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Interpreting Deep Learning:
The Machine Learning Rorschach Test?

By Adam S. Charles

heoretical understanding of deep learn-

ing is one of the most important tasks
facing the statistics and machine learn-
ing communities. While multilayer—or
deep—neural networks (DNNs) originated
as engineering methods and models of
biological networks in neuroscience and
psychology, they have quickly become a
centerpiece of the machine learning toolbox
and are simultaneously one of the simplest
and most complex methods. DNNs con-
sist of many interconnected nodes that are
grouped into layers (see Figure la) with
stunningly simple operations. The n™ node
of the network at a given layer i, z.(n) is
merely a nonlinear function f(-) (e.g., a
saturating nonlinearity) applied to an affine
function of the previous layer

z,(n)=f(w,(0)z, ,+b,n).

where wHE]RNi represents the previous
layer’s node values, wi(n)ERNi are the
weights that project onto the n™ node of
the current layer, and b (n) is an offset.

However, these simple operations introduce
complexity due to two factors. First, the
sheer number of nodes creates an explosion
of parameters (w,(n) and b (n)), amplify-
ing the effects of nonlinearities. Moreover,
the weights and offsets are learned by
optimization of a cost function via iterative
methods, such as back-propagation. Despite

the resulting complexity, researchers have
utilized DNNs to great effect in many
important applications.

A “perfect storm” of large, labeled data-
sets; improved hardware; clever parameter
constraints; advancements in optimization
algorithms; and more open sharing of
stable, reliable code contributed to the rela-

tively recent success of DNNs in machine
learning. DNNs originally provided state-
of-the-art results in image classification,
i.e., the now-classic task of handwritten
digit classification that powers devices
like ATMs. While DNN applications have
since spread to many other areas, their

See Deep Learning on page 4
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Figure 1. What do you see? We can view deep neural networks (DNNs) in many ways. 1a. Stylistic example of a DNN with an input layer
(red), output layer (blue), and two hidden layers (green). This is a sample “ink blot” for DNN theory. Figure courtesy of Adam Charles. 1b.
Example of a normalized ink blot from the Rorschach test. Public domain image.
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Detecting Gerrymandering with Mathematics

By Lakshmi Chandrasekaran

arlier this year, federal judges struck

down the North Carolina state map
as unconstitutional because it had been
partisan gerrymandered. A few weeks
later, Pennsylvania district maps met the
same fate on similar grounds. While the
Supreme Court has upheld the unconsti-
tutionality of the Pennsylvania maps, it
recently sidestepped its decision on par-
tisan gerrymandering in Wisconsin and
Maryland, letting the maps stand for the
upcoming fall elections.

Gerrymandering comes into play every
ten years after completion of the census.
The political party in power in state leg-
islatures uses census information to alter
congressional districts in its favor via a
process called redistricting. Such fudg-
ing of maps has occurred since 1812, and
has been the target of numerous lawsuits.
Although the Supreme Court has ruled

racial gerrymandering unconstitutional, it
has so far declined to overturn gerryman-
dering on partisan grounds.

Judiciable Standard to
Curb Gerrymandering

Partisan gerrymandering involves pack-
ing vast swathes of the opponent’s support-
ers into fewer districts, or cracking areas of
opposition majorities across many districts
— thereby diluting the majority. These
actions reap benefits over several elections.
While the Supreme Court’s recent ruling
declared extreme partisan gerrymandering
unconstitutional, a judicially manageable
standard measuring the “extremeness” of a
given map is still lacking.

“The Supreme Court signed up for
mathematics by ruling that a partisan
gerrymander is unconstitutional if it is
extreme,” Eric Lander, founding director
of the Eli and Edythe L. Broad Institute
of MIT and Harvard, said. “There’s a con-

stitutional right to recognizing what is too
far — and that is mathematical.” Lander
wrote a court document! last summer
supporting the use of a statistical outlier
standard. Jonathan Mattingly, professor of
mathematics at Duke University, served
as a consultant to the document. Mattingly
has spent five years mathematically dis-
secting the structure of a typical redistrict-
ing to identify gerrymandering.

His interest was inspired by the 2012
elections for the North Carolina House
of Representatives. “Republicans won
the majority with nine out of 13 seats,”
Mattingly said. “I was at a meeting where
someone said that Democrats won the
majority of the votes. That was shocking,
since they should have had at least seven

See Gerrymandering on page 5
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Figure 1. Probability distribution of the congressional delegation’s composition for the 2012 and 2016 North Carolina congressional elec-
tions. Based on the sample of redistricting plans, Democrats could secure four to nine and three to seven seats for the 2012 and 2016
congressional elections respectively. The plan used by the judges from a bipartisan commission shows that Democrats would win six seats
in 2012 and four in 2016. In comparison, the 2012 and 2016 North Carolina congressional elections (in orange and purple) show a heavy bias
towards Republicans. Image courtesy of [1].
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4 Integrated Catastrophic
Risk Management: Robust
Balance between Ex-ante
and Ex-post Measures
Growing population densities,
asset concentration, and anthro-
pogenic climate change are
exacerbating the impact of natu-
ral disasters. Losses from such
calamities are typically paid
adaptively, rather than by long-
term strategic planning. Yuri
Ermoliev, Stephen Robinson,
Elena Rovenskaya, and Tatiana
Ermolieva propose that forecast-
based arrangements—combined
with a more intelligent method
for setting aside resources to
build adaptive capacities for
subsequent compensations—can
offer a healthy balance between
economic growth and security.

6 Anomalous Localized
Resonance and
Associated Cloaking
Regions of anomalous local-
ized resonance can lead to
cloaking effects. Graeme
Milton and Ross McPhedran
investigate how polarizable
dipole sources, with a strength
proportional to the field acting
on them, or sources produc-
ing constant power become
cloaked as the loss in the system
tends to zero. Many intriguing
mathematical questions about
this phenomenon remain.

7 NIH Releases Strategic
Plan for Data Science
The National Institutes of
Health Office of Science Policy
released its new Strategic Plan
for Data Science to account for
the rapidly-increasing supply of
data across disciplines. The ini-
tiative seeks to use tools such as
artificial intelligence, machine
learning, and deep learning
to mobilize advancements in
data storage, communication,
and processing. Members of
the STAM community weighed
in on the initial draft, thus
contributing to the report’s
recognition of mathematics in
advancing biomedical science.

8 A Perspective on Altitudes
In his monthly column, Mark
Levi delves into the problem
of concurrency of triangle
altitudes. He shows how seek-
ing a direct geometrical
characterization of the concur-
rency point and embedding
triangles in three dimensions
can yield additional insights.

7 Professional Opportunities
and Announcements

Advancing SIAM

At the end of April, SIAM held a
two-day strategic planning work-
shop called ADVANCE. The 25 attendees
included SIAM officers and staff, as well
as other members of the SIAM community
selected to bring a diverse range of view-
points. The event, which took place just
outside of Philadelphia, Pa., was facilitated
by consultant and creativity expert Dennis
Sherwood (see accompanying sidebar).

The impetus for the workshop came
from the July 2017 Board and Council
meetings, at which attendees recognized
that it was timely for SIAM to engage
in some strategic planning. The Board
duly authorized the expenditure neces-
sary to run an appropriate event. Over
several months, executive director Jim
Crowley, chief operating officer Susan
Palantino, and I developed—in consulta-
tion with Sherwood—a set of approxi-
mately 30 exercises for workshop use.
Each one presented a list of questions on
a particular topic and asked breakaway
groups of six or so participants to indi-
vidually and silently write down their
thoughts, share them with each other, and
then ask, “how might this be different?”
The topics included journals, member-
ship, diversity, conferences, fundraising,
chapters and sections, new

SIAM
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problems and interesting applications; the
enhancement of membership benefits; and
an increase in the number of SIAM sec-
tions and student chapters.

A recurring theme was the need to bet-
ter exploit data when making decisions,
though participants recognized that the

required data is not always

products, and the ways in
which SIAM could make
use of unlimited funds (a
dream scenario designed
to encourage new ideas).

FROM THE SIAM
PRESIDENT
By Nicholas Higham

easy to obtain. Sherwood
pointed out that inadequate
data is often an excuse
for organizations’ lack of
action, and urged that SIAM

The group generated a
large number of objectives that SIAM
staff, officers, committees, and the Board
and Council will take forward, including
through discussions at the 2018 Annual
Meeting in Portland, Ore., this July.
One idea aims to substantially increase
SIAM’s fundraising efforts. Others tar-
get various aspects of SIAM’s journals
programme, especially the utilization of
technology; the provision of a vehicle for
industrial members to communicate open

I\/Iembersof the SIAM community gather in a breakaway group to discss membership oppor-

not fall into this trap.

After two long days of hard work,
ADVANCE participants were exhausted
but energized by the productive discus-
sions. Several contributors observed that
achieving the workshop’s results would
have been difficult with the (necessarily)
short discussions that occur at Board and
Council meetings, and that the group of
attendees was even more diverse than at
those bodies.

tunities during ADVANCE, a recent strategic planning workshop that yielded various ideas
about future directions for SIAM. Photo credit: Dennis Sherwood.
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I look forward to working with SIAM
staff and volunteers to take the ideas for-
ward over the coming months.

Nicholas Higham is Royal Society
Research  Professor and Richardson
Professor of Applied Mathematics at the
University of Manchester. He is the current
president of SIAM.

How to Have Great Ideas

I had been thinking about creativ-
ity for some time, and was stuck. Can
you have ideas “on demand”? That
seems crazy; ideas just “happen,”
don’t they?

These thoughts were on my mind
as I browsed the window of a game
shop, seeking a present for my son’s
eighth birthday. Then I saw a chess
set, with all of the pieces laid out. But
something was wrong — whoever
had placed the pieces did not know
the rules of chess, as the positions
of the knights and bishops had been
flipped. BANG! Creativity! That’s it!

As we all know, the starting posi-
tions of chess pieces are predeter-
mined: the rooks in the corners, the
king and queen in the middle, the
pawns at the front. But suppose play-
ers could choose where to put their
pieces. Game play would then be dif-
ferent, and none of the conventional
gambits would work.

I became aware of “chess vari-
ants” much later, but that sudden
insight answered my question about
creativity — how to have ideas “on
demand.” Start with what you know
(in chess, all the starting positions are
given), ask how this might be differ-
ent (“suppose the rooks do not start
in the corners”), and then let it be...

It’s that simple, and it works every
time. This philosophy also embodies
two very important first principles:

* When it comes to creativity, the
goal is not novelty, but rather differ-
ence — difference from the status
quo, which is nicely grounded in reali-
ty, for we know what the status quo is.

* As Arthur Koestler points out
in The Act of Creation, creativity
is the discovery of a fresh pattern
formed from existing elements, not
a “bolt from the blue.” It is all about
things that are already there, simply
configured in different patterns and
combinations.

— Dennis Sherwood

Dennis Sherwood runs his own
U.K.-based consultancy, The Silver
Bullet Machine  Manufacturing
Company Limited.
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Obituary:

By Donald G. Aronson, Peter J.
Olver, and Fadil Santosa

ustrian-born mathematician Hans

Felix Weinberger passed away at the
age of 88 in Durham, N.C., on September
15, 2017. He was a faculty member of
the University of Minnesota’s School of
Mathematics for 37 years, and retired as
professor emeritus in 1998. Hans played a
vital role in elevating the school to its cur-
rent eminence and establishing the Institute
for Mathematics and its Applications
(IMA) on the Minneapolis campus. He
specialized in the study of various aspects
of partial differential equations; notable
topics include his influential work on
isoperimetric inequalities and the estima-
tion of eigenvalues, as well as contribu-
tions to and applications of the maximum
principle. More recently, Hans turned his
attention to mathematical biology. He was
active in research throughout his academic
life, a habit he maintained through retire-
ment and until his death.

Hans was born in Vienna, Austria, on
September 27, 1928. The Weinberger fam-
ily emigrated to the U.S. in 1938 and
eventually settled in Altoona, Pa. Hans was
an excellent student and graduated from
high school at the age of 16. He was very
interested in science and became a finalist
in the 1945 Westinghouse Science Talent
Search for his design of a self-inflating life
vest for the U.S. Navy, which earned him a
patent. Hans enrolled as a physics major at
the Carnegie Institute of Technology (now
Carnegie Mellon University), and received
his M.S. in physics in 1948 and his Sc.D.
in mathematics in 1950 — at the age of
21. His thesis, entitled “Fourier Transform
of Moebius Series,” was supervised by

Richard Duffin. Interestingly, the legendary
John Nash was Hans’s roommate for one
semester; Sylvia Nasar’s A Beautiful Mind
offers a brief account of their relationship.
After receiving his Sc.D., Hans worked
at the University of Maryland, College Park
and spent 10 years at its Institute of Fluid
Dynamics and Applied Mathematics. In
1960, he joined the faculty of the University
of Minnesota as a
full professor, serv-
ing as department
head from 1967 to
1969. He supervised
nine Ph.D. students
and counted David

Gilbarg, Joseph
Keller, Lawrence
Payne, George

Pélya, and Murray
Protter among his
collaborators. Hans
also  collaborated
locally with Donald
Aronson, Leonid
Hurwicz (Nobel lau-
reate in €conomics)
and James Serrin,
among others. He
wrote or coauthored

Hans F. Weinberger

was elected as an American Academy of
Arts and Sciences member. He was also a
member of the inaugural class of American
Mathematical Society fellows.

In 1979, in response to the National
Science Foundation’s (NSF) request for
proposals to establish a new national math-
ematics research institute, Hans—along
with George Sell and Willard Miller, Jr.—
submitted a proposal
to establish the IMA
at the University of
Minnesota.  They
envisioned an insti-
tute that would look
outward from the
core of mathematics
towards applications,
and unite mathemati-
cians with scientists
from industry and
other disciplines to
work on problems
of mutual inter-
est. The proposal—
though radical—was
funded by the NSF,
and Hans served as
the institute’s first
—1 director from 1982

over 140 research
papers, with the last
appearing in 2015.
Hans published three influential books:
Variational Methods for Eigenvalue
Approximation, based on his Conference
Board of the Mathematical Sciences lec-
tures; Maximum Principles in Differential
Equations with Protter, which was the stan-
dard reference for many years; and the
widely-used textbook A First Course in
Partial Differential Equations. In 1986, he

and its Applications.

Hans Felix Weinberger, 1928-2017. Photo
courtesy of the Institute for Mathematics

to 1987. Under his
leadership, the IMA
quickly  became
known for its cutting-edge scientific pro-
grams; unique, collaborative atmosphere;
and reputation as a training ground for
postdoctoral researchers. Hans was very
much a hands-on director, attending near-
ly all lectures and collaborating with visi-
tors and postdocs.

As a lifelong member of SIAM, Hans
was active in the organization since its

inception in 1952. His earliest SIAM pub-
lication dates back to 1957, in the Journal
of the Society for Industrial and Applied
Mathematics (the only SIAM journal at
the time). He later served on the edito-
rial boards of the SIAM Journal on Matrix
Analysis and Applications and the SIAM
Journal on Mathematical Analysis, and was
elected to the Board of Trustees in 1983.

Hans was modest and unassuming, but
possessed prodigious mathematical talent.
His office door was always open, welcom-
ing students, colleagues, and visitors to
come in and discuss their current work.
Hans was quick to see the essence of any
problem and often able to offer extremely
helpful comments and suggestions. He
was, in sum, an ideal colleague.

Hans is survived by his wife Laura and
three children: Catherine, Sylvia, and Ralph.

Donald G. Aronson is professor emeri-
tus in the School of Mathematics at the
University of Minnesota. His research
interests include analysis of partial dif-
ferential equations—especially nonlinear
diffusion—and applied dynamical systems.
He collaborated with Hans Weinberger on
a number of publications. Peter J. Olver
has been at the University of Minnesota
since 1980 and has headed its School
of Mathematics since 2008. His research
interests revolve around wide-ranging
applications of symmetry and Lie groups to
differential equations. He has written over
140 research papers and several books.
Fadil Santosa is a professor of mathematics
at the University of Minnesota, and served
as director of the Institute for Mathematics
and its Applications from 2008 to 2017.
He has worked in several areas of applied
mathematics, including inverse problems,
optimal design, and optics.

A Look at the Plenary Talks at MPE1S8

he second SIAM Conference

on Mathematics of Planet Earth
(MPE18)! will take place this September
in Philadelphia, Pa. As in the 2016 inau-
gural conference, researchers will use ple-
nary talks, minisymposia, and contributed
papers and posters to communicate math-
ematical problems and results about Earth
as a physical system, a system supporting
life, a system managed by humans, and a
system at risk. This year’s plenary talks
will focus on the role of humans in man-
aging natural resources, predicting and
mitigating hazards, and shaping a livable
environment. The following are capsule
previews of these four talks.

Clint Dawson

Where Water Meets Land: The
Mathematics of the Coastal Ocean
Coastal regions around the world
are home to millions of people. These
regions are economic engines that hold
delicate ecosystems. However, as we
have seen in the past decade, they face
threats from a variety of factors, includ-
ing a combination of hazardous events,
climate change, and overdevelopment. In
this talk, I will explore problems related
to water at the coast: the interaction of
ocean with land, the impacts of tropical
storms and hurricanes, and our attempts
to protect coastal populations while fac-
ing the realities of an uncertain future. I
will describe mathematical challenges,
along with model- and data-driven stud-
ies to better understand these issues.
Clint Dawson is the John J. McKetta
Centennial Energy Chair in Engineering
at the University of Texas at Austin.
He is also a professor in the Institute
for Computational Engineering and

I https://www.siam.org/conferences/CM/
Main/mpel8

Sciences, and head of the Computational
Hydraulics Group.

Suzanne Lenhart

Optimal Control Techniques Applied to
Management of Natural Resource Models

Humans manage natural resources for a
variety of reasons, such as to optimally har-
vest them with minimal ecological impact
or to suppress or prevent large-scale dam-
aging events. Through two examples—one
involving fish harvesting and the other
concerning  fire

Bertrand Lemasson

Insights from Studying the Interface
between Sentience and Sociability in

Animal Movement Patterns
Animals’ sensory capabilities have
important fitness consequences, but so does
their sociability. Creatures large and small,
from herds of grazing animals to schools of
fish, rely on their senses for both naviga-
tion through the world and social interac-
tions, which in turn influence their abili-
ties to track resources, avoid threats, and
find mates. Efforts

events—my talk
will demonstrate the
use of techniques
from optimal con-
trol theory for such
purposes. In the first
example, I model
the optimal harvest
of fishery stocks
while minimizing
negative effects on
fish habitat with a
system of partial
differential equa-
tions that capture

<

to model and man-
age natural resourc-
es rarely take such
social processes into
account. An impor-
tant complication is
that the benefits of
social interaction are
[} context-dependent;
organisms must rap-
idly decide when
and whom to follow.
This presentation will
demonstrate how indi-
vidual animal interac-

the problem’s spa-
tiotemporal dynam-
ics. I then investi-
gate the tradeoff
between managing forests for fire preven-
tion and monetary spending to suppress
fires with a model that incorporates the
stochasticity of large-scale fire events.

Suzanne Lenhart is a Chancellor’s
Professor of Mathematics at the University
of Tennessee and the Associate Director
for Education and Outreach at the National
Institute for Mathematical and Biological
Synthesis. She also worked as a part-time
research scientist at Oak Ridge National
Laboratory for 22 years.

The second SIAM  Conference on
Mathematics of Planet Earth (MPE18) will
take place this September in Philadelphia, Pa.

tions arise and why
their study is impor-
tant. It will examine
the influence of these
interactions on individual capabilities like
stamina, memory, and the ability of ephem-
eral social ties to generate collective move-
ments that deviate drastically from our
expectations. I will then review how we
can integrate such information into math-
ematical models and put it into practice to
improve ecosystem management.

Bertrand Lemasson is a behavioral ecol-
ogist at the U.S. Army Engineer Research
and Development Center at the Hatfield
Marine Science Center in Oregon. He is

currently part of an interdisciplinary group
that studies questions at the interface of
cognitive ecology and ecohydraulics.

Claudia Sagastizabal

How Energy Optimization is Responding
to the Challenge of Decarbonizing our
Economies

Worldwide efforts to complete the tran-
sition to sustainable energy systems rely
crucially on the shift from electricity gen-
eration based on fossil fuels to renewable
energy sources. Unfortunately, the pro-
cess is fraught with complications: such
renewable sources are often intermittent,
and their storage requires more distributed
generation, new flexibility markets, and
the facilitation of the roles of “prosumers”
(producers/consumers) and aggregators in
the energy value chain. These changes in
technology and market structure, com-
bined with the expected massive electri-
fication of transportation, will make elec-
tricity supply and demand less predictable
but potentially more versatile. The new
paradigms for the operation and pricing of
energy systems result in multiobjective and
bilevel optimization models whose inher-
ent nonconvexity poses challenges from
the mathematical viewpoint — on both
theoretical and numerical levels. During
this talk, I will discuss the resulting oppor-
tunities for mathematical researchers and
new problems of control and optimization
that arise in this context.

Claudia Sagastizabal is an indepen-
dent mathematical researcher based at the
Instituto Nacional de Matemdtica Pura e
Aplicada in Rio de Janeiro, Brazil. Trained
in numerical optimization, she has extensive
experience working with large companies
in the energy and automobile sectors in
Europe and South America.
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Integrated Catastrophic Risk Management: Robust
Balance between Ex-ante and Ex-post Measures

By Yuri M. Ermoliev, Stephen M.
Robinson, Elena A. Rovenskaya,
and Tatiana Y. Ermolieva

Humans continually face catastrophes
involving natural disasters, such as
floods, droughts, hurricanes, and large-
scale fires. In today’s highly interconnected
world, losses from such incidents have
increased greatly due to growing population
densities, asset concentration in disaster-
prone areas, and environmental change
from anthropogenic impacts.

Catastrophic natural disasters are ran-
dom events that are rare but very impact-
ful. Traditionally, most catastrophic losses
are paid ex-post (adaptively) by indi-
viduals (property owners), government
agencies, insurers and reinsurers, charity
institutions, and international organiza-
tions, rather than through explicit ex-ante
(forecast-based) arrangement via long-
term strategic decisions [7].

Moreover, there is typically little or no
prior agreement as to who should bear what
portions of the monetary cost. In anticipa-
tion of the need to cover potentially large
losses in an ad-hoc way, responsible agen-
cies retain certain budget resources for this
purpose. However, such retention reduces
the options for profitable investment; in
the case of large funds, it can potentially
stifle economic growth.

We propose that intensification of ex-
ante measures—combined with a more
intelligent method for setting aside
resources to build adaptive capacities for
ex-post compensations, contingent cred-
its, catastrophic bonds, monitoring, and
regulation—can significantly reduce the
overall burden on national economies and
strike a healthy balance between econom-
ic growth and security. Integrated long-
term approaches to risk management and
economic development, with an explicit
emphasis on the possibility of rare high-

consequence catastrophes, enable effec-
tive decisions in this context. This tactic
requires one to account for the dependence
between decisions and risk distributions.
Existing observations demonstrate
the increasing magnitude and variabil-
ity of risks, indicating that one cannot
assume catastrophic risk distribution to
be Gaussian; in fact, they are skewed and
have fat tails. Their focus on tails makes
quantile-based risk measures—e.g., value
at risk (VaR) and conditional value at
risk (CVaR)—more appropriate than vari-

ance-based measures applicable only to
Gaussian distributions. We have developed
and applied a new approach to stochastic
optimization in a number of case studies.
Our strategy allows us to include quantile-
based performance functions in decision
support models for integrated catastrophic
risk management. These models are char-
acterized by complex nested distributions
shaped by the decisions of policymakers.
Here we briefly outline this approach, its

See Risk Management on page 6
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Deep Learning

Continued from page 1

well-publicized success in image classifi-
cation has encouraged continued work and
produced other amazing technologies, such
as real-time text translation.
Unfortunately, DNN adoption powered
by these successes—combined with the
open-source nature of the machine learning
community—has outpaced our theoretical
understanding. We cannot reliably identify
when and why DNNs will make mistakes.
Though this does admittedly provide comic
relief and fun fodder in research talks about
applications like text translation, a single
error can be very costly in tasks such as
medical imaging. Additionally, DNNs have
shown susceptibility to so-called adversarial
examples, or data specifically designed to
fool a DNN. We can generate such exam-
ples with imperceptible deviations from an
image, causing the system to misclassify an
image that is nearly identical to one that is
correctly classified. Adversarial examples
in audio applications can also exert control
over popular systems like Amazon’s Alexa
or Apple’s Siri, allowing malicious access
to devices containing personal information.
As we utilize DNNs in increasingly sensi-
tive applications, a better understanding of
their properties thus becomes imperative.
Early DNN theory employed learning and
function approximation theory to analyze
quantities like the Vapnik-Chervonenkis
dimension. Although such quantities char-
acterize DNN complexity with respect to
training data, many important questions
pertaining to generalization, expressibil-
ity, learning rule efficiency, intuition, and
adversarial example susceptibility remain.
More recent interpretations begin to address
these questions and fall into three main
analysis styles. First are methods to under-
stand the explicit mathematical functions of
DNNs by demonstrating the ways in which
specific combinations of nonlinearities and
weights recover well-known functions on
the data. The second approach analyzes
theoretical capabilities and limitations of
the sequence of functions present in all
DNNs — again, given assumptions on the
nonlinearities and weights. These analyses

include quantifications of the data-depen-
dent cost-function landscape. Finally, a
third class of techniques focuses on learn-
ing algorithms that solve the high-dimen-
sional, nonlinear optimization programs
required to fit DNNs, and attempts to char-
acterize the way in which these algorithms
interact with specific DNN architectures.

Advances in DNN theory include many
different sources of intuition, such as
learning theory, sparse signal analysis,
physics, chemistry, and psychology. For
example, researchers have related the
iterative affine-plus-threshold structure to
algorithms that find sparse representations
of data [3]. A generalization of this result
temporally unrolls the algorithmic itera-
tions that solve regularized least-squares
optimization programs

argmin, ||y —Az|:+\R@)|, (1)

via a proximal projection method that
iteratively calculates

&, - Px(a;t +47(1y _Aae,))), )

where P, (z) is the nonlinear proximal
projection

mbin |z — |+ \R().

When the regularization function R(-) is
separable, R(z) = EkR(zk), the proximal
projection is a pointwise nonlinearity that
mimics DNN architectures. Treating /3, as
different vectors at each algorithmic itera-
tion, these variables can map to the node
values at subsequent DNN layers, with
weights w= A" A+ 1T between layers, a
bias b=A"y, and nonlinearity defined
by the proximal projection. This example
offers a sense of the intuitions gleaned
by mapping the network operations onto
well-known algorithms. And this single
interpretation is just the tip of the iceberg;
a larger, non-exhaustive list of additional
explanations is available in [1].

The sheer quantity of recent publica-
tions on DNN theory demonstrates just
how relentless the search for meaning has
become. An interesting pattern begins to

emerge in the breadth of possible interpre-
tations. The seemingly limitless approaches
are mostly constrained by the lens with
which we view the mathematical opera-
tions. Physics-based interpretations stem
from researchers with a physics background.
Connections to sparsity and wavelets come
from well-known scientists in those fields.
Ultimately, the interpretation of DNNs
appears to mimic a type of Rorschach test
— a psychological test wherein subjects
interpret a series of seemingly ambigu-
ous ink-blots (see Figure 1b, on page 1).
Rorschach tests depend not only on what
(the result) a subject sees in the ink-blots
but also on the reasoning (methods used)
behind the subject’s perception, thus mak-
ing the analogy particularly apropos.

On the one hand, these diverse perspec-
tives are unsurprising, given DNNs’ status
as arbitrary function approximators. Specific
network weights and nonlinearities allow
DNNS to easily adapt to various narratives.
On the other hand, they are not unique
in permitting multiple interpretations. We
can likewise view standard, simpler algo-
rithms through many lenses. For example,
we can derive the Kalman filter—a time-
tested algorithm that tracks a vector over
time—from at least three interpretations: the
orthogonality principle, Bayesian maximum
a-priori estimation, and low-rank updates
for least-squares optimization. These three
derivations allow people with different
mathematical mindsets (i.e., linear algebra
versus probability theory) to understand
the algorithm. Yet compared to DNNs, the
Kalman filter is simple; it consists of only
a handful of linear-algebraic operations. Its
function is completely understood, allowing
for validation of each viewpoint despite the
different underlying philosophies.

Similar validation for DNN theory
requires a convergence of the literature. We
must distinguish between universal results
that are invariant to the analysis perspective
and those that are specific to a particular
network configuration. A healthy debate is
already underway, with respect to the infor-
mation bottleneck interpretation of DNNs
[4, 5]. We should also work to better under-
stand the interactions between functions that
DNNs perform, their mathematical proper-
ties, and the impact of optimization methods.

Unfortunately, DNN complexity introduces
numerous challenges. Many standard tools,
such as those that attempt to comprehend
a model’s generalization from training data
[6] or empirically assess important network
features [2], are difficult to apply to DNNs.
Luckily, there is no shortage of excitement,
and we continue to enhance our understand-
ing of DNNs with time. The community is
also beginning to coalesce, and dedicated
meetings—Ilike workshops at the Conference
on Neural Information Processing Systems
and the recent Mathematical Theory of Deep
Neural Network symposium at Princeton
University—will further accelerate our pace.
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Gerrymandering

Continued from page 1

of the 13 seats.” He successfully testified
about these numbers in October 2017 dur-
ing Common Cause v. Rucho — the North
Carolina partisan gerrymandering case.
Mattingly began to ponder the sig-
nificance of seven as the magic number.
“Maybe it’s not fair that Republicans won
nine seats, but it could be seven or eight,” he
said, highlighting the difficulty of discern-
ing whether the number of seats won by any
party is fair, given an election outcome. He
also investigated the number of Democrats
or Republicans that a district should have
when affiliated with a particular party.
Essentially, how much is too much?

Evaluating Partisan
Gerrymandered Maps

Along with his postdoctoral fellow
Gregory Herschlag and a team of students,
Mattingly employs sampling methods to
estimate the entire population of admissible
redistricting plans. They accomplish this by
sampling a probability measure placed on
compliant redistricting plans. Mattingly’s
goal is to characterize the level of gerry-
mandering in a district plan by identifying
ways in which a plan deviates from what
is typical. The team also utilizes sampling
methods to estimate the population of redis-
tricting’s characteristic and label outliers.

Districts are required to comply with
certain federal and state criteria in order to
be viable. To construct his model, Mattingly
considers the district standards proposed
by North Carolina legislation. The first of
these is compactness, which enables the use
of geometry to quantify a district. Mattingly
defines compactness with the isoparametric
score (popular in legal literature) — the
ratio between the square of the perimeter
and district area. Compared to other mea-
sures, the isoparametric measure is less
forgiving to undulating district boundaries.

Since North Carolina has 13 districts,
Mattingly’s model defines the score as

J(6) = [boundam(é?Di(f))]2
! - [m"ea(Di(f))]

)

where D, (£) is the i district and 9D,(€)
denotes the corresponding boundary. The
function £:V —{1,2...13} represents the
redistricting plan and covers the 13 districts.

The second criterion ensures that the
state population is evenly distributed
across districts, as mandated by legisla-
tion. One defines it as

pop(D(§))
7,6 = [D(EEEEL _q),
p Op ideal
2)
N
where an ideal population pop,, . = 1_131

The third stipulation ensures minimal
splitting of counties across districts to
maintain communities of interest. A single
county becomes a split county if it is
broken into two districts. “We want to
penalize whenever you split the county,”
Mattingly said. “In North Carolina, the
Wake and Mecklenburg counties are split
where Raleigh and Charlotte are respec-
tively located. Both counties have too many
people for one congressional district. The
score penalizes whenever the county is
further split, and we wanted to use the score
to limit it to two splits utmost — hence the
soft penalization.” The metric Mattingly
thus described is called the county score
function, and is given by

J,(§) ={# of counties split between
two districts}. W,(§) +
M . {#of countries split between
three or more districts}. W,(§),

with W, (&) and W,(¢) as the weight func-
tions and defined as

W, (&) = X(Fraction of county VTDs

2
in second—largest intersection
1/2

of district with county)

W, (&) = X(Fraction of county

3
VTDs not in first or second—

largest intersection of

district with county)"” .

©)

W,(§) and W,(§) are summed over
counties split between two and three dis-
tricts respectively. But what does “sec-
ond-largest intersection of district with
county” entail? “Splitting the county into
two uneven chunks of one large and one
small, such as 90-10, is better than 50-50,”
Mattingly said. In the case of a 90-10 split,
“10” is used. When the county is split in
three or more different ways, M —a large
constant—reflects the heavy penalty.

The Voting Rights Act (VRA) of 1965,
which ensures that minorities elect a fair

The weights given by w are all positive
constants.

Redistricting plans define a proba(bi)l—
0PI

ity distribution function P, (§) = 7

8
B >0 is characterized as the “inverse
temperature,” analogous to the constant
used in thermodynamics with an exponen-
tial distribution — a standard technique
in Bayesian sampling. Thermodynamically
speaking, low “energy”’—represented by
BJ(&)—would imply higher probability
P (§). Because exploring the entire state
space of the gerrymandering model comes at
a large computational cost, Mattingly uses a
Metropolis-Hastings algorithm—a Markov
chain Monte Carlo method—to produce a
set of random samples from the distribution.

He and his collaborators create a sample
of 24,000 possible redistricting plans. They
tally the votes for each fictional district and
compare the outcomes with those of actual
districts. Using the sample of redistricting
plans for the 2012 and 2016 North Carolina
congressional elections, Democrats could
secure four to nine and three to seven seats
respectively (see Figure 1, on page 1). The
results tally with those from the redistrict-

Nevertheless, mathematics is now at the
forefront of the gerrymandering debate,
with more states requiring mathematicians
to perform fair evaluations of redistrict-
ed maps. Pennsylvania Gov. Tom Wolf
recently enlisted mathematician Moon
Duchin, who leads the Metric Geometry
and Gerrymandering Group® at Tufts
University, to determine if the state’s maps
were gerrymandered with a partisan bias.
As Duchin succinctly put it, “This math is at
the center of what seems to be a promising
breakthrough in developing a legal frame-
work to identify gerrymanders.”
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number of representatives that accurately
mirrors their population, is the final crite-
rion. African Americans make up 20 per-
cent of North Carolina’s population. Thus,
the 2016 interpretation of VRA stipulation
warrants that they elect leaders from at least
two districts, defined by

J (&) = JH(44.48% — m1)

+H(36.2% — m2),
“4)

with ml and m2 representing the cur-
rent percentage of the African American
minority population living in districts with
first- and second-highest percentage of the
community, determined by the 2016 North
Carolina redistricting plan to be 44.48 and
36.2 percent respectively. H is defined as
H(z)=0,2<0 and H(z)=z,2>0. If
ml and m2 underrepresent the current
percentage of African Americans, a posi-
tive value for J () results, thus convert-
ing the score into a penalty.

Mattingly calls these mathematical
models of conditions “soft versions of the
constraints,” referring to smoothing terms
such as county-splitting constants—W,
and W, in (3), and a square root func-
tion in (4)—to avoid discrete jumps and
instead provide a smooth (continuous)
ramping of values.

The researchers use a score function to
add these subscore functions:

TE€) = w7 (&) + ., (€)
FwJ (&) +w J (§).

m-m

ing plan used by a bipartisan commission
as part of the “Beyond Gerrymandering”
project. Figure 1 indicates that when com-
pared to the bipartisan plan, the 2012 and
2016 North Carolina congressional elec-
tions show a bias towards Republicans.
Results were calculated using fixed vote
counts and changing district boundaries.

Utilizing their sample of redistricting
plans, Mattingly’s group represents the
Democratic vote share distribution as a
marginal box plot ordered from the most
Republican to the most Democratic district,
as shown in Figure 2 for the voting data from
the 2012 (left) and 2016 (right) elections.
They compare it with actual maps used in
the 2012 and 2016 North Carolina elections,
and the map generated from the judges’
bipartisan plan. The judges’ map almost
follows a linear trend, very similar to the
median map in Mattingly’s simulation set
in the box and whisker plot. However, the
actual election outcomes are quite different
and resemble an “S” curve, with Democratic
voters “packed” into overwhelmingly few
districts with a Democratic majority (see
upper right of Figure 2; the orange and
purple dots occur as outliers). Similarly,
the third- to sixth-most Democratic districts
(eighth- to tenth-most Republican districts)
seem to be “cracked,” i.e., underrepresented,
with the election outcomes not reflective of
the Democratic vote fraction, which is equal
to or more than 50 percent.

When considering the impossibility of
defining a universal score function across
all states, Mattingly indicates that one must
recognize each state’s different geopoliti-
cal properties and every election’s varied
geopolitical makeup.

2 https://sites.duke.edu/polis/projects/
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Anomalous Localized Resonance and Associated Cloaking

By Graeme W. Milton and
Ross C. McPhedran

hen you ring a bell, strike a drum,

pluck a violin string, or excite a mol-
ecule, the length scale of oscillations in the
associated eigenfunction (or eigenfunctions,
when several modes are excited) dictates
the length scale of the observed oscillations
in the system. As the loss in the system
moves towards zero, you approach a pole
of the associated linear response function.
By contrast, anomalous localized resonance
(ALR) is associated with the approach to
an essential singularity. It has the following
three distinguishing features:

(1) As the loss goes to zero, finer and
finer scale oscillations develop as modes
increasingly close to the essential singular-
ity become excited.

(2) As the loss goes to zero, the oscilla-
tions blow up in the region of anomalous
resonance, but the fields outside of this
region converge to a smooth field.

(3) The boundary of the region of
anomalous resonance depends on the
source position.

We first discovered ALR when exploring a
seeming paradox [10]. While analyzing qua-

sistatic dielectric equations, formal calcula-
tions showed that a coated disk—with a core
of radius 7, and dielectric constant ¢ , a shell
with outer radius r and dielectric constant
—¢,, and outer radius r—surrounded by a
medium with dielectric constant ¢, would
respond to any applied multipolar field in the
same way as a solid disk of dielectric constant
e and radius 7, = r°/r, embedded in the
same medium of dielectric constant €. We
were solving V-eVV=0 for the possibly
complex potential V, with €(z) taking the
values €, —€,5 and € in the core, shell, and
surrounding material. If the equivalence held,
a dipole source at distance a from the center
of the coated disk would be identical to a
dipole source at distance a from the center
of the solid disk. In this case, the method
of images implies that the actual dipole
source—plus an image source at distance
a,=r’ja=r"/(r’a) from the center—rep-
resents the exterior field. But if this is greater
than 7, then the image source is in the physi-
cal region outside the coated disk, which
contradicts both the rules of the method of
images and the maximum principle.

To make things mathematically and phys-
ically kosher, you must add a small imagi-
nary part ¢§ to the dielectric constant —e_

of the shell and take the limit as 6 — 0. The
analysis and numerics show that the field
converges to the expected field outside radi-
us a, while developing enormous fine-scale
oscillations blowing up as 6— 0 inside
radius a,. From outside radius a,, it thus
looks almost as if an actual singularity exists
at the expected position of the image charge,
which we term a ghost source (see Figure
1, on page 8). The underlying theory and
connection with essential singularities was
developed in [1]. Mathematically under-
standing ghost sources is simple. Take the
Taylor series expansion of f(z)=1/(1—z)
and truncate the sum after 1/n terms to
obtain function f (z). The series converges
to f(z) inside the radius of convergence
|z|<1 as n — 0, and for small 7 it appears
that f (z) has a ghost source at z=1.
For |z|>1, the series diverges and f (2)
develops enormous oscillations as 77— 0,
corresponding to the anomalous resonance.
Though the explanation is simple, it is dif-
ficult to find a physical system where the
truncation parameter 7 is tied to the sys-
tem’s loss and the ghost source moves when
the actual source moves.

Scientists later rediscovered ALR and
ghost sources while theoretically and

numerically investigating John Pendry’s
assertion [12] that a slab of material with
thickness d, dielectric constant ¢, and
magnetic permeability — —surrounded by
a medium of dielectric constant ¢, and
magnetic permeability 4 —would behave
like a perfect lens, capable of produc-
ing a point-like image of a point source
and unconstrained by the conventional dif-
fraction limit. The image is not an exact
reproduction of the source, as that would
correspond to a singularity in the field;
rather, it is a ghost source at the boundary
of an anomalous resonance region, similar
to what we found outside the coated disk.
To further elucidate the connection, you
can view the slab as approximately a coat-
ed cylinder of enormous radius and shell
thickness d. The quasistatic approximation
remains valid in the anomalous resonance
regions—even when considering the time-
harmonic Maxwell equations—because the
field gradients are so high. The essential
role of anomalous resonance is evident as it
sets the length scale of resolution.

Alexei Efros remarked that the slab lens
did not make sense in the presence of a
constant amplitude source positioned at

Risk Management

Continued from page 4

advantages, and problems to which one can
effectively apply it.

Optimization under
Chance Constraints

We consider maximization of a pre-
scribed objective function—such as an
insurer’s expected profit or a country’s
social welfare—defined in a feasible set
under chance constraints. These constraints
can specify the desired or accepted prob-
ability of a system’s default, or the viola-
tion of certain security constraints (e.g.,
exceeding a prescribed emission level).
The initial problem of maximizing an
expected utility under chance constraints
is equivalent to including the expected util-
ity combined with a nonsmooth function
penalizing constraint violation.

The solution to such an augmented prob-
lem is often called a robust solution, as
it is “reasonably good” for most realiza-
tions of the random input. The equiva-
lence between the two problems holds
true for a rather general class of problems
[3]. Specifically, the penalty term in the
equivalent problem emerging from the
problem’s transformation with chance con-
straints is essentially the expected short-
fall, or CVaR risk measure.

The robust solutions derived by this
approach combine ex-ante and ex-post deci-
sions, where ex-ante measures are typically
long-term investments in preventive actions
(e.g., dams to inhibit flooding, earthquake-
resistant buildings, or water and energy
infrastructure). Ex-post practices are flex-
ible short-term actions in response to ran-
dom events (e.g., reconstruction of dam-
aged infrastructure). Design of a robust
mix of ex-ante and ex-post policies aims
to invest in long-term precautionary pro-
cedures enabling optimal adaptive capac-
ity. Application of robust solutions affords
security for large quantities of resources, as
we observed in our case studies.

Transformation of the maximization
problem (with discontinuous “hit-or-miss”
type chance constraints) into one with the
expected shortfall as penalty in the objec-
tive function renders the resulting optimiza-
tion problem nonsmooth. Standard gradi-
ent-based solution methods are thus inap-
plicable. Another fundamental complexity
arises from catastrophic events’ dependence
on agent decisions, eliminating conven-
tional independent scenario simulations
and optimization procedures. Brute-force
approaches quickly become computation-

ally infeasible, even for problems of realis-
tic dimension. For example, straightforward
joint evaluations of n=10 location-spe-
cific decisions and m=10 independent
scenarios for each location with only one
second per evaluation could require 100
seconds — more than 317 years.

A numerical method that solves this
problem efficiently combines a Monte
Carlo-based catastrophe generator that
produces realizations of random inputs/
variables (e.g., insolvency of an insurance
system or damages to critical infrastruc-
ture) and a specific iterative stochastic
optimization quasi-gradient procedure
[1] with random stopping time moments.
Such moments define catastrophe arrivals
and induce long-term catastrophe-related
social discounting [2].

Applications: The Value of an
Integrated Catastrophic Risk
Management Approach

Researchers have applied the afore-
mentioned strategy in case studies of
floods, earthquakes, windstorms, energy
and information infrastructure networks,
and homeland security [S]. For example,
Ermolieva et al. considered the flood risks
in a flood-prone area around Rotterdam in
the Netherlands [6]. Due to the elevated
risk, insurers set high premiums that many
firms and households could not afford; this
left a large number of assets uninsured. One
derives high insurance premiums using the
traditional actuarial average annual loss
approach, which ignores heterogeneous
exposures and sets the same premium for
all regional contracts. Most importantly,
it averages the expected losses over a
period of years. Ermolieva et al. com-
pared this technique to robust premiums
computed using the proposed approach
to integrated catastrophic risk manage-
ment, which explicitly accounts for the fat-
tailed distribution of flood losses over the
years and the regional differences in expo-
sure (see Figure 1, on page 4). Numerical
results demonstrated that the high premi-
ums computed and applied in the region
are unwarranted; insurers are essentially
overpaid. Quantile-based stochastic opti-
mization suggests lower premiums, which
can ensure the insurers’ solvency under all
flood scenarios relevant to national flood
safety standards (see Figure 2). This opti-
mizes the balance between the interests of
insurers and the insured.

Many researchers have adopted and used
the quantile-based approach. Our method is
novel in that it integrates geographically-
explicit modeling of dependent catastroph-

See Cloaking on page 8
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Figure 2. Insurers’ balance between premiums and coverage (in millions of euros) for 10-, 100-,
and 1000-year floods for robust and conventional—average annual loss (AAL)—premiums.
Large positive numbers in AAL cases indicate the level of overpayment. Figure courtesy of [6].

ic risks with quantile-based stochastic opti-
mization for robust ex-ante and ex-post
disaster risk management. It complements
the standard risk-pooling concepts, extreme
value theory, and mean-variance approach,
all of which are valid and useful for inde-
pendent, frequent, low-consequence risks
like car accidents. Due to the skewness of
natural disasters’ loss distribution, applica-
tion of variance-based risk measures, for
instance, would result in an underestima-
tion of high-magnitude risks, which can
lead to disastrous societal consequences
[4]. The approach we present is capable
of handling non-Gaussian, decision-depen-
dent risks that are interdependent in space
and time; such features are applicable to
a variety of applications, from floods and
other natural disasters to terrorist attacks.
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NIH Releases Strategic
Plan for Data Science

In early June, the National Institutes
of Health (NIH) Office of Science
Policy released its new Strategic Plan for
Data Science. To account for the rapidly
increasing supply of data spread across a
broad number of researchers in a variety
of formats, the NIH seeks to mobilize
advancements in storage, communica-
tion, and processing using tools—such as
artificial intelligence, machine learning,
and deep learning—that can revolution-
ize the way in which data is stored and
maintained. Furthermore, the NIH recog-
nizes the importance of developing robust
information security approaches to pre-
serve public trust and patient protection.
This strategic plan offers the external
community further insight into the organi-
zation’s future priorities and needs in data
creation and maintenance.

Many members of the SIAM com-
munity responded to the NIH’s initial
draft with feedback related to data man-
agement, analytics, tools, and workforce
development. Thanks to SIAM involve-
ment, the finalized plan now recogniz-
es the importance of mathematics when
advancing biomedical science and refer-
ences the National Science Foundation’s
(NSF) Division of Mathematical Sciences/
National Institute of General Medical
Sciences’ Mathematical Biology Program
as a model for the promotion of research at
the intersection of these two fields.

The Strategic Plan for Data Science
was created in response to specific chal-
lenges identified by the NIH:

* The growing cost of data management
could diminish the NIH’s ability to enable
scientists to generate data for understand-
ing biology and improving health.

* The current data-resource ecosystem
tends to be “siloed,” and is not optimally
integrated or interconnected.

¢ Important datasets exist in many dif-
ferent formats and are often not easily
shareable, findable, or interoperable.

* The NIH has historically often sup-
ported data resources using funding
approaches designed for research projects,
which has resulted in a misalignment of
objectives and review expectations.

* Funding for tool development and
data resources has become entangled,
making it difficult for one to independent-
ly assess the utility of each and optimize
value and efficiency.

* No general system currently exists
to transform innovative algorithms and
tools created by academic scientists into
enterprise-ready resources that meet
industry standards of ease of use and
efficiency of operation.

With the overarching principle that
data should be Findable, Accessible,
Interoperable, and Reusable (FAIR), the
NIH has outlined five specific goals for its

strategic plan, with objectives and a prog-
ress evaluation method under each goal:

1. Support a Highly Efficient and Effective
Biomedical Research Data Infrastructure

1-1. Optimize Data Storage and Security

1-2. Connect NIH Data Systems
2. Promote Modernization of the Data-
Resources Ecosystem

2-1. Modernize the Data Repository
Ecosystem

2-2. Support the Storage and Sharing of
Individual Datasets

2-3. Leverage Ongoing Initiatives to
Better Integrate Clinical and Observational
Data into Biomedical Data Science
3. Support the Development and
Dissemination of Advanced Data
Management, Analytics, and Visualization
Tools

3-1. Support Useful, Generalizable, and
Accessible Tools and Workflows

3-2. Broaden Utility, Usability, and
Accessibility of Specialized Tools

3-3. Improve Discovery and Cataloging
Resources
4. Enhance Workforce Development for
Biomedical Data Science

4-1. Enhance the NIH Data-Science
Workforce

4-2. Expand the National Research
Workforce

4-3. Engage a Broader Community
5. Enact Appropriate Policies to Promote
Stewardship and Sustainability

5-1. Develop Policies for a FAIR Data
Ecosystem

5-2. Enhance Stewardship

The NIH lists its implementation tactics
under each objective in further detail.
Several of the tactics under “Enhance
Workforce Development for Biomedical
Data Science” may be of interest to the
research community. Relevant provisions
include the following:

» The NIH states that the NSF is at the
“forefront of supporting disciplines that
contribute to data science,” and that it
intends to work with the NSF on joint
initiatives related to the training and edu-
cation of researchers at different stages
of their careers.

e To train its internal workforce, the
NIH will recruit data scientists and oth-
ers from industry and academia for one-
to three-year sabbaticals for “NIH Data
Fellows,” who will be embedded in a
range of high-profile, transformative proj-
ects like the Cancer Moonshot, the All
of Us Research Program, and the Brain
Research through Advancing Innovative
Neurotechnologies Initiative to provide
expertise not internally available.

The Strategic Plan for Data Science is
available on the NIH website. !

— Lewis-Burke Associates LLC

I https://datascience.nih.gov/sites/default/

files/NIH_Strategic_Plan_for_Data_Science_
Final_508.pdf

Protessional Opportunities
and Announcements

Send copy for classified advertisements and announcements to marketing @siam.org.
For rates, deadlines, and ad specifications, visit www.siam.org/advertising.

Students (and others) in search of information about careers in the mathematical sciences
can click on “Careers and Jobs” at the SIAM website (www.siam.org) or proceed directly
to www.siam.org/careers.

Institute for Pure and Applied
Mathematics
Call for Proposals

The Institute for Pure and Applied Mathematics
(IPAM) seeks program proposals from the math-
ematical, statistical, and scientific communities
for long programs and workshops, to be reviewed
at IPAM’s Science Advisory Board meeting in
November. Long programs (three months) bring
together researchers from mathematics and other
disciplines—or multiple areas of mathemat-
ics—with the goal of facilitating collaborative,
cross-disciplinary research. Winter workshops are

typically five days in length. Exploratory work-
shops, which address an emerging problem or
new application of math, are typically three days.
Proposals for workshops on multiscale physics
will be considered for inclusion in a series of
workshops made possible by an endowment from
the Julian Schwinger Foundation for Physics
Research (JSF). For more information, go to www.
ipam.ucla.edu/propose-a-program/ or contact
the IPAM director at director @ipam.ucla.edu.
For all proposals, the inclusion of women and
members of underrepresented minorities as speak-
ers, organizers, or participants is required.
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Institute for Computational and Experimental

Research in Mathematics

COMPUTER VISION

Computer Vision Semester Program
February 4 — May 10, 2019

Organizing Committee: Yali Amit, University of
Chicago; Ronen Basri, Weizmann Institute of Science;
Alex Berg, University of North Carolina; Tamara
Berg, University of North Carolina; Pedro
Felzenszwalb, Brown University; Stuart Geman,
Brown University; Basilis Gidas, Brown University;
David Jacobs, University of Maryland; Benar Svaiter,
IMPA; Olga Veksler, University of Western Ontario.

Program Description:
© Computer vision is an inter-
disciplinary topic crossing
boundaries between
computer science, statistics,
() mathematics, engineering
and cognitive science.
Research in computer vision
involves the development
and evaluation of
computational methods for
image analysis. This
includes the design of new
theoretical models and algorithms, and practical
implementation of these algorithms using a variety of
computer architectures and programming languages.
The methods under consideration are often
motivated by generative mathematical models of the
world and the imaging process. Recent approaches
also rely heavily on machine learning techniques and
discriminative models such as deep neural networks.

The focus of the program will be on problems that
involve modeling, machine learning and optimization.
The program will also bridge a gap between
theoretical approaches and practical algorithms,
involving researchers with a variety of backgrounds.

E To learn more about ICERM programs,
organizers, program participants, to
submit a proposal, or to submit an
application, please visit our website:
icerm.brown.edu.

About ICERM: The Institute
for Computational and
Experimental Research in
Mathematics is a National
Science Foundation
Mathematics Institute

at Brown University in

Ways to participate:
Propose a:

- semester program

- topical workshop

- hot topics workshop

- summer undergrad program
- small group research

Apply for a: Providence, Rhode Island.
- semester program or Its mission is to broaden
workshop

the relationship between

R | fell hi : '
postdoctoral fellowship mathematics and computation.

= 121 S. Main Street, 11th Floor

[ [ Providence, RI 02903

@ E,ﬂ 401-863-5030
BROWN info@icerm.brown.edu
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A Perspective on Altitudes

n my “geometry for teachers” class a

few years ago, I was trying to explain
why the altitudes in a triangle are concur-
rent. The (perhaps) most common proof,
which identifies the concurrency point as
the orthocenter of another larger triangle,
still felt insufficiently direct to me. I also
wondered whether a more direct geomet-
rical characterization of the concurrency
point exists.

Figure 1. Pushing the triangle into a corner.
B, is the point at which the line AP inter-
sects with the opposite side.

As it turns out, embedding the problem
in three dimensions yields an additional
insight. To begin, we shove an arbitrary

acute! triangle A A, A_ into the corner of a
rectangular quadrant, as shown in Figure 1;
each vertex now lies on a coordinate axis.

I claim that the concurrency point of
the altitudes is precisely the foot P of the
perpendicular from the origin

I claim that A B, is an altitude of
the triangle. Indeed, A,A, L OP (since
A, A, eplane (A A,A,) LOP) and
AA, 104 (since A, A, €plane
(OA,A,) LOA)). In summary, because

A2A3 is normal to two lines

onto the plane of the triangle.

MATHEMATICAL
CURIOSITIES
By Mark Levi

Proof

With P defined as in the
previous sentence, let B, be

(OP and OA,) in the plane
POA,, itis normal to every
line in that plane and thus
to A B,. So A B, isindeed
an altitude. The same argu-

the point at which the line
A P intersects with side AA,

! Unfortunately, this approach does not
seem to extend to obtuse triangles; or perhaps
I am not acute enough to find an extension.

Figure 2. The tangent cone.

ment applies to AB, for
i1=2,3, meaning that all altitudes pass
through P. Q.E.D.

Proof 2

Here is a slightly different way to
express essentially the same idea.

Referring to Figure 2, construct the cir-
cular cone tangent to the plane of the
triangle, with vertex A, and axis A O.
Define B, as the point at which the line of
tangency intersects with side A,A4,. Now
A B LAA,, according to Figure 3a,
and A B, passes through P, according to
Figure 3b (with P defined as above). This
shows that the altitude from an arbitrarily
chosen vertex passes through P. Q.E.D.

The figures in this article were provided
by the author.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania
State University.

A

B
(a)

(b)

Figure 3. In (a), the generator is orthogonal to the base for a right circular cone. In (b), the foot
P of the perpendicular to a tangent plane from a point O on the axis lies on the line of tangency.

Cloaking

Continued from page 6

less than distance d/2 from a lens with
dielectric constant —e, + 46 and magnetic
permeability —u + 6 because the power
absorbed by the lens blows up to infin-
ity as 6— 0. Further exploration showed
that realistic sources—such as polarizable
dipole sources with a strength proportional

the lossless slab lens (with §=0) cloaks a
dipole source less than distance d/2 from
the lens when one turns on the source expo-
nentially slowly [6], but what about other
time dependencies? Furthermore, in what
classes of equations can you see ALR and
cloaking due to ALR? An exact correspon-
dence shows that it holds for static coupled
equations of magnetoelectricity [7], and
recent discoveries indicate that cloaking due

Cloaking by plasmonic resonance among
systems of particles: cooperation or com-
bat? Comp. Rend. Phys., 10, 391-399.

[5] Milton, G.W., & Nicorovici, N.A.P.
(2006). On the cloaking effects associated
with anomalous localized resonance. Proc.
Roy. Soc. A: Math., Phys., & Eng. Sci., 462,
3027-3059.

[6] Milton, G.W., Nicorovici, N.A.P., &
McPhedran, R.C. (2007). Opaque perfect
lenses. Phys. B, Cond. Matt., 394, 171-175.

Discovery of a Ghost Source
Vix) V(r, 8) Discovery of
40 = 40 A
nomalous
20 20 Resonance
R w2 -wd o, w4 w2
Lef . = X
-20 | ‘1%
| =2ldh
40 i /
:I“ -40
(a) (shell radius =0.4, Core radius = 0.35) (b)

Figure 1. Discovery of ghost sources and anomalous resonance. 1a. The apparent divergence in the potential at a radius of 0.52, which is outside
the shell radius of 0.40. 1b. The large oscillations of the potential show the anomalous resonance. Image courtesy of [10].

to the field acting on them, or those pro-
ducing constant power—would become
cloaked as the loss §— 0 [5]. These sourc-
es would create a region of anomalous
resonance but essentially fail to influence
the field outside of this region.

Multiple media sources covered our dis-
covery, which marked the beginning of an
avalanche of news articles about cloaking.
This led to some amusing situations: A crew
planning a film about how James Bond
changed the world wanted to interview us,
and a South American show asked if we
could appear invisible on stage. Our follow-
up paper [11] was downloaded over 13,000
times — a good example of how beautiful
animations (made by Nicolae-Alexandru P.
Nicorovici) can attract an audience.

Many illuminating developments have
followed. Worthy of special mention is
Hoai-Minh Nguyén’s proof of cloaking due
to ALR for a wide variety of coated inclu-
sion shapes [8], and proof that the annular
cloak cloaks a nearby small dielectric object
[9]. Several mathematical questions remain.
For instance, how do the anomalously reso-
nant fields change if the source amplitude
varies in time? Rather than being perfect,

to ALR holds for quasistatic elastodynamics
[2, 3]. Can this type of cloaking feature mul-
tiple overlapping cloaking regions? Initial
studies suggest that it cannot [4]. It will be
fascinating to see how our understanding of
this intriguing subject continues to evolve.

Acknowledgments: The work of Graeme
Milton and Ross McPhedran was supported
by the National Science Foundation and the
Australian Research Council respectively.
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The National Academies is currently collecting responses from the scientific commu-
nity for its 2018 Global Survey of Mathematical, Computing, and Natural Scientists.!
The survey is part of an international interdisciplinary project called “A Global
Approach to the Gender Gap in Mathematical, Computing, and Natural Sciences:
How to Measure It, How to Reduce It?” 11 partners, supported by the International
Council for Science, seek to better understand the problems faced by mathematical, com-
puting, and natural science academics and practitioners around the world.

The Gender Gap project homepage? offers the following description: Currently, exist-
ing data on participation of women in the mathematical and natural sciences is scattered,
outdated, and inconsistent across regions and research fields. The project will provide
evidence to support the making of informed decisions on science policy. Temporal trends
will be included, as the situation of women in science is constantly evolving, sometimes
with some negative developments. Data will be collected® via both a joint global survey
and a bibliographic study of publication patterns. The survey is planned to reach 45,000
respondents in more than 130 countries using at least 10 languages, while the study of
publication patterns will analyze comprehensive metadata sources corresponding to
publications of more than 500,000 scientists since 1970. Contrasts and common ground
across regions and cultures, less developed and highly developed countries, men and
women, mathematical and natural sciences, will be highlighted.

I http://statisticalresearchcenter.org/global 18

2 https://icsugendergapinscience.org
3 The American Institute of Physics’ Statistical Research Center is collecting the data.




