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Interpreting Deep Learning: 
The Machine Learning Rorschach Test?
By Adam S. Charles

Theoretical understanding of deep learn-
ing is one of the most important tasks 

facing the statistics and machine learn-
ing communities. While multilayer—or 
deep—neural networks (DNNs) originated 
as engineering methods and models of 
biological networks in neuroscience and 
psychology, they have quickly become a 
centerpiece of the machine learning toolbox 
and are simultaneously one of the simplest 
and most complex methods. DNNs con-
sist of many interconnected nodes that are 
grouped into layers (see Figure 1a) with 
stunningly simple operations. The n th  node 
of the network at a given layer i x n

i
, ( )  is 

merely a nonlinear function f ()×  (e.g., a 
saturating nonlinearity) applied to an affine 
function of the previous layer

 
   
x n f n b n
i
( ) ( ) ( ) ,= +( )−w xi i 1 i

where xi
Ni

− ∈1   represents the previous 
layer’s node values, wi

Ni( )n Î  are the 
weights that project onto the n th  node of 
the current layer, and b n

i
( )  is an offset. 

However, these simple operations introduce 
complexity due to two factors. First, the 
sheer number of nodes creates an explosion 
of parameters ( ( )wi n  and b n

i
( )), amplify-

ing the effects of nonlinearities. Moreover, 
the weights and offsets are learned by 
optimization of a cost function via iterative 
methods, such as back-propagation. Despite 

the resulting complexity, researchers have 
utilized DNNs to great effect in many 
important applications.

A “perfect storm” of large, labeled data-
sets; improved hardware; clever parameter 
constraints; advancements in optimization 
algorithms; and more open sharing of 
stable, reliable code contributed to the rela-

tively recent success of DNNs in machine 
learning. DNNs originally provided state-
of-the-art results in image classification, 
i.e., the now-classic task of handwritten 
digit classification that powers devices 
like ATMs. While DNN applications have 
since spread to many other areas, their 

Figure 1. What do you see? We can view deep neural networks (DNNs) in many ways. 1a. Stylistic example of a DNN with an input layer 
(red), output layer (blue), and two hidden layers (green). This is a sample “ink blot” for DNN theory. Figure courtesy of Adam Charles. 1b. 
Example of a normalized ink blot from the Rorschach test. Public domain image.

Detecting Gerrymandering with Mathematics
By Lakshmi Chandrasekaran

Earlier this year, federal judges struck 
down the North Carolina state map 

as unconstitutional because it had been 
partisan gerrymandered. A few weeks 
later, Pennsylvania district maps met the 
same fate on similar grounds. While the 
Supreme Court has upheld the unconsti-
tutionality of the Pennsylvania maps, it 
recently sidestepped its decision on par-
tisan gerrymandering in Wisconsin and 
Maryland, letting the maps stand for the 
upcoming fall elections.

Gerrymandering comes into play every 
ten years after completion of the census. 
The political party in power in state leg-
islatures uses census information to alter 
congressional districts in its favor via a 
process called redistricting. Such fudg-
ing of maps has occurred since 1812, and 
has been the target of numerous lawsuits. 
Although the Supreme Court has ruled 

racial gerrymandering unconstitutional, it 
has so far declined to overturn gerryman-
dering on partisan grounds.

Judiciable Standard to             
Curb Gerrymandering

Partisan gerrymandering involves pack-
ing vast swathes of the opponent’s support-
ers into fewer districts, or cracking areas of 
opposition majorities across many districts 
— thereby diluting the majority. These 
actions reap benefits over several elections. 
While the Supreme Court’s recent ruling 
declared extreme partisan gerrymandering 
unconstitutional, a judicially manageable 
standard measuring the “extremeness” of a 
given map is still lacking.

“The Supreme Court signed up for 
mathematics by ruling that a partisan 
gerrymander is unconstitutional if it is 
extreme,” Eric Lander, founding director 
of the Eli and Edythe L. Broad Institute 
of MIT and Harvard, said. “There’s a con-

stitutional right to recognizing what is too 
far — and that is mathematical.” Lander 
wrote a court document1 last summer 
supporting the use of a statistical outlier 
standard. Jonathan Mattingly, professor of 
mathematics at Duke University, served 
as a consultant to the document. Mattingly 
has spent five years mathematically dis-
secting the structure of a typical redistrict-
ing to identify gerrymandering.

His interest was inspired by the 2012 
elections for the North Carolina House 
of Representatives. “Republicans won 
the majority with nine out of 13 seats,” 
Mattingly said. “I was at a meeting where 
someone said that Democrats won the 
majority of the votes. That was shocking, 
since they should have had at least seven 

1  http://www.campaignlegalcenter.org/
document/gill-v-whitford-us-supreme-court-
amicus-brief-eric-s-lander

Figure 1. Probability distribution of the congressional delegation’s composition for the 2012 and 2016 North Carolina congressional elec-
tions. Based on the sample of redistricting plans, Democrats could secure four to nine and three to seven seats for the 2012 and 2016 
congressional elections respectively. The plan used by the judges from a bipartisan commission shows that Democrats would win six seats 
in 2012 and four in 2016. In comparison, the 2012 and 2016 North Carolina congressional elections (in orange and purple) show a heavy bias 
towards Republicans. Image courtesy of [1].

See Gerrymandering on page 5

See Deep Learning on page 4
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4	 Integrated Catastrophic 
Risk Management: Robust 
Balance between Ex-ante 
and Ex-post Measures

	 Growing population densities, 
asset concentration, and anthro-
pogenic climate change are 
exacerbating the impact of natu-
ral disasters. Losses from such 
calamities are typically paid 
adaptively, rather than by long-
term strategic planning. Yuri 
Ermoliev, Stephen Robinson, 
Elena Rovenskaya, and Tatiana 
Ermolieva propose that forecast-
based arrangements—combined 
with a more intelligent method 
for setting aside resources to 
build adaptive capacities for 
subsequent compensations—can 
offer a healthy balance between 
economic growth and security.

6	 Anomalous Localized 
Resonance and    
Associated Cloaking 

	 Regions of anomalous local-
ized resonance can lead to 
cloaking effects. Graeme 
Milton and Ross McPhedran 
investigate how polarizable 
dipole sources, with a strength 
proportional to the field acting 
on them, or sources produc-
ing constant power become 
cloaked as the loss in the system 
tends to zero. Many intriguing 
mathematical questions about 
this phenomenon remain.

7	 NIH Releases Strategic  
Plan for Data Science

	 The National Institutes of 
Health Office of Science Policy 
released its new Strategic Plan 
for Data Science to account for 
the rapidly-increasing supply of 
data across disciplines. The ini-
tiative seeks to use tools such as 
artificial intelligence, machine 
learning, and deep learning 
to mobilize advancements in 
data storage, communication, 
and processing. Members of 
the SIAM community weighed 
in on the initial draft, thus 
contributing to the report’s 
recognition of mathematics in 
advancing biomedical science.

8	 A Perspective on Altitudes
	 In his monthly column, Mark 

Levi delves into the problem 
of concurrency of triangle 
altitudes. He shows how seek-
ing a direct geometrical 
characterization of the concur-
rency point and embedding 
triangles in three dimensions 
can yield additional insights. 

7	 Professional Opportunities 
and Announcements
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Advancing SIAM
At the end of April, SIAM held a 

two-day strategic planning work-
shop called ADVANCE. The 25 attendees 
included SIAM officers and staff, as well 
as other members of the SIAM community 
selected to bring a diverse range of view-
points. The event, which took place just 
outside of Philadelphia, Pa., was facilitated 
by consultant and creativity expert Dennis 
Sherwood (see accompanying sidebar).

The impetus for the workshop came 
from the July 2017 Board and Council 
meetings, at which attendees recognized 
that it was timely for SIAM to engage 
in some strategic planning. The Board 
duly authorized the expenditure neces-
sary to run an appropriate event. Over 
several months, executive director Jim 
Crowley, chief operating officer Susan 
Palantino, and I developed—in consulta-
tion with Sherwood—a set of approxi-
mately 30 exercises for workshop use. 
Each one presented a list of questions on 
a particular topic and asked breakaway 
groups of six or so participants to indi-
vidually and silently write down their 
thoughts, share them with each other, and 
then ask, “how might this be different?” 
The topics included journals, member-
ship, diversity, conferences, fundraising, 
chapters and sections, new 
products, and the ways in 
which SIAM could make 
use of unlimited funds (a 
dream scenario designed 
to encourage new ideas).

The group generated a 
large number of objectives that SIAM 
staff, officers, committees, and the Board 
and Council will take forward, including 
through discussions at the 2018 Annual 
Meeting in Portland, Ore., this July. 
One idea aims to substantially increase 
SIAM’s fundraising efforts. Others tar-
get various aspects of SIAM’s journals 
programme, especially the utilization of 
technology; the provision of a vehicle for 
industrial members to communicate open 

problems and interesting applications; the 
enhancement of membership benefits; and 
an increase in the number of SIAM sec-
tions and student chapters.

A recurring theme was the need to bet-
ter exploit data when making decisions, 
though participants recognized that the 

required data is not always 
easy to obtain. Sherwood 
pointed out that inadequate 
data is often an excuse 
for organizations’ lack of 
action, and urged that SIAM 
not fall into this trap.

After two long days of hard work, 
ADVANCE participants were exhausted 
but energized by the productive discus-
sions. Several contributors observed that 
achieving the workshop’s results would 
have been difficult with the (necessarily) 
short discussions that occur at Board and 
Council meetings, and that the group of 
attendees was even more diverse than at 
those bodies.

Cartoon created by mathematician John de Pillis.

Members of the SIAM community gather in a breakaway group to discuss membership oppor-
tunities during ADVANCE, a recent strategic planning workshop that yielded various ideas 
about future directions for SIAM. Photo credit: Dennis Sherwood.

FROM  THE  SIAM 
PRESIDENT

By Nicholas Higham How to Have Great Ideas
I had been thinking about creativ-

ity for some time, and was stuck. Can 
you have ideas “on demand”? That 
seems crazy; ideas just “happen,” 
don’t they?

These thoughts were on my mind 
as I browsed the window of a game 
shop, seeking a present for my son’s 
eighth birthday. Then I saw a chess 
set, with all of the pieces laid out. But 
something was wrong — whoever 
had placed the pieces did not know 
the rules of chess, as the positions 
of the knights and bishops had been 
flipped. BANG! Creativity! That’s it!

As we all know, the starting posi-
tions of chess pieces are predeter-
mined: the rooks in the corners, the 
king and queen in the middle, the 
pawns at the front. But suppose play-
ers could choose where to put their 
pieces. Game play would then be dif-
ferent, and none of the conventional 
gambits would work.

I became aware of “chess vari-
ants” much later, but that sudden 
insight answered my question about 
creativity — how to have ideas “on 
demand.” Start with what you know 
(in chess, all the starting positions are 
given), ask how this might be differ-
ent (“suppose the rooks do not start 
in the corners”), and then let it be...

It’s that simple, and it works every 
time. This philosophy also embodies 
two very important first principles:

• When it comes to creativity, the 
goal is not novelty, but rather differ-
ence — difference from the status 
quo, which is nicely grounded in reali-
ty, for we know what the status quo is. 

• As Arthur Koestler points out 
in The Act of Creation, creativity 
is the discovery of a fresh pattern 
formed from existing elements, not 
a “bolt from the blue.” It is all about 
things that are already there, simply 
configured in different patterns and 
combinations.

— Dennis Sherwood 

Dennis Sherwood runs his own 
U.K.-based consultancy, The Silver 
Bullet Machine Manufacturing 
Company Limited.

I look forward to working with SIAM 
staff and volunteers to take the ideas for-
ward over the coming months.

Nicholas Higham is Royal Society 
Research Professor and Richardson 
Professor of Applied Mathematics at the 
University of Manchester. He is the current 
president of SIAM.
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By Donald G. Aronson, Peter J. 
Olver, and Fadil Santosa

Austrian-born mathematician Hans 
Felix Weinberger passed away at the 

age of 88 in Durham, N.C., on September 
15, 2017. He was a faculty member of 
the University of Minnesota’s School of 
Mathematics for 37 years, and retired as 
professor emeritus in 1998. Hans played a 
vital role in elevating the school to its cur-
rent eminence and establishing the Institute 
for Mathematics and its Applications 
(IMA) on the Minneapolis campus. He 
specialized in the study of various aspects 
of partial differential equations; notable 
topics include his influential work on 
isoperimetric inequalities and the estima-
tion of eigenvalues, as well as contribu-
tions to and applications of the maximum 
principle. More recently, Hans turned his 
attention to mathematical biology. He was 
active in research throughout his academic 
life, a habit he maintained through retire-
ment and until his death.

Hans was born in Vienna, Austria, on 
September 27, 1928. The Weinberger fam-
ily emigrated to the U.S. in 1938 and 
eventually settled in Altoona, Pa. Hans was 
an excellent student and graduated from 
high school at the age of 16. He was very 
interested in science and became a finalist 
in the 1945 Westinghouse Science Talent 
Search for his design of a self-inflating life 
vest for the U.S. Navy, which earned him a 
patent. Hans enrolled as a physics major at 
the Carnegie Institute of Technology (now 
Carnegie Mellon University), and received 
his M.S. in physics in 1948 and his Sc.D. 
in mathematics in 1950 — at the age of 
21. His thesis, entitled “Fourier Transform 
of Moebius Series,” was supervised by 

Richard Duffin. Interestingly, the legendary 
John Nash was Hans’s roommate for one 
semester; Sylvia Nasar’s A Beautiful Mind 
offers a brief account of their relationship.

After receiving his Sc.D., Hans worked 
at the University of Maryland, College Park 
and spent 10 years at its Institute of Fluid 
Dynamics and Applied Mathematics. In 
1960, he joined the faculty of the University 
of Minnesota as a 
full professor, serv-
ing as department 
head from 1967 to 
1969. He supervised 
nine Ph.D. students 
and counted David 
Gilbarg, Joseph 
Keller, Lawrence 
Payne, George 
Pólya, and Murray 
Protter among his 
collaborators. Hans 
also collaborated 
locally with Donald 
Aronson, Leonid 
Hurwicz (Nobel lau-
reate in economics) 
and James Serrin, 
among others. He 
wrote or coauthored 
over 140 research 
papers, with the last 
appearing in 2015.

Hans published three influential books: 
Variational Methods for Eigenvalue 
Approximation, based on his Conference 
Board of the Mathematical Sciences lec-
tures; Maximum Principles in Differential 
Equations with Protter, which was the stan-
dard reference for many years; and the 
widely-used textbook A First Course in 
Partial Differential Equations. In 1986, he 

was elected as an American Academy of 
Arts and Sciences member. He was also a 
member of the inaugural class of American 
Mathematical Society fellows.

In 1979, in response to the National 
Science Foundation’s (NSF) request for 
proposals to establish a new national math-
ematics research institute, Hans—along 
with George Sell and Willard Miller, Jr.—

submitted a proposal 
to establish the IMA 
at the University of 
Minnesota. They 
envisioned an insti-
tute that would look 
outward from the 
core of mathematics 
towards applications, 
and unite mathemati-
cians with scientists 
from industry and 
other disciplines to 
work on problems 
of mutual inter-
est. The proposal—
though radical—was 
funded by the NSF, 
and Hans served as 
the institute’s first 
director from 1982 
to 1987. Under his 
leadership, the IMA 
quickly became 

known for its cutting-edge scientific pro-
grams; unique, collaborative atmosphere; 
and reputation as a training ground for 
postdoctoral researchers. Hans was very 
much a hands-on director, attending near-
ly all lectures and collaborating with visi-
tors and postdocs.

As a lifelong member of SIAM, Hans 
was active in the organization since its 

Obituary: Hans F. Weinberger
inception in 1952. His earliest SIAM pub-
lication dates back to 1957, in the Journal 
of the Society for Industrial and Applied 
Mathematics (the only SIAM journal at 
the time). He later served on the edito-
rial boards of the SIAM Journal on Matrix 
Analysis and Applications and the SIAM 
Journal on Mathematical Analysis, and was 
elected to the Board of Trustees in 1983.

Hans was modest and unassuming, but 
possessed prodigious mathematical talent. 
His office door was always open, welcom-
ing students, colleagues, and visitors to 
come in and discuss their current work. 
Hans was quick to see the essence of any 
problem and often able to offer extremely 
helpful comments and suggestions. He 
was, in sum, an ideal colleague.

Hans is survived by his wife Laura and 
three children: Catherine, Sylvia, and Ralph.

Donald G. Aronson is professor emeri-
tus in the School of Mathematics at the 
University of Minnesota. His research 
interests include analysis of partial dif-
ferential equations—especially nonlinear 
diffusion—and applied dynamical systems. 
He collaborated with Hans Weinberger on 
a number of publications. Peter J. Olver 
has been at the University of Minnesota 
since 1980 and has headed its School 
of Mathematics since 2008. His research 
interests revolve around wide-ranging 
applications of symmetry and Lie groups to 
differential equations. He has written over 
140 research papers and several books. 
Fadil Santosa is a professor of mathematics 
at the University of Minnesota, and served 
as director of the Institute for Mathematics 
and its Applications from 2008 to 2017. 
He has worked in several areas of applied 
mathematics, including inverse problems, 
optimal design, and optics.

Hans Felix Weinberger, 1928-2017. Photo 
courtesy of the Institute for Mathematics 
and its Applications.

A Look at the Plenary Talks at MPE18
The second SIAM Conference 

on Mathematics of Planet Earth 
(MPE18)1 will take place this September 
in Philadelphia, Pa. As in the 2016 inau-
gural conference, researchers will use ple-
nary talks, minisymposia, and contributed 
papers and posters to communicate math-
ematical problems and results about Earth 
as a physical system, a system supporting 
life, a system managed by humans, and a 
system at risk. This year’s plenary talks 
will focus on the role of humans in man-
aging natural resources, predicting and 
mitigating hazards, and shaping a livable 
environment. The following are capsule 
previews of these four talks.

Clint Dawson
Where Water Meets Land: The 
Mathematics of the Coastal Ocean

Coastal regions around the world 
are home to millions of people. These 
regions are economic engines that hold 
delicate ecosystems. However, as we 
have seen in the past decade, they face 
threats from a variety of factors, includ-
ing a combination of hazardous events, 
climate change, and overdevelopment. In 
this talk, I will explore problems related 
to water at the coast: the interaction of 
ocean with land, the impacts of tropical 
storms and hurricanes, and our attempts 
to protect coastal populations while fac-
ing the realities of an uncertain future. I 
will describe mathematical challenges, 
along with model- and data-driven stud-
ies to better understand these issues.

Clint Dawson is the John J. McKetta 
Centennial Energy Chair in Engineering 
at the University of Texas at Austin. 
He is also a professor in the Institute 
for Computational Engineering and 

1  https://www.siam.org/conferences/CM/
Main/mpe18

Sciences, and head of the Computational 
Hydraulics Group.

Suzanne Lenhart
Optimal Control Techniques Applied to 
Management of Natural Resource Models

Humans manage natural resources for a 
variety of reasons, such as to optimally har-
vest them with minimal ecological impact 
or to suppress or prevent large-scale dam-
aging events. Through two examples—one 
involving fish harvesting and the other 
concerning fire 
events—my talk 
will demonstrate the 
use of techniques 
from optimal con-
trol theory for such 
purposes. In the first 
example, I model 
the optimal harvest 
of fishery stocks 
while minimizing 
negative effects on 
fish habitat with a 
system of partial 
differential equa-
tions that capture 
the problem’s spa-
tiotemporal dynam-
ics. I then investi-
gate the tradeoff 
between managing forests for fire preven-
tion and monetary spending to suppress 
fires with a model that incorporates the 
stochasticity of large-scale fire events.

Suzanne Lenhart is a Chancellor’s 
Professor of Mathematics at the University 
of Tennessee and the Associate Director 
for Education and Outreach at the National 
Institute for Mathematical and Biological 
Synthesis. She also worked as a part-time 
research scientist at Oak Ridge National 
Laboratory for 22 years.

Bertrand Lemasson
Insights from Studying the Interface 
between Sentience and Sociability in 
Animal Movement Patterns

Animals’ sensory capabilities have 
important fitness consequences, but so does 
their sociability. Creatures large and small, 
from herds of grazing animals to schools of 
fish, rely on their senses for both naviga-
tion through the world and social interac-
tions, which in turn influence their abili-
ties to track resources, avoid threats, and 

find mates. Efforts 
to model and man-
age natural resourc-
es rarely take such 
social processes into 
account. An impor-
tant complication is 
that the benefits of 
social interaction are 
context-dependent; 
organisms must rap-
idly decide when 
and whom to follow. 
This presentation will 
demonstrate how indi-
vidual animal interac-
tions arise and why 
their study is impor-
tant. It will examine 
the influence of these 

interactions on individual capabilities like 
stamina, memory, and the ability of ephem-
eral social ties to generate collective move-
ments that deviate drastically from our 
expectations. I will then review how we 
can integrate such information into math-
ematical models and put it into practice to 
improve ecosystem management.

Bertrand Lemasson is a behavioral ecol-
ogist at the U.S. Army Engineer Research 
and Development Center at the Hatfield 
Marine Science Center in Oregon. He is 

currently part of an interdisciplinary group 
that studies questions at the interface of 
cognitive ecology and ecohydraulics.

Claudia Sagastizabal
How Energy Optimization is Responding 
to the Challenge of Decarbonizing our 
Economies

Worldwide efforts to complete the tran-
sition to sustainable energy systems rely 
crucially on the shift from electricity gen-
eration based on fossil fuels to renewable 
energy sources. Unfortunately, the pro-
cess is fraught with complications: such 
renewable sources are often intermittent, 
and their storage requires more distributed 
generation, new flexibility markets, and 
the facilitation of the roles of “prosumers” 
(producers/consumers) and aggregators in 
the energy value chain. These changes in 
technology and market structure, com-
bined with the expected massive electri-
fication of transportation, will make elec-
tricity supply and demand less predictable 
but potentially more versatile. The new 
paradigms for the operation and pricing of 
energy systems result in multiobjective and 
bilevel optimization models whose inher-
ent nonconvexity poses challenges from 
the mathematical viewpoint — on both 
theoretical and numerical levels. During 
this talk, I will discuss the resulting oppor-
tunities for mathematical researchers and 
new problems of control and optimization 
that arise in this context.

Claudia Sagastizabal is an indepen-
dent mathematical researcher based at the 
Instituto Nacional de Matemática Pura e 
Aplicada in Rio de Janeiro, Brazil. Trained 
in numerical optimization, she has extensive 
experience working with large companies 
in the energy and automobile sectors in 
Europe and South America.

The second SIAM Conference on 
Mathematics of Planet Earth (MPE18) will 
take place this September in Philadelphia, Pa.
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well-publicized success in image classifi-
cation has encouraged continued work and 
produced other amazing technologies, such 
as real-time text translation.

Unfortunately, DNN adoption powered 
by these successes—combined with the 
open-source nature of the machine learning 
community—has outpaced our theoretical 
understanding. We cannot reliably identify 
when and why DNNs will make mistakes. 
Though this does admittedly provide comic 
relief and fun fodder in research talks about 
applications like text translation, a single 
error can be very costly in tasks such as 
medical imaging. Additionally, DNNs have 
shown susceptibility to so-called adversarial 
examples, or data specifically designed to 
fool a DNN. We can generate such exam-
ples with imperceptible deviations from an 
image, causing the system to misclassify an 
image that is nearly identical to one that is 
correctly classified. Adversarial examples 
in audio applications can also exert control 
over popular systems like Amazon’s Alexa 
or Apple’s Siri, allowing malicious access 
to devices containing personal information. 
As we utilize DNNs in increasingly sensi-
tive applications, a better understanding of 
their properties thus becomes imperative.

Early DNN theory employed learning and 
function approximation theory to analyze 
quantities like the Vapnik-Chervonenkis 
dimension. Although such quantities char-
acterize DNN complexity with respect to 
training data, many important questions 
pertaining to generalization, expressibil-
ity, learning rule efficiency, intuition, and 
adversarial example susceptibility remain. 
More recent interpretations begin to address 
these questions and fall into three main 
analysis styles. First are methods to under-
stand the explicit mathematical functions of 
DNNs by demonstrating the ways in which 
specific combinations of nonlinearities and 
weights recover well-known functions on 
the data. The second approach analyzes 
theoretical capabilities and limitations of 
the sequence of functions present in all 
DNNs — again, given assumptions on the 
nonlinearities and weights. These analyses 

include quantifications of the data-depen-
dent cost-function landscape. Finally, a 
third class of techniques focuses on learn-
ing algorithms that solve the high-dimen-
sional, nonlinear optimization programs 
required to fit DNNs, and attempts to char-
acterize the way in which these algorithms 
interact with specific DNN architectures.

Advances in DNN theory include many 
different sources of intuition, such as 
learning theory, sparse signal analysis, 
physics, chemistry, and psychology. For 
example, researchers have related the 
iterative affine-plus-threshold structure to 
algorithms that find sparse representations 
of data [3]. A generalization of this result 
temporally unrolls the algorithmic itera-
tions that solve regularized least-squares 
optimization programs
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projection is a pointwise nonlinearity that 
mimics DNN architectures. Treating β�t as 
different vectors at each algorithmic itera-
tion, these variables can map to the node 
values at subsequent DNN layers, with 
weights w A A IT= +  between layers, a 
bias b A yT= ,  and nonlinearity defined 
by the proximal projection. This example 
offers a sense of the intuitions gleaned 
by mapping the network operations onto 
well-known algorithms. And this single 
interpretation is just the tip of the iceberg; 
a larger, non-exhaustive list of additional 
explanations is available in [1].

The sheer quantity of recent publica-
tions on DNN theory demonstrates just 
how relentless the search for meaning has 
become. An interesting pattern begins to 

emerge in the breadth of possible interpre-
tations. The seemingly limitless approaches 
are mostly constrained by the lens with 
which we view the mathematical opera-
tions. Physics-based interpretations stem 
from researchers with a physics background. 
Connections to sparsity and wavelets come 
from well-known scientists in those fields. 
Ultimately, the interpretation of DNNs 
appears to mimic a type of Rorschach test 
— a psychological test wherein subjects 
interpret a series of seemingly ambigu-
ous ink-blots (see Figure 1b, on page 1). 
Rorschach tests depend not only on what 
(the result) a subject sees in the ink-blots 
but also on the reasoning (methods used) 
behind the subject’s perception, thus mak-
ing the analogy particularly apropos.

On the one hand, these diverse perspec-
tives are unsurprising, given DNNs’ status 
as arbitrary function approximators. Specific 
network weights and nonlinearities allow 
DNNs to easily adapt to various narratives. 
On the other hand, they are not unique 
in permitting multiple interpretations. We 
can likewise view standard, simpler algo-
rithms through many lenses. For example, 
we can derive the Kalman filter—a time-
tested algorithm that tracks a vector over 
time—from at least three interpretations: the 
orthogonality principle, Bayesian maximum 
a-priori estimation, and low-rank updates 
for least-squares optimization. These three 
derivations allow people with different 
mathematical mindsets (i.e., linear algebra 
versus probability theory) to understand 
the algorithm. Yet compared to DNNs, the 
Kalman filter is simple; it consists of only 
a handful of linear-algebraic operations. Its 
function is completely understood, allowing 
for validation of each viewpoint despite the 
different underlying philosophies.

Similar validation for DNN theory 
requires a convergence of the literature. We 
must distinguish between universal results 
that are invariant to the analysis perspective 
and those that are specific to a particular 
network configuration. A healthy debate is 
already underway, with respect to the infor-
mation bottleneck interpretation of DNNs 
[4, 5]. We should also work to better under-
stand the interactions between functions that 
DNNs perform, their mathematical proper-
ties, and the impact of optimization methods. 

Unfortunately, DNN complexity introduces 
numerous challenges. Many standard tools, 
such as those that attempt to comprehend 
a model’s generalization from training data 
[6] or empirically assess important network 
features [2], are difficult to apply to DNNs. 
Luckily, there is no shortage of excitement, 
and we continue to enhance our understand-
ing of DNNs with time. The community is 
also beginning to coalesce, and dedicated 
meetings—like workshops at the Conference 
on Neural Information Processing Systems 
and the recent Mathematical Theory of Deep 
Neural Network symposium at Princeton 
University—will further accelerate our pace.
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Integrated Catastrophic Risk Management: Robust 
Balance between Ex-ante and Ex-post Measures
By Yuri M. Ermoliev, Stephen M. 
Robinson, Elena A. Rovenskaya, 
and Tatiana Y. Ermolieva

Humans continually face catastrophes 
involving natural disasters, such as 

floods, droughts, hurricanes, and large-
scale fires. In today’s highly interconnected 
world, losses from such incidents have 
increased greatly due to growing population 
densities, asset concentration in disaster-
prone areas, and environmental change 
from anthropogenic impacts.

Catastrophic natural disasters are ran-
dom events that are rare but very impact-
ful. Traditionally, most catastrophic losses 
are paid ex-post (adaptively) by indi-
viduals (property owners), government 
agencies, insurers and reinsurers, charity 
institutions, and international organiza-
tions, rather than through explicit ex-ante 
(forecast-based) arrangement via long-
term strategic decisions [7].

Moreover, there is typically little or no 
prior agreement as to who should bear what 
portions of the monetary cost. In anticipa-
tion of the need to cover potentially large 
losses in an ad-hoc way, responsible agen-
cies retain certain budget resources for this 
purpose. However, such retention reduces 
the options for profitable investment; in 
the case of large funds, it can potentially 
stifle economic growth.

We propose that intensification of ex-
ante measures—combined with a more 
intelligent method for setting aside 
resources to build adaptive capacities for 
ex-post compensations, contingent cred-
its, catastrophic bonds, monitoring, and 
regulation—can significantly reduce the 
overall burden on national economies and 
strike a healthy balance between econom-
ic growth and security. Integrated long-
term approaches to risk management and 
economic development, with an explicit 
emphasis on the possibility of rare high-

consequence catastrophes, enable effec-
tive decisions in this context. This tactic 
requires one to account for the dependence 
between decisions and risk distributions.

Existing observations demonstrate 
the increasing magnitude and variabil-
ity of risks, indicating that one cannot 
assume catastrophic risk distribution to 
be Gaussian; in fact, they are skewed and 
have fat tails. Their focus on tails makes 
quantile-based risk measures—e.g., value 
at risk (VaR) and conditional value at 
risk (CVaR)—more appropriate than vari-

ance-based measures applicable only to 
Gaussian distributions. We have developed 
and applied a new approach to stochastic 
optimization in a number of case studies. 
Our strategy allows us to include quantile-
based performance functions in decision 
support models for integrated catastrophic 
risk management. These models are char-
acterized by complex nested distributions 
shaped by the decisions of policymakers. 
Here we briefly outline this approach, its 

Figure 1. Geographical distribution of robust premiums as percentage of the 100-year flood damages. Figure courtesy of [6].

See Risk Management on page 6
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of the 13 seats.” He successfully testified 
about these numbers in October 2017 dur-
ing Common Cause v. Rucho — the North 
Carolina partisan gerrymandering case.

Mattingly began to ponder the sig-
nificance of seven as the magic number. 
“Maybe it’s not fair that Republicans won 
nine seats, but it could be seven or eight,” he 
said, highlighting the difficulty of discern-
ing whether the number of seats won by any 
party is fair, given an election outcome. He 
also investigated the number of Democrats 
or Republicans that a district should have 
when affiliated with a particular party. 
Essentially, how much is too much?

Evaluating Partisan 
Gerrymandered Maps

Along with his postdoctoral fellow 
Gregory Herschlag and a team of students, 
Mattingly employs sampling methods to 
estimate the entire population of admissible 
redistricting plans. They accomplish this by 
sampling a probability measure placed on 
compliant redistricting plans. Mattingly’s 
goal is to characterize the level of gerry-
mandering in a district plan by identifying 
ways in which a plan deviates from what 
is typical. The team also utilizes sampling 
methods to estimate the population of redis-
tricting’s characteristic and label outliers.

Districts are required to comply with 
certain federal and state criteria in order to 
be viable. To construct his model, Mattingly 
considers the district standards proposed 
by North Carolina legislation. The first of 
these is compactness, which enables the use 
of geometry to quantify a district. Mattingly 
defines compactness with the isoparametric 
score (popular in legal literature) — the 
ratio between the square of the perimeter 
and district area. Compared to other mea-
sures, the isoparametric measure is less 
forgiving to undulating district boundaries.

Since North Carolina has 13 districts, 
Mattingly’s model defines the score as
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denotes the corresponding boundary. The 
function x : { , ... },V ® 1 2 13  represents the 
redistricting plan and covers the 13 districts. 

The second criterion ensures that the 
state population is evenly distributed 
across districts, as mandated by legisla-
tion. One defines it as
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The third stipulation ensures minimal 
splitting of counties across districts to 
maintain communities of interest. A single 
county becomes a split county if it is 
broken into two districts. “We want to 
penalize whenever you split the county,” 
Mattingly said. “In North Carolina, the 
Wake and Mecklenburg counties are split 
where Raleigh and Charlotte are respec-
tively located. Both counties have too many 
people for one congressional district. The 
score penalizes whenever the county is 
further split, and we wanted to use the score 
to limit it to two splits utmost — hence the 
soft penalization.” The metric Mattingly 
thus described is called the county score 
function, and is given by
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counties split between two and three dis-
tricts respectively. But what does “sec-
ond-largest intersection of district with 
county” entail? “Splitting the county into 
two uneven chunks of one large and one 
small, such as 90-10, is better than 50-50,” 
Mattingly said. In the case of a 90-10 split, 
“10” is used. When the county is split in 
three or more different ways, M

c
—a large 

constant—reflects the heavy penalty.
The Voting Rights Act (VRA) of 1965, 

which ensures that minorities elect a fair 

number of representatives that accurately 
mirrors their population, is the final crite-
rion. African Americans make up 20 per-
cent of North Carolina’s population. Thus, 
the 2016 interpretation of VRA stipulation 
warrants that they elect leaders from at least 
two districts, defined by
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with m1  and m2  representing the cur-
rent percentage of the African American 
minority population living in districts with 
first- and second-highest percentage of the 
community, determined by the 2016 North 
Carolina redistricting plan to be 44.48 and 
36.2 percent respectively. H  is defined as 
H x x( ) ,= ≤0 0  and H x x x( ) , .= >0  If 
m1  and m2  underrepresent the current 
percentage of African Americans, a posi-
tive value for J

m
( )x  results, thus convert-

ing the score into a penalty.
Mattingly calls these mathematical 

models of conditions “soft versions of the 
constraints,” referring to smoothing terms 
such as county-splitting constants—W

2
 

and W
3

 in (3), and a square root func-
tion in (4)—to avoid discrete jumps and 
instead provide a smooth (continuous) 
ramping of values.

The researchers use a score function to 
add these subscore functions:
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The weights given by w  are all positive 
constants.

Redistricting plans define a probabil-
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b > 0  is characterized as the “inverse 
temperature,” analogous to the constant 
used in thermodynamics with an exponen-
tial distribution — a standard technique 
in Bayesian sampling. Thermodynamically 
speaking, low “energy”—represented by 
β ξJ( )—would imply higher probability 
Pβ ξ( ).  Because exploring the entire state 
space of the gerrymandering model comes at 
a large computational cost, Mattingly uses a 
Metropolis-Hastings algorithm—a Markov 
chain Monte Carlo method—to produce a 
set of random samples from the distribution.

He and his collaborators create a sample 
of 24,000 possible redistricting plans. They 
tally the votes for each fictional district and 
compare the outcomes with those of actual 
districts. Using the sample of redistricting 
plans for the 2012 and 2016 North Carolina 
congressional elections, Democrats could 
secure four to nine and three to seven seats 
respectively (see Figure 1, on page 1). The 
results tally with those from the redistrict-

ing plan used by a bipartisan commission 
as part of the “Beyond Gerrymandering” 
project.2 Figure 1 indicates that when com-
pared to the bipartisan plan, the 2012 and 
2016 North Carolina congressional elec-
tions show a bias towards Republicans. 
Results were calculated using fixed vote 
counts and changing district boundaries. 

Utilizing their sample of redistricting 
plans, Mattingly’s group represents the 
Democratic vote share distribution as a 
marginal box plot ordered from the most 
Republican to the most Democratic district, 
as shown in Figure 2 for the voting data from 
the 2012 (left) and 2016 (right) elections. 
They compare it with actual maps used in 
the 2012 and 2016 North Carolina elections, 
and the map generated from the judges’ 
bipartisan plan. The judges’ map almost 
follows a linear trend, very similar to the 
median map in Mattingly’s simulation set 
in the box and whisker plot. However, the 
actual election outcomes are quite different 
and resemble an “S” curve, with Democratic 
voters “packed” into overwhelmingly few 
districts with a Democratic majority (see  
upper right of Figure 2; the orange and 
purple dots occur as outliers). Similarly, 
the third- to sixth-most Democratic districts 
(eighth- to tenth-most Republican districts) 
seem to be “cracked,” i.e., underrepresented, 
with the election outcomes not reflective of 
the Democratic vote fraction, which is equal 
to or more than 50 percent.

When considering the impossibility of 
defining a universal score function across 
all states, Mattingly indicates that one must 
recognize each state’s different geopoliti-
cal properties and every election’s varied 
geopolitical makeup.

2  https://sites.duke.edu/polis/projects/
beyond-gerrymandering/

Nevertheless, mathematics is now at the 
forefront of the gerrymandering debate, 
with more states requiring mathematicians 
to perform fair evaluations of redistrict-
ed maps. Pennsylvania Gov. Tom Wolf 
recently enlisted mathematician Moon 
Duchin, who leads the Metric Geometry 
and Gerrymandering Group3 at Tufts 
University, to determine if the state’s maps 
were gerrymandered with a partisan bias. 
As Duchin succinctly put it, “This math is at 
the center of what seems to be a promising 
breakthrough in developing a legal frame-
work to identify gerrymanders.”

References
[1] Herschlag, G., Kang, H.S., Luo, 

J., Graves, C.V., Bangia, S., Ravier, 
R., & Mattingly, J. (2018). Quantifying 
Gerrymandering in North Carolina. Preprint, 

arXiv:1801.03783.

Further Reading
Department of Mathematics, Duke 

University. Quantifying gerrymandering: 
A nonpartisan research group centered @ 
Duke Math. Retrieved from https://sites.
duke.edu/quantifyinggerrymandering/.

Mattingly, J. & Vaughn, C. (2014). 
Redistricting and the will of the people. 
Cornell University Library, arXiv:1410.8796. 

Lakshmi Chandrasekaran received her 
Ph.D. in mathematical sciences from the 
New Jersey Institute of Technology. She 
earned her masters in science journalism 
from Northwestern University and is a 
freelance science writer whose work has 
appeared in several outlets. She can be 
reached on Twitter at @science_eye.

3  https://sites.tufts.edu/gerrymandr/
resources/
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advantages, and problems to which one can 
effectively apply it.

Optimization under              
Chance Constraints

We consider maximization of a pre-
scribed objective function—such as an 
insurer’s expected profit or a country’s 
social welfare—defined in a feasible set 
under chance constraints. These constraints 
can specify the desired or accepted prob-
ability of a system’s default, or the viola-
tion of certain security constraints (e.g., 
exceeding a prescribed emission level). 
The initial problem of maximizing an 
expected utility under chance constraints 
is equivalent to including the expected util-
ity combined with a nonsmooth function 
penalizing constraint violation.

The solution to such an augmented prob-
lem is often called a robust solution, as 
it is “reasonably good” for most realiza-
tions of the random input. The equiva-
lence between the two problems holds 
true for a rather general class of problems 
[3]. Specifically, the penalty term in the 
equivalent problem emerging from the 
problem’s transformation with chance con-
straints is essentially the expected short-
fall, or CVaR risk measure.

The robust solutions derived by this 
approach combine ex-ante and ex-post deci-
sions, where ex-ante measures are typically 
long-term investments in preventive actions 
(e.g., dams to inhibit flooding, earthquake-
resistant buildings, or water and energy 
infrastructure). Ex-post practices are flex-
ible short-term actions in response to ran-
dom events (e.g., reconstruction of dam-
aged infrastructure). Design of a robust 
mix of ex-ante and ex-post policies aims 
to invest in long-term precautionary pro-
cedures enabling optimal adaptive capac-
ity. Application of robust solutions affords 
security for large quantities of resources, as 
we observed in our case studies.

Transformation of the maximization 
problem (with discontinuous “hit-or-miss” 
type chance constraints) into one with the 
expected shortfall as penalty in the objec-
tive function renders the resulting optimiza-
tion problem nonsmooth. Standard gradi-
ent-based solution methods are thus inap-
plicable. Another fundamental complexity 
arises from catastrophic events’ dependence 
on agent decisions, eliminating conven-
tional independent scenario simulations 
and optimization procedures. Brute-force 
approaches quickly become computation-

ally infeasible, even for problems of realis-
tic dimension. For example, straightforward 
joint evaluations of n=10  location-spe-
cific decisions and m=10  independent 
scenarios for each location with only one 
second per evaluation could require 1010 

seconds — more than 317 years.
A numerical method that solves this 

problem efficiently combines a Monte 
Carlo-based catastrophe generator that 
produces realizations of random inputs/
variables (e.g., insolvency of an insurance 
system or damages to critical infrastruc-
ture) and a specific iterative stochastic 
optimization quasi-gradient procedure 
[1] with random stopping time moments. 
Such moments define catastrophe arrivals 
and induce long-term catastrophe-related 
social discounting [2].

Applications: The Value of an 
Integrated Catastrophic Risk 
Management Approach 

Researchers have applied the afore-
mentioned strategy in case studies of 
floods, earthquakes, windstorms, energy 
and information infrastructure networks, 
and homeland security [5]. For example, 
Ermolieva et al. considered the flood risks 
in a flood-prone area around Rotterdam in 
the Netherlands [6]. Due to the elevated 
risk, insurers set high premiums that many 
firms and households could not afford; this 
left a large number of assets uninsured. One 
derives high insurance premiums using the 
traditional actuarial average annual loss 
approach, which ignores heterogeneous 
exposures and sets the same premium for 
all regional contracts. Most importantly, 
it averages the expected losses over a 
period of years. Ermolieva et al. com-
pared this technique to robust premiums 
computed using the proposed approach 
to integrated catastrophic risk manage-
ment, which explicitly accounts for the fat-
tailed distribution of flood losses over the 
years and the regional differences in expo-
sure (see Figure 1, on page 4). Numerical 
results demonstrated that the high premi-
ums computed and applied in the region 
are unwarranted; insurers are essentially 
overpaid. Quantile-based stochastic opti-
mization suggests lower premiums, which 
can ensure the insurers’ solvency under all 
flood scenarios relevant to national flood 
safety standards (see Figure 2). This opti-
mizes the balance between the interests of 
insurers and the insured.

Many researchers have adopted and used 
the quantile-based approach. Our method is 
novel in that it integrates geographically-
explicit modeling of dependent catastroph-

ic risks with quantile-based stochastic opti-
mization for robust ex-ante and ex-post 
disaster risk management. It complements 
the standard risk-pooling concepts, extreme 
value theory, and mean-variance approach, 
all of which are valid and useful for inde-
pendent, frequent, low-consequence risks 
like car accidents. Due to the skewness of 
natural disasters’ loss distribution, applica-
tion of variance-based risk measures, for 
instance, would result in an underestima-
tion of high-magnitude risks, which can 
lead to disastrous societal consequences 
[4]. The approach we present is capable 
of handling non-Gaussian, decision-depen-
dent risks that are interdependent in space 
and time; such features are applicable to 
a variety of applications, from floods and 
other natural disasters to terrorist attacks.
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Figure 2. Insurers’ balance between premiums and coverage (in millions of euros) for 10-, 100-, 
and 1000-year floods for robust and conventional—average annual loss (AAL)—premiums. 
Large positive numbers in AAL cases indicate the level of overpayment. Figure courtesy of [6].

Risk Management
Continued from page 4

Anomalous Localized Resonance and Associated Cloaking
By Graeme W. Milton and        
Ross C. McPhedran

When you ring a bell, strike a drum, 
pluck a violin string, or excite a mol-

ecule, the length scale of oscillations in the 
associated eigenfunction (or eigenfunctions, 
when several modes are excited) dictates 
the length scale of the observed oscillations 
in the system. As the loss in the system 
moves towards zero, you approach a pole 
of the associated linear response function. 
By contrast, anomalous localized resonance 
(ALR) is associated with the approach to 
an essential singularity. It has the following 
three distinguishing features:

(1) As the loss goes to zero, finer and 
finer scale oscillations develop as modes 
increasingly close to the essential singular-
ity become excited. 

(2) As the loss goes to zero, the oscilla-
tions blow up in the region of anomalous 
resonance, but the fields outside of this 
region converge to a smooth field.

(3) The boundary of the region of 
anomalous resonance depends on the 
source position. 

We first discovered ALR when exploring a 
seeming paradox [10]. While analyzing qua-

sistatic dielectric equations, formal calcula-
tions showed that a coated disk—with a core 
of radius r

c
 and dielectric constant 

c
,  a shell 

with outer radius r
s
 and dielectric constant 

-
0
,  and outer radius r

s
—surrounded by a 

medium with dielectric constant 
0
 would 

respond to any applied multipolar field in the 
same way as a solid disk of dielectric constant 

c

 and radius r r r
s c0
2= / ,  embedded in the 

same medium of dielectric constant 0. We 
were solving  ⋅ = V 0  for the possibly 
complex potential V ,  with ( )x  taking the 
values c, -0, and 

0
 in the core, shell, and 

surrounding material. If the equivalence held, 
a dipole source at distance a from the center 
of the coated disk would be identical to a 
dipole source at distance a  from the center 
of the solid disk. In this case, the method 
of images implies that the actual dipole 
source—plus an image source at distance 
a r a r r a
I s c
= =

0
2 4 2/ /( ) from the center—rep-

resents the exterior field. But if this is greater 
than r

s
,  then the image source is in the physi-

cal region outside the coated disk, which 
contradicts both the rules of the method of 
images and the maximum principle.

To make things mathematically and phys-
ically kosher, you must add a small imagi-
nary part id  to the dielectric constant -

s
 

of the shell and take the limit as d® 0. The 
analysis and numerics show that the field 
converges to the expected field outside radi-
us a

I
, while developing enormous fine-scale 

oscillations blowing up as d® 0 inside 
radius a

I
.  From outside radius a

I
,  it thus 

looks almost as if an actual singularity exists 
at the expected position of the image charge, 
which we term a ghost source (see  Figure 
1, on page 8). The underlying theory and 
connection with essential singularities was 
developed in [1]. Mathematically under-
standing ghost sources is simple. Take the 
Taylor series expansion of f z z( ) /( )= −1 1  
and truncate the sum after 1/h  terms to 
obtain function f z

n
( ).  The series converges 

to f z( )  inside the radius of convergence 
| |z <1  as h® 0,  and for small h  it appears 
that f z

n
( )  has a ghost source at z=1. 

For | | ,z >1  the series diverges and f z
n
( ) 

develops enormous oscillations as h® 0, 
corresponding to the anomalous resonance. 
Though the explanation is simple, it is dif-
ficult to find a physical system where the 
truncation parameter h  is tied to the sys-
tem’s loss and the ghost source moves when 
the actual source moves.

Scientists later rediscovered ALR and 
ghost sources while theoretically and 

numerically investigating John Pendry’s 
assertion [12] that a slab of material with 
thickness d,  dielectric constant e0

,  and 
magnetic permeability u

0
—surrounded by 

a medium of dielectric constant 
0
 and 

magnetic permeability u
0
—would behave 

like a perfect lens, capable of produc-
ing a point-like image of a point source 
and unconstrained by the conventional dif-
fraction limit. The image is not an exact 
reproduction of the source, as that would 
correspond to a singularity in the field; 
rather, it is a ghost source at the boundary 
of an anomalous resonance region, similar 
to what we found outside the coated disk. 
To further elucidate the connection, you 
can view the slab as approximately a coat-
ed cylinder of enormous radius and shell 
thickness d,. The quasistatic approximation 
remains valid in the anomalous resonance 
regions—even when considering the time-
harmonic Maxwell equations—because the 
field gradients are so high. The essential 
role of anomalous resonance is evident as it 
sets the length scale of resolution.

Alexei Efros remarked that the slab lens 
did not make sense in the presence of a 
constant amplitude source positioned at 

See Cloaking on page 8
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and Announcements

Institute for Pure and Applied 
Mathematics 

Call for Proposals
The Institute for Pure and Applied Mathematics 

(IPAM) seeks program proposals from the math-
ematical, statistical, and scientific communities 
for long programs and workshops, to be reviewed 
at IPAM’s Science Advisory Board meeting in 
November. Long programs (three months) bring 
together researchers from mathematics and other 
disciplines—or multiple areas of mathemat-
ics—with the goal of facilitating collaborative, 
cross-disciplinary research. Winter workshops are 

typically five days in length. Exploratory work-
shops, which address an emerging problem or 
new application of math, are typically three days. 
Proposals for workshops on multiscale physics 
will be considered for inclusion in a series of 
workshops made possible by an endowment from 
the Julian Schwinger Foundation for Physics 
Research (JSF). For more information, go to www.
ipam.ucla.edu/propose-a-program/ or contact 
the IPAM director at director@ipam.ucla.edu. 
For all proposals, the inclusion of women and 
members of underrepresented minorities as speak-
ers, organizers, or participants is required.

NIH Releases Strategic 
Plan for Data Science
In early June, the National Institutes 

of Health (NIH) Office of Science 
Policy released its new Strategic Plan for 
Data Science. To account for the rapidly 
increasing supply of data spread across a 
broad number of researchers in a variety 
of formats, the NIH seeks to mobilize 
advancements in storage, communica-
tion, and processing using tools—such as 
artificial intelligence, machine learning, 
and deep learning—that can revolution-
ize the way in which data is stored and 
maintained. Furthermore, the NIH recog-
nizes the importance of developing robust 
information security approaches to pre-
serve public trust and patient protection. 
This strategic plan offers the external 
community further insight into the organi-
zation’s future priorities and needs in data 
creation and maintenance.

Many members of the SIAM com-
munity responded to the NIH’s initial 
draft with feedback related to data man-
agement, analytics, tools, and workforce 
development. Thanks to SIAM involve-
ment, the finalized plan now recogniz-
es the importance of mathematics when 
advancing biomedical science and refer-
ences the National Science Foundation’s 
(NSF) Division of Mathematical Sciences/
National Institute of General Medical 
Sciences’ Mathematical Biology Program 
as a model for the promotion of research at 
the intersection of these two fields.

The Strategic Plan for Data Science 
was created in response to specific chal-
lenges identified by the NIH:

• The growing cost of data management 
could diminish the NIH’s ability to enable 
scientists to generate data for understand-
ing biology and improving health. 

• The current data-resource ecosystem 
tends to be “siloed,” and is not optimally 
integrated or interconnected.

• Important datasets exist in many dif-
ferent formats and are often not easily 
shareable, findable, or interoperable. 

• The NIH has historically often sup-
ported data resources using funding 
approaches designed for research projects, 
which has resulted in a misalignment of 
objectives and review expectations. 

• Funding for tool development and 
data resources has become entangled, 
making it difficult for one to independent-
ly assess the utility of each and optimize 
value and efficiency. 

• No general system currently exists 
to transform innovative algorithms and 
tools created by academic scientists into 
enterprise-ready resources that meet 
industry standards of ease of use and 
efficiency of operation.

With the overarching principle that 
data should be Findable, Accessible, 
Interoperable, and Reusable (FAIR), the 
NIH has outlined five specific goals for its 

strategic plan, with objectives and a prog-
ress evaluation method under each goal:
1. Support a Highly Efficient and Effective 
Biomedical Research Data Infrastructure

1-1. Optimize Data Storage and Security
1-2. Connect NIH Data Systems

2. Promote Modernization of the Data-
Resources Ecosystem

2-1. Modernize the Data Repository 
Ecosystem

2-2. Support the Storage and Sharing of 
Individual Datasets

2-3. Leverage Ongoing Initiatives to 
Better Integrate Clinical and Observational 
Data into Biomedical Data Science
3. Support the Development and 
Dissemination of Advanced Data 
Management, Analytics, and Visualization 
Tools

3-1. Support Useful, Generalizable, and 
Accessible Tools and Workflows

3-2. Broaden Utility, Usability, and 
Accessibility of Specialized Tools

3-3. Improve Discovery and Cataloging 
Resources
4. Enhance Workforce Development for 
Biomedical Data Science

4-1. Enhance the NIH Data-Science 
Workforce

4-2. Expand the National Research 
Workforce

4-3. Engage a Broader Community
5. Enact Appropriate Policies to Promote 
Stewardship and Sustainability

5-1. Develop Policies for a FAIR Data 
Ecosystem

5-2. Enhance Stewardship
The NIH lists its implementation tactics 

under each objective in further detail. 
Several of the tactics under “Enhance 
Workforce Development for Biomedical 
Data Science” may be of interest to the 
research community. Relevant provisions 
include the following:

• The NIH states that the NSF is at the 
“forefront of supporting disciplines that 
contribute to data science,” and that it 
intends to work with the NSF on joint 
initiatives related to the training and edu-
cation of researchers at different stages 
of their careers. 

• To train its internal workforce, the 
NIH will recruit data scientists and oth-
ers from industry and academia for one- 
to three-year sabbaticals for “NIH Data 
Fellows,” who will be embedded in a 
range of high-profile, transformative proj-
ects like the Cancer Moonshot, the All 
of Us Research Program, and the Brain 
Research through Advancing Innovative 
Neurotechnologies Initiative to provide 
expertise not internally available.

The Strategic Plan for Data Science is 
available on the NIH website.1

— Lewis-Burke Associates LLC

1  https://datascience.nih.gov/sites/default/
files/NIH_Strategic_Plan_for_Data_Science_
Final_508.pdf
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In my “geometry for teachers” class a 
few years ago, I was trying to explain 

why the altitudes in a triangle are concur-
rent. The (perhaps) most common proof, 
which identifies the concurrency point as 
the orthocenter of another larger triangle, 
still felt insufficiently direct to me. I also 
wondered whether a more direct geomet-
rical characterization of the concurrency 
point exists.

As it turns out, embedding the problem 
in three dimensions yields an additional 
insight. To begin, we shove an arbitrary 

acute1 triangle A A A
1 2 3

 into the corner of a 
rectangular quadrant, as shown in Figure 1; 
each vertex now lies on a coordinate axis.

I claim that the concurrency point of 
the altitudes is precisely the foot P  of the 
perpendicular from the origin 
onto the plane of the triangle.

Proof
With P  defined as in the 

previous sentence, let B
1

 be 
the point at which the line 
A P

1
 intersects with side A A

2 3
.

1 Unfortunately, this approach does not 
seem to extend to obtuse triangles; or perhaps 
I am not acute enough to find an extension.

I claim that AB
1 1

 is an altitude of 
the triangle. Indeed, A A OP

2 3
^  (since 

A A AA A OP
2 3 1 2 3
∈ ⊥plane( ) )  and

A A OA
2 3 1

^  (since A A
2 3

Îplane
( ) ).OA A OA

2 3 1
^  In summary, because 

A A
2 3

 is normal to two lines 
(OP  and OA

1
) in the plane 

POA
1
,  it is normal to every 

line in that plane and thus 
to AB

1 1
.  So AB

1 1
 is indeed 

an altitude. The same argu-
ment applies to AB

i i
 for 

i =2 3, ,  meaning that all altitudes pass 
through P.  Q.E.D.

Proof 2
Here is a slightly different way to 

express essentially the same idea. 

A Perspective on Altitudes
Referring to Figure 2, construct the cir-
cular cone tangent to the plane of the 
triangle, with vertex A

1
 and axis AO

1
.  

Define B
1

 as the point at which the line of 
tangency intersects with side A A

2 3
.  Now 

AB A A
1 1 2 3

^ ,  according to Figure 3a, 
and AB

1 1
 passes through P, according to 

Figure 3b (with P  defined as above). This 
shows that the altitude from an arbitrarily 
chosen vertex passes through P.  Q.E.D.

The figures in this article were provided 
by the author.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 1. Pushing the triangle into a corner. 
B
i
 is the point at which the line AP

i
 inter-

sects with the opposite side.

Figure 2. The tangent cone.
Figure 3. In (a), the generator is orthogonal to the base for a right circular cone. In (b), the foot 
P  of the perpendicular to a tangent plane from a point O  on the axis lies on the line of tangency.

less than distance d/2  from a lens with 
dielectric constant − +ε δ

0
i  and magnetic 

permeability − +µ δ
0

i , because the power 
absorbed by the lens blows up to infin-
ity as d® 0.  Further exploration showed 
that realistic sources—such as polarizable 
dipole sources with a strength proportional 

to the field acting on them, or those pro-
ducing constant power—would become 
cloaked as the loss d® 0  [5]. These sourc-
es would create a region of anomalous 
resonance but essentially fail to influence 
the field outside of this region.

Multiple media sources covered our dis-
covery, which marked the beginning of an 
avalanche of news articles about cloaking. 
This led to some amusing situations: A crew 
planning a film about how James Bond 
changed the world wanted to interview us, 
and a South American show asked if we 
could appear invisible on stage. Our follow-
up paper [11] was downloaded over 13,000 
times — a good example of how beautiful 
animations (made by Nicolae-Alexandru P. 
Nicorovici) can attract an audience.

Many illuminating developments have 
followed. Worthy of special mention is 
Hoài-Minh Nguyên’s proof of cloaking due 
to ALR for a wide variety of coated inclu-
sion shapes [8], and proof that the annular 
cloak cloaks a nearby small dielectric object 
[9]. Several mathematical questions remain. 
For instance, how do the anomalously reso-
nant fields change if the source amplitude 
varies in time? Rather than being perfect, 

the lossless slab lens (with d= 0) cloaks a 
dipole source less than distance d/2  from 
the lens when one turns on the source expo-
nentially slowly [6], but what about other 
time dependencies? Furthermore, in what 
classes of equations can you see ALR and 
cloaking due to ALR? An exact correspon-
dence shows that it holds for static coupled 
equations of magnetoelectricity [7], and 
recent discoveries indicate that cloaking due 

to ALR holds for quasistatic elastodynamics 
[2, 3]. Can this type of cloaking feature mul-
tiple overlapping cloaking regions? Initial 
studies suggest that it cannot [4]. It will be 
fascinating to see how our understanding of 
this intriguing subject continues to evolve.

Acknowledgments: The work of Graeme 
Milton and Ross McPhedran was supported 
by the National Science Foundation and the 
Australian Research Council respectively.
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Figure 1. Discovery of ghost sources and anomalous resonance. 1a. The apparent divergence in the potential at a radius of 0.52, which is outside 
the shell radius of 0.40. 1b. The large oscillations of the potential show the anomalous resonance. Image courtesy of [10]. 

The National Academies is currently collecting responses from the scientific commu-
nity for its 2018 Global Survey of Mathematical, Computing, and Natural Scientists.1 
The survey is part of an international interdisciplinary project called “A Global 
Approach to the Gender Gap in Mathematical, Computing, and Natural Sciences: 
How to Measure It, How to Reduce It?” 11 partners, supported by the International 
Council for Science, seek to better understand the problems faced by mathematical, com-
puting, and natural science academics and practitioners around the world. 

The Gender Gap project homepage2 offers the following description: Currently, exist-
ing data on participation of women in the mathematical and natural sciences is scattered, 
outdated, and inconsistent across regions and research fields. The project will provide 
evidence to support the making of informed decisions on science policy. Temporal trends 
will be included, as the situation of women in science is constantly evolving, sometimes 
with some negative developments. Data will be collected3 via both a joint global survey 
and a bibliographic study of publication patterns. The survey is planned to reach 45,000 
respondents in more than 130 countries using at least 10 languages, while the study of 
publication patterns will analyze comprehensive metadata sources corresponding to 
publications of more than 500,000 scientists since 1970. Contrasts and common ground 
across regions and cultures, less developed and highly developed countries, men and 
women, mathematical and natural sciences, will be highlighted.

1  http://statisticalresearchcenter.org/global18
2  https://icsugendergapinscience.org
3  The American Institute of Physics’ Statistical Research Center is collecting the data.


