/article/pii/S0364021302000848
https://www.sciencedirect.com/science/article/pii/S0364021302000848
https://math.libretexts.org/Under_Construction/Numerical_Methods_with_Applications_(Kaw)
https://math.libretexts.org/Under_Construction/Numerical_Methods_with_Applications_(Kaw)
https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
http://arxiv.org/abs/1908.09635
https://arxiv.org/abs/1908.09635
https://arxiv.org/abs/1908.09635
https://doi.org/10.21105/joss.04171
https://doi.org/10.21105/joss.04171
https://doi.org/10.21105/joss.04171

196 A. J. MINCH, H. A. VU, AND A. WARREN

21105/joss.04171.
[9] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, NY, USA, 2e ed., 2006.

[10] N. Parikh, S. Boyd, et al., Proximal algorithms, Foundations and trends® in Optimization, 1 (2014),
pp. 127–239.

[11] T. L. Quy, A. Roy, V. Iosifidis, W. Zhang, and E. Ntoutsi, A survey on datasets for fairness-
aware machine learning, WIREs Data Mining and Knowledge Discovery, 12 (2022), https://doi.org/
10.1002/widm.1452, https://doi.org/10.1002%2Fwidm.1452.

[12] L. F. Wightman, Lsac national longitudinal bar passage study. lsac research report series., 1998, https:
//api.semanticscholar.org/CorpusID:151073942.

[13] H. Xu, X. Liu, Y. Li, A. K. Jain, and J. Tang, To be robust or to be fair: Towards fairness in
adversarial training, 2021, https://arxiv.org/abs/2010.06121.

https://doi.org/10.21105/joss.04171
https://doi.org/10.21105/joss.04171
https://doi.org/10.21105/joss.04171
https://doi.org/10.1002/widm.1452
https://doi.org/10.1002/widm.1452
https://doi.org/10.1002%2Fwidm.1452
https://api.semanticscholar.org/CorpusID:151073942
https://api.semanticscholar.org/CorpusID:151073942
https://arxiv.org/abs/2010.06121

	Introduction
	Background
	Notation
	Robust Optimization
	Fairness
	Independence
	Separation
	Sufficiency

	Our Approach
	Trust Region Subproblem (TRS)
	The Bisection Method Bracket

	Algorithm Analysis
	Affine model

	Other Methods
	Random Perturbation
	Projected Gradient Descent (PGD)

	Numerical Results
	Synthetic Data (Unfair2D)
	Adult Dataset
	LSAT Data
	Efficiency Comparison

	Conclusion

