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How Paradoxes 
Shape Mathematics
By Paul Davis

Not many SIAM lectures begin by 
“proving” that 64 65= .  But that is 

how Thomas Hales of the University of 
Pittsburgh chose to open his talk at the 2018 
SIAM Annual Meeting, which took place in 
Portland, Ore., this July. Hales, who is known 
for his leading role in computationally-based 
proofs of the Kepler conjecture, was deliver-
ing the I. E. Block Community Lecture — 
part of SIAM’s effort to raise awareness of 
the many applications of mathematics. The 
64 65=  paradox was the first stop in a tour 
that took his audience from lighthearted para-
doxes in the popular press to those that upset 
the foundations of mathematics a century 
ago, before returning them to present day and 
the current state of self-verifying systems.

The 64 65=  paradox is resolved by 
finding an easily overlooked area in the 
geometric argument offered in its support: 
an 8 8´  rectangle cannot be chopped into 
triangles and trapezoids to form a 5 13´  
rectangle without leaving uncovered on 
its diagonal a thin sliver of parallelogram 
that has unit area. Hales observed that such 
paradoxes enjoyed great popularity during 

their “golden age” in the early 20th century. 
During this time, much more profound 
paradoxes were simultaneously shaking the 
foundations of mathematics.

One of the most familiar paradoxes may 
be the barber paradox, which presents the 
following scenario: In a certain village, a 
male barber shaves exactly those men who 
do not shave themselves. Does the barber 
shave himself? Mathematicians quickly rec-
ognize that the inherent contradiction—the 
barber can neither shave himself nor not 
shave himself—is proof that no such barber 
exists. Does the contradiction represent a 
tectonic threat or merely an amusement?

Despite its superficial resemblance to the 
innocent barber conundrum, Russell’s para-
dox is powerfully consequential. Devised 
by British mathematician and philosopher 
Bertrand Russell, it states: X  is the set 
of all sets that do not have themselves as 
members. Does X  have itself as a mem-
ber? Following the logic that resolved the 
barber paradox, we immediately conclude 
that no such set can exist. Then we pause in 
consternation; what became of our ability to 
define any set we wanted?

See Paradoxes on page 4

Recovering Lost Information 
in the Digital World
By Yonina Eldar

We live in an increasingly digital 
world where computers and micro-

processors perform data processing and 
storage. Digital devices are programmed 
to quickly and efficiently process sequenc-
es of bits. A computer operating on these 
bits then programs mathematical algo-
rithms translated from signal processing. 
An analog-to-digital converter converts 
the continuous time signal into samples; 
the transition from the physical world to 
a sequence of bits causes information loss 
in both time (sampling phase) and ampli-
tude (the quantization 
step). Is it possible to 
restore information that 
is lost in transition to 
the digital domain?

The answer depends 
on what we know 
about the signal. One 
way to ensure a sig-
nal’s recovery from its 
samples is to limit its 
speed of change. This 
idea forms the basis 
of the famous Nyquist 
theorem, developed in 
parallel by mathemati-
cians Edmund Taylor 
Whittaker and Vladimir Kotelnikov [5]. 
The theorem states that we can recover a 
signal from its samples as long as the sam-
pling rate (the number of samples per unit 
time) is at least twice the highest frequency 
in the signal. This result is the cornerstone 
of all current digital applications, which 
sample at the Nyquist rate or higher.

Despite the theorem’s tremendous 
influence on the digital revolution, satis-
fying the Nyquist requirement in modern 
applications often necessitates compli-
cated and expensive hardware that con-

sumes considerable power, time, and 
space. Many applications use signals with 
sizable bandwidth to deliver a high rate 
of information and obtain good resolution 
in various imaging applications, such as 
radar and medical imaging. Large band-
width translates into high sampling rates 
that are challenging to execute in practice. 
Thus, an important question arises: Do 
we really have to sample at the Nyquist 
rate, or can we restore information when 
sampling at a lower rate?

A related concern is the problem of super 
resolution. Any physical device is limited 
in bandwidth or resolution, meaning that 

it cannot obtain infinite precision in time, 
frequency, and space. For example, the 
resolution of an optical microscope is lim-
ited by the Abbe diffraction limit, which 
is half the wavelength used for illumina-
tion. We can thus view large objects like 
bacteria in the optical regime, but proteins 
and small molecules are not visible with 
sufficient resolution. Is it possible to use 
sampling-related ideas to recover informa-
tion lost due to physical principles?

We consider two methods to recover 
lost information. The first utilizes structure 

that often exists in signals, and the sec-
ond accounts for the ultimate processing 
task. Together they form the basis for the 
Xampling framework, which proposes prac-
tical, sub-Nyquist sampling and processing 
techniques that result in faster and more 
efficient scanning, processing of wideband 
signals, use of smaller devices, improved 
resolution, and lower radiation doses [5].

The union-of-subspaces model is a pop-
ular choice for describing signal structure  
[7, 9]. As a special case it comprises 
sparse vectors — vectors with a small 
number of nonzero values in an appropri-
ate representation, which is the model 

underlying compressed sensing [6]. It 
also includes some popular examples of 
finite-rate-of-innovation signals, such as 
streams of pulses [11]. An example of this 
signal arises naturally in a radar system, 
where a pulse moves towards the targets, 
which reflect it back to the receiver. The 
received pulse hence consists of a stream 
of pulses, where each pulse’s time of 
arrival is proportional to the distance to 
the target, and the amplitude conveys 
information about the target’s velocity 

Figure 1. Sub-Nyquist prototypes for different applications developed in the Signal Acquisition Modeling and 
Processing Lab at Technion – Israel Institute of Technology. Image courtesy of Yonina Eldar Lab.

See Digital World on page 3

An artificially fire-suppressed savanna in South Africa, depicting a woodland of 
savanna trees. Image courtesy of Carla Staver.

Grass, Trees, and Fire: 
Elements of a Savanna Lifecycle

In an article on page 5, Jenny Morber explores the distinct components that 
characterize a savanna and describes mathematical models used to examine 
the impact of climate change on this unique environment.
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5	 The Perils of Beautiful 
Mathematics

	 James Case reviews Sabine 
Hossenfelder’s Lost in Math: 
How Beauty Leads Physics 
Astray, in which Hossenfelder 
cautions against exagger-
ated emphasis on mathematical 
beauty in theoretical physics. 
Citing the failure of supersym-
metry validation and the lack 
of testable hypotheses in string 
theory as examples, she suggests 
that theoretical evaluation in the 
field is more aesthetic than sci-
entific and leads to bad science.

6	 Heat Exchange and Some 
Frivolous Aspects of e

	 Is it possible to heat a glass 
of milk at 0°C to over 50°C 
using only the heat from a 
100°C glass of water? In this 
month’s column, Mark Levi 
demonstrates mathemati-
cally that such a reversal of 
the second law of thermody-
namics is indeed feasible.

6	 Mathematicians and  
Ethical Engagement

	 Maurice Chiodo and Dennis 
Müller explore ethical issues 
of particular relevance to 
mathematicians. While math 
is an incredibly effective tool, 
powering things like smart-
phones and climate models, 
it has also engendered pitfalls 
— from inaccurate financial 
modeling and mass surveillance 
to targeted advertising. The 
authors call on mathematicians 
everywhere to acknowledge 
their social responsibilities 
and be more mindful of the 
impact of their work.

9	 How a Chance Internship 
Inspired My Career in     
the Oil Industry

	 Anusha Sekar discusses her for-
tuitous encounter with industrial 
mathematics, which led to her 
successful career at Chevron. 
From learning new and varied 
topics to solving real-world 
problems and enjoying an infor-
mal work environment, Sekar 
recounts the various benefits of 
working in the field, asserting 
that a good work-life balance 
is indeed possible for math-
ematicians in industry.	

10	 Professional Opportunities 
and Announcements
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A Timely Focus on Data Science
I t is generally agreed that data science 

involves mathematics, statistics, computer 
science, data, and applications. Attempts 
to characterize it have led to an assortment 
of Venn diagrams with variously defined 
sets (see Figure 1). Regardless of data sci-
ence’s meaning, the SIAM community—
with expertise in all the component areas—is 
uniquely positioned to contribute to it.

It is therefore both timely and appro-
priate that in 2018, SIAM introduced the 
SIAM Journal on Mathematics of Data 
Science (with editor-in-chief Tammy Kolda 
of Sandia National Laboratories), launched 
its Data Science book series (with editor-
in-chief Ilse Ipsen of North Carolina State 
University), and is planning a data science 
conference for 2020. Moreover, data sci-
ence boasts its own research area page on 
the new SIAM website.1

The most hyped aspect of data science 
is undoubtedly machine learning, espe-
cially deep learning. Michael Elad exam-
ined the role of deep learning in imaging 
science in the May 2017 issue of SIAM 
News [3]. His analysis inspired discus-
sion.2 He noted that “In most cases, deep 
learning-based solutions lack mathematical 
elegance and offer very little interpret-
ability of the found solu-
tion or understanding of the 
underlying phenomena.” 
Peter Warden, data science 
book author and member of 
Google’s TensorFlow team, 
has written that “Most of 
machine learning is the software equivalent 
of banging on the side of the TV set until 
it works, so don’t be discouraged if you 
have trouble seeing an underlying theory 
behind all your tweaking!”3 Advances in 

1  https://www.siam.org/Research-Areas/
Detail/data-science

2  See comments from readers at https://
sinews.siam.org/Details-Page/deep-deep-trouble

3  https://petewarden.com/2016/04/18/how-
to-break-into-machine-learning/

the theoretical underpinning of machine 
learning and deep learning are clearly need-
ed. The SIAM community can contribute 
novel understanding and breakthroughs; 
in fact, it is already doing so [2]. The new 
journal, book series, and upcoming confer-
ence provide the perfect platforms to report 

such contributions.
The SIAM community is 

well versed in the aspect of 
data science that concerns 
the accuracy of results. 
Mathematicians are accus-
tomed to handling uncer-

tainties introduced by data and rounding 
errors. Here, the trend towards processors 
that support low-precision arithmetic is 
impinging on data science. The NVIDIA 
V100 graphics processing unit (GPU) sup-
ports half-precision floating-point arithme-
tic and—using its tensor cores—can execute 
it at a rate of up to 112 teraflops, compared 
with seven teraflops for double precision. 
It is therefore tempting to run data-inten-
sive computations in half precision. But 

a half-precision number 
has only the equivalent 
of around four-decimal-
digit precision; will the 
computed results have 
any correct digits?

Researchers have 
reported success with 
low precision in machine 
learning. For example, 
at the 2018 SIAM 
Conference on Parallel 
Processing for Scientific 
Computing, held this 
March in Tokyo, 
Takuya Akiba (Preferred 
Networks, Inc., Tokyo) 
explained how he and 
his colleagues trained 
ResNet-50 on ImageNet 
for 90-epochs (a stan-
dard benchmark) on 
1024 NVIDIA P100 

GPUs in 15 minutes, thus halving the previ-
ous record time. Among the key ideas was 
the selective use of half precision [1].

Of course, data science presents chal-
lenges not only in research but also in 
teaching — another area that benefits 
from SIAM community engagement. At 
the 2018 SIAM Conference on Applied 
Mathematics Education, held in Portland, 
Ore., this July, Gil Strang (Massachusetts 
Institute of Technology) organized a 
minisymposium on “Deep Learning and 
Deep Teaching.” In his talk, Gil pre-
sented some of the ideas contained in his 
forthcoming book on the subject [4] and 
posed the tantalizing question of whether 
deep learning can learn calculus; much 
discussion ensued.

SIAM is already a great source of 
expertise and information on many 
aspects of data science. I look forward to 
our community playing a growing role in 
the area and attracting new members with 
an interest in the subject.
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Cartoon created by mathematician John de Pillis.

Figure 1. A sampling of Venn diagrams that researchers have pro-
posed to define data science. Image courtesy of Google Images.
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through the Doppler effect. Several sam-
plers based on union of subspace model-
ing appear in Figure 1 (see page 1).

Researchers have also recently explored 
the actual processing task. We consider 
three such examples: (i) scenarios in 
which the relevant information is embed-
ded in the signal’s second-order statistics 
[3], (ii) cases where the signal is quan-
tized to a low number of bits [8], and (iii) 
settings in which multiple antennas form 
an image [1, 2].

An interesting sampling question is 
as follows: What is the rate at which we 
must sample a stationary ergodic signal to 
recover its power spectrum? The rate can 
be arbitrarily low using appropriate non-

uniform sampling methods. If we consider 
practical sampling approaches—such as 
periodic nonuniform sampling with N  
samplers, each operating at an Nth  of 
the Nyquist rate—then only on the order 

of N  samplers are needed to recover 
the signal’s second-order statistics. This 
leads to a sampling rate reduction on 

the order of N .  Next, suppose that we 
quantize our signal after sampling with 
a finite-resolution quantizer. Researchers 
traditionally consider sampling and quan-
tization separately. However, the signal 
introduced by the quantizer is distorted, 
which begs the following question: Must 
we still sample at the Nyquist rate — the 
rate required for perfect recovery assum-
ing no distortion? It turns out that we can 
achieve the minimal possible distortion by 
sampling below the signal’s Nyquist rate 
without assuming any particular structure 
of the input analog signal. We attain this 
result by extending Claude Shannon’s 
rate-distortion function to describe digital 
encoding of continuous-time signals with 
a constraint on both the sampling rate and 
the system’s bit rate [8].

As a final example of task-based sam-
pling, consider a radar or ultrasound 
image created by beamforming. An anten-
na array receives multiple signals reflect-

ed off the target; these signals are delayed 
and summed to form a beamformed out-
put that can often be modeled as a stream 
of pulses. However, the individual signals 
typically lack significant structure and 
are often buried in noise. Nonetheless, 
by exploiting the beamforming process 
we can form the final beamformed output 
from samples of the individual signals at 
very low rates, despite the signals’ struc-
ture scarcity. In addition, we can preserve 
the beampattern of a uniform linear array 
by using far fewer elements (a sparse 
array) and modifying the beamforming 
process. By applying convolutional beam-
forming, we can achieve the beampattern 
associated with a uniform linear array of 
N  elements using only on the order of 
N  elements (see Figure 2).
Combining the aforementioned ideas 

allows us to create images in a variety 
of contexts at higher resolution using far 
fewer samples. For example, we can recov-
er an ultrasound image from only three 
percent of the Nyquist rate without degrad-
ing image quality (see Figure 3). This abil-
ity allows for multiple technology devel-
opments with broad clinical significance, 

such as fast cardiac and three-dimensional 
imaging, which is currently limited by 
high data rate. Moreover, the low sampling 
rate enables the replacement of large stan-
dard ultrasound devices and their cumber-
some cables with wireless transducers and 

simple processing devices, such as tablets 
or phones. The sampled data’s low rate 
facilitates its transmission over a standard 
WiFi channel, allowing a physician to 
recover the image with a handheld device. 
In parallel, the data may be transmitted to 
the cloud for remote health and further, 
more elaborate processing.

Our approaches can also help increase 
resolution in fluorescence microscopy 
[10]. In 2014, William Moerner, Eric 
Betzig, and Stefan Hell received the Nobel 
Prize in Chemistry for breaking the diffrac-
tion limit with fluorescence imaging. They 
sought to obtain a high-resolution image 
by using thousands of images, each con-
taining only a small number of fluorescing 
molecules. This method—referred to as 
photo-activated localization microscopy 
(PALM)—allows researchers to localize 
and average the molecules in each frame 
to obtain one high-resolution image. This 
leads to high spatial resolution but low 
temporal resolution. Since estimating 
each pixel’s variance can form a bright-
ness image, we can exploit our ability to 
perform power spectrum recovery from 
fewer samples to dramatically reduce the 
number of samples needed to form a 
super-resolved image. This approach is 

called sparsity-based super-resolution cor-
relation microscopy (SPARCOM). Due 
to the small number of required frames, 
SPARCOM paves the way for live cell 
imaging. Figure 4 compares SPARCOM 
with 60 images and PALM with 12,000 
images. Both approaches generate similar 
spatial resolution, but SPARCOM requires 
two-orders-of-magnitude fewer samples.

The same idea is applicable to contrast-
enhanced ultrasound imaging. We may treat 
the contrast agents flowing through blood 
similarly to the blinking of the fluorescent 
molecules; in this way, we perform ultra-
sound imaging with high spatial and tempo-
ral resolution. This distinguishes between 
close blood vessels and facilitates the obser-
vation of capillary blood flow.

In summary, to recover information with 
higher precision and minimal data we must 
exploit all of the information we have; 
here we focused on exploiting structure 
and the processing task. This yields new 
mathematical theories that provide bounds 
on sampling and resolution, and new engi-
neering developments that produce novel 
technologies to overcome current barriers. 
In the future, the combination of math-
ematics and engineering—seeing infor-
mation with a precision that is presently 
unavailable and tracking effects faster than 

is currently possible—can pave the way for 
innovative scientific breakthroughs.
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Figure 2. The same cardiac image obtained with delay-and-sum beamforming using a uni-
form linear array of 63 elements (left) and convolutional beamforming using a sparse array of 
16 elements (right). Image courtesy of [4].

Figure 3. Ultrasound imaging at three percent of the Nyquist rate (right), as compared to a 
standard image (left). Image courtesy of [1].

Figure 4. Super-resolution in optical microscopy. 4a. The image obtained with a standard microscope. 4b. The original image at high resolution. 
4c. The image obtained using 12,000 frames via photo-activated localization microscopy (PALM). 4d. The image obtained using only 60 frames 
via sparsity-based super-resolution correlation microscopy (SPARCOM). Figure courtesy of [10].

Digital World
Continued from page 1
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This startling outcome toppled the work 
of German philosopher Gottlob Frege, 
a luminary of mathematical logic. In a 
1962 Scientific American article entitled 
“Paradox” [3]—which Hales rightly rec-
ommended to his listeners as essential 
homework—logician W.V. Quine demon-
strated the way in which Russell’s paradox 
compels us to give up the fundamental 
principle of the existence of sets.

Hales summarized this critical period with 
a frame from the graphic novel Logicomix—
the second of his essential reading assign-
ments—that depicts the construction of the 
logical foundations of mathematics. Russell 
appears in the panel, famously working on 
Principia Mathematica with Alfred North 
Whitehead (see Figure 1).

Ernst Zermelo used a different approach 
to resolve Russell’s paradox. He proposed 
a theory of sets that dodged the paradox by 
prohibiting sets that are too large, such as 
the set of all sets. Russell’s theory of types, 
in contast, forbade types that overlap; the 

barber paradox is grammatically unsound 
because barbers and customers are distinct 
types (see Figure 2). Hales observed that 
set theory offers a foundation for much of 
mathematics, while type theory establishes 
a foundation for computer science.

The rush of ideas continued. Kurt 
Gödel’s incompleteness theorem appeared 
in 1931: every sufficiently powerful deduc-
tive system contains a sentence that is true 
if and only if it is unprovable in that system. 
David Hilbert’s 1928 decision problem, 
which asks if there exists an algorithm that 
can determine the universal validity of a 
given logical statement, received indepen-
dent negative answers from both Alonzo 
Church and Alan Turing in 1936. Turing 
showed that the halting problem—which 
asks whether a program will run forever 
or eventually halt, given a description of 
that program and an input to it—reduces to 
Hilbert’s decision problem. He then solved 
the halting problem by what Hales called a 
“paradoxical construction — an algorithm 
that takes as input a data-encoding of itself.”

Ultimately, Alexander Grothendieck 
introduced his concept of universes to 
accommodate sets larger than those per-
mitted by Zermelo’s formulation. Figure 3 
offers a caricature of these universes. The 
nutshell in the top center recursively con-
tains Hales’ cartoon universe. He lightheart-

edly suggested that Hamlet foresaw these 
mathematical constructions when declaim-
ing, “I could be bounded in a nutshell, and 
count myself a king of infinite space.”

Hales followed this path of paradoxes to 
offer his audience a glimpse of the super-
structure needed to support a proof assis-
tant—a programming language capable of 
validating mathematical proofs—built within 
such a nutshell universe. His perspective was 
surely influenced by his 1998 submission of 
a computationally-based proof by exhaus-
tion of Johannes Kepler’s sphere-packing 
conjecture to Annals of Mathematics. (In 
1611, Kepler had conjectured that a face-
centered arrangement of uniform spheres 
packs most efficiently into a given volume; 
the stack of oranges in the upper right corner 
of Figure 3 is an example.)

The challenges of verifying Hales’ and 
his co-author Samuel Ferguson’s work 
overwhelmed the volunteer referees before 
they could definitively accept its validity. 
“It is very unusual to have such a large set 
of reviewers (working) … over a three-year 
period,” one editor reported. “The review-
ing process produced in these reviewers a 

strong degree of con-
viction of the essen-
tial correctness of this 
proof approach…” 
This was good news, 
but hardly the tradi-
tional unequivocal 
endorsement.

Another editor 
relayed the thinking 
of referee panel head 
Gábor Fejes Tóth, 
younger half of the 
Fejes Tóth father-
son team that played 
important 20th-century 
roles in the Kepler 
saga. “Fejes Tóth 
thinks that this situa-
tion … is similar to the 

situation in experimental science,” the edi-
tor said. “Other scientists acting as referees 
can’t certify the correctness of an experi-
ment, they can only subject the paper to 
consistency checks. [Fejes Tóth] thinks the 
mathematical community will have to get 
used to this state of affairs.”

Despite his eventual publication of 
papers describing both the mathematical 
and computational portions of his proof 
of Kepler’s conjecture, Hales pursued the 
possibility of a computer checking “every 
step of the proof back to the founda-
tions of mathematics.” In 2017, he pub-
lished—with 21 collaborators—a formal 
proof of the Kepler conjecture in Forum of 
Mathematics, Pi [2]. That effort, known as 
the Flyspeck project,1 used the proof assis-
tants Isabelle and HOL Light.

HOL Light is the work of John Harrison; 
its kernel requires less than 500 lines of 
code. After Hales discovered a bug at an 
early stage, Harrison used the corrected 
proof assistant to confirm the absence of 
any others. Such proofs of self-consistency 
dodge Gödel’s incompleteness theorem by 
looking back in from a slightly larger uni-
verse. Self-verification then enables mutual 
verification within the ecosystem of a mul-
titude of proof assistants. A verified self-
compiling compiler is accessible through 

1  https://github.com/flyspeck/flyspeck

the CompCert project,2 and the proof assis-
tant community is within sight of top-to-
bottom verification tools — from high-level 
code down to machine language.

Finally, Hales addressed confidence — 
the elephant in the room. “Do I completely 
trust computers?” he asked. “No. Do I 
completely trust human referees? No. The 
technologies have reached the point where 
I trust them as much as I trust any techni-
cal tool.” Mathematics might indeed be on 
the threshold of a brave new world—if not 
universe—of formal validation.

Hales’ presentation—including the 
“proof” that 64 65= —is available from 
SIAM either as slides with synchronized 
audio or a PDF of slides only.3

The I. E. Block Community Lecture is 
given annually at the SIAM Annual Meeting. 

2  http://compcert.inria.fr/
3  h t tps : / /www.pa th lms .com/s iam/

courses/8264/sections/11775

It honors the vision of I. Edward Block, the 
co-founder and former managing director 
of SIAM, by encouraging public apprecia-
tion of the excitement and vitality of science. 
The lectures are open to students, teachers, 
and members of the local community, as 
well as SIAM members, researchers, and 
practitioners in fields related to applied and 
computational mathematics.
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Figure 1. One strand of the foundational work arising from 
Russell’s paradox. Logicomix: An Epic Search for Truth, by 
Apostolos Doxiadis and Christos Papadimitriou, is published by 
Bloomsbury Publishing (RRP $25) [1].

Figure 2. Two responses to Russell’s paradox. Figure courtesy of Thomas Hales.

Figure 3. Thomas Hales’ caricature of a mathematical universe, enclosed recursively in the 
nutshell at the top center. Creative Commons and Google Images.
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Grass, Trees, and Fire: Elements of a Savanna Lifecycle
By Jenny Morber

Imagine a savanna — an undulating plain 
of long grass stretching towards a hori-

zon dotted with scrubby trees. Unobscured 
by foliage, the sky is expansive. Winds 
ripple the golden grass while distant smoke 
curls from a recent fire, still smoldering.

Savannas are unique environments with 
a special ecology. Research suggests that 
they sometimes appear in surprising areas 
where we might expect to find forests or 
other landscapes. What makes a savanna? 
Will existing savannas persist for hun-
dreds of years? How might climate change 
affect today’s savanna ecosystems? And 
are changes that occur in response to out-
side forces? Researchers Jonathan Touboul 
(Brandeis University), Carla Staver (Yale 
University), and Simon Levin (Princeton 
University) explore these and other ques-
tions in their work [1].

The team defines a savanna as a combina-
tion of grasses, saplings, and adult savan-
na trees, with fire as the driving element. 
Grasses fuel fires and sparse tree covering, 
which encourages grass growth and insti-
gates more fires. Fires damage saplings and 
prevent tree maturity. This loop sustains 
savannas. Adult trees, however, withstand 
fires and shade the ground. Robbed of sun-
light, shaded grasses wither and fire decreas-

es, thus allowing continued tree propaga-
tion. Such conditions foster woodlands.

Touboul, Staver, and Levin codify these 
relationships in units of aerial cover where 
variables G S, ,  and T  represent the frac-
tional cover of grass, saplings, and savan-
na trees. This yields a three-dimensional 
system in which

    ′ = + −G S T GTµ ν β

    ′ = − +S GT G Sβ ω µ( ( ) )

    ′ = −T G S Tω ν( ) ,

where b  is the savanna sapling birth rate 
and u and n  are respectively the rates at 
which savanna saplings or adult trees die. 
Saplings grow into trees at a rate w, a non-
linear decreasing function of grass cover 
that accounts for the ecological system’s 
nonlinear response to fires. Fires readily 
spread in systems with sufficient grass bio-
mass but are quickly limited when tree cover 
exceeds a certain threshold. Therefore, this 
function has a sigmoidal shape that approx-
imates a steep drop at a crucial percolation 
threshold associated with fire spread prob-
ability. Because G S, , and T  represent 
fractional cover, they are nonnegative and 
can be expressed as G S T+ + = 1;  this 
reduces the above equations to a two-

dimensional system.
In this simple model, 

nudges from natural fluc-
tuations, climatic events, or 
human activity can prompt 
the vegetation down a 
bifurcated path that may 
persist for many years. 
Landscapes are the product 
of a hysteresis that is heav-
ily dependent on history, as 
shown in Figure 1. 

This behavior conflicts 
with an underlying tenet of 
ecology. “In the tradition-
al view in ecology, if you 
know something about the 
environment you basically 
know what kind of vegeta-
tion you’re going to have,” 

Staver said. “What’s different about this is 
that…even in a very rainy place that ought 
to be able to be a forest, if it ends up being 
a savanna we should expect it to continue 
to be a savanna.”

But high densities of hardy scrub trees 
do not signify a real forest. Forest trees 
are more sensitive to fires than savanna 
trees; they also create denser shade. To bet-
ter approximate these different landscapes, 
Touboul, Staver, and Levin add a variable 
F,  a forest tree with birth rate a, and a 
mortality that depends on fire’s ability to 
spread. To incorporate this element, the 
researchers model the mortality rate as 
an increasing function φ γ( ( )),G S T+ +  
which accounts for the nonlinear depen-
dence of fire spread on grass and tree cover 
and refines this dependence by considering 
the level at which savanna and woodland 
tree foliage propagate fires (parameter g).).

Using their model, the team studies 
this element’s possible effect on land-
scape dynamics and identifies the system’s 
complex co-dimensional two and three 

bifurcations that organize intricate multi-
stability or oscillatory dynamics. They also 
account for differences between savanna 
and woodland tree foliage by varying the 
degree to which they exclude grasses. 
Savannas, scrub woodlands, and true for-
ests can coexist in this more realistic 
model, described by the set

′ = + − +G S T GTµ ν β
  φ γ α( ( ))G S T F GF+ + −

′ = −S GTb  
  ( ( ( )) )ω γ µ αG S T S SF+ + + −

 ′ = + +T G S T Sω γ( ( ))
                   	

      - -ν αT TF
 

′ = − −F F( ( )a 1
  
φ γ( ( )) ,)G S T F+ +   

Figure 1. Grasslands and woodlands in the absence of forests 
yield a bifurcation diagram with respect to the savanna tree 
birth rate. In ecosystems with low savanna tree birth rate, 
grass covers the landscape and prevents woodlands from 
emerging; at high rates, woodlands dominate and grasslands 
cannot establish themselves. For intermediate birth rates, both 
woodlands and savannas may emerge and remain stable over 
time. Figure courtesy of [1].

Figure 2. Complex dynamics—including periodic orbits—emerge in the presence of a forest 
tree subtype. 2a. Highly intricate dependences in the birth rates of forest and savanna trees 
organize these dynamics. 2b. For a fixed savanna birth rate, increasing the forest tree birth rate 
drives the system from savannas (left trajectory) to oscillatory behaviors with the emergence 
of forest trees (right trajectory), and from bistable forest-grassland regimes to forests at high 
birth rates. Figure adapted from [1].

See Savanna Lifecycle on page 7

The Perils of Beautiful Mathematics
Lost in Math: How Beauty Leads 

Physics Astray. By Sabine Hossenfelder. 
Basic Books, New York, NY, June 2018. 304 
pages, $30.00.

Sabine Hossenfelder is inclined to blame 
the dearth of meaningful progress in 

theoretical physics since the 2012 detection 
of the Higgs boson on an ill-considered 
quest for mathematical beauty. A theoreti-
cal physicist, Hossenfelder acknowledges 
the aesthetic appeal of the known laws of 
physics in Lost in Math: How Beauty Leads 
Physics Astray, but doubts that beauty alone 
ever led to their discovery or is likely to 
inspire further innovations.

What seems to discourage her most 
is the failure of CERN’s Large Hadron 
Collider (LHC) to detect even a few of 
the new fundamental particles predicted by 
the “supersymmetry” theory — “susy” for 
short. Post-World War II physicists, led by 
Murray Gell-Mann and Richard Feynman, 
assembled what has come to be known as 
the Standard Model of the subatomic world. 
Comprising 25 presumably fundamental 
particles from which all other particles may 
be constructed, the model explains virtually 
every known subatomic interaction in terms 
of “gauge symmetries” — symmetries of the 
Lagrange equations governing the quantum 
fields of three of nature’s four fundamental 
forces. Only gravitational forces remain 
unexplored by the Standard Model.

Susy postulates the existence of a “part-
ner” for each of the 25 particles in the 
Standard Model, and perhaps a few others. 

No such partners were found at the Large 
Electron-Positron Collider (LEP), which ran 
until 2000, or at the Tevatron, 
which reached higher ener-
gies than the LEP and ran until 
2011. Even the powerful LHC, 
which reuses the LEP’s tunnel 
and has been running off and on since 2008, 
has failed to divulge any evidence of the elu-
sive susy partners. The simplest explanation 
is that the unseen partners are much larger 
than expected, requir-
ing even higher energy 
colliders for detection.

Unsurprisingly, par-
ticle physicists are lob-
bying for such colliders. 
Some have proposed 
a Chinese Circular 
Collider (CCC) that 
would reach collision 
energies approach-
ing 100 trillion elec-
tron volts (TeV). The 
Japanese have expressed 
interest in building an 
almost equally power-
ful International Linear 
Collider, while CERN 
has plans for a super-
LHC with a circumfer-
ence of 100 kilometers 
that reaches energies 
comparable to those 
expected of the CCC. 
But many physicists anticipate discovery of 
at least a few susy partners at collision ener-

gies as low as 2 TeV — easily obtainable 
from the LEP, Tevatron, and original LHC 

incarnation. Who is to say, 
Hossenfelder asks, that more 
powerful colliders will suc-
ceed where others have failed? 
Where do leaders in the field 

stand on the matter? Are they deliberately 
misleading their governments about the pros-
pects of increasingly costly experiments?

String theory is another source of distress 
to Hossenfelder. She 
points out that the field 
has yet to generate a 
single testable hypoth-
esis after 30 years of 
development. Worse 
still, it has spawned 
a willingness in some 
circles to modify—if 
not abandon—the sci-
entific method itself. 
Hossenfelder referenc-
es Austrian philoso-
pher Richard Dawid’s 
recommendation to 
amend the scientific 
method to allow for 
the evaluation of sci-
entific hypotheses 
on purely theoretical 
grounds. In his book, 
String Theory and 
the Scientific Method, 
Dawid specifically 

cites three non-empirical arguments already 
in use by string theorists: (i) the absence 

of alternative explanations, (ii) the use of 
previously successful mathematics, and (iii) 
the discovery of unexpected connections. 
According to Hossenfelder, string theorists 
welcome such philosophical support while 
most other physicists refrain from doing 
so. What, she wonders, will become of 
everyone if climate scientists rely on non-
empirical criteria to evaluate their models?

In part because of the high cost of field 
experiments, physicists have developed cri-
teria to identify the proposed theories most 
likely to survive empirical testing. The most 
obvious, of course, is simplicity. A simple 
theory is always preferable to a compli-
cated one that explains the same observa-
tions. So is one that extends an established 
theory, since it automatically explains the 
same observations and more. But the phys-
ics community has gone further, developing 
a “theory of theories” situated in something 
called “theory space.”

To introduce this idea, Hossenfelder points 
out that theoretical physics is an amalgam of 
weakly-related theories operating on dif-
ferent scales. Small-scale (high-resolution) 
physical theories tend to imply larger-scale 
(lower-resolution) physical theories. For 
instance, Newton’s laws of motion—devel-
oped at the level of an apple falling from 
a tree—imply Kepler’s theory of planetary 
motion. Likewise, atomic-scale quantum 
mechanics suggests a theory of large-scale 
chemical reactions and another of fingernail-
size computer chips. And so on.

See Beautiful Mathematics on page 8

BOOK REVIEW
By James Case

Lost in Math: How Beauty Leads 
Physics Astray. By Sabine Hossenfelder. 
Courtesy of Basic Books.
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By Maurice Chiodo                    
and Dennis Müller

In the past, some mathematical societ-
ies have discussed ethical policies and 

issues [3, 4] and disseminated their own 
codes of conduct to address specific ethical 
concerns encountered by research math-
ematicians, such as those arising during 
publication. While ethical and behavioural 
issues specific to well-defined mathemati-
cal areas are of course still relevant, the last 
two decades have yielded many new ethical 
concerns that now affect all mathematicians 
in some way. Having taught these issues for 
more than two years at the University of 
Cambridge, we came to the realization that 
mathematicians can assume several differ-
ent levels of ethical engagement [1]. Ethics 
in mathematics is not a binary process.

As the oldest consistently used scientific 
tool in Western thinking, mathematics car-
ries perhaps the greatest scientific author-
ity. It has become an extraordinarily power-
ful instrument ubiquitous to all of science 
and technology. How many hours of math-
ematical work underpin the technology 
behind smartphones, airplane flights, or 
models of global climate dynamics? But 
the applications—and therefore ethics—of 
mathematics go well beyond engineering. 
Modern mathematics is at the heart of 
economics and finance, and excessive trust 
in mathematical models contributed to the 
2007 financial crisis. Even the most ardent 
purists in number theory or algebra can no 
longer claim to “just do the mathematics” 
and “leave the implications to ethicists”, 
as recent revelations about global mass 
surveillance have underscored their work‘s 
immediate social and political impact. It 
is now evident that one can wield practi-
cally all branches of mathematics both for 
good and harm. Modern mathematics is a 
double-edged sword.

Just as physicists had to recognise the 
enormous ethical implications of their work 
after the atomic bombing of Hiroshima in 
August 1945, socially responsible math-
ematicians must also realise the existence 
of ethics in mathematical practise, which 
leads to issues far more complex and harder 
to characterize than publishing-related deci-
sions. Plagiarism and the ethics of journal 
submission are real concerns, but hardly of 
the same order as these new ethical matters. 

The inner workings of even areas of 
broad appeal—such as data science, 
machine learning, and optimisation—are 
often beyond the layman’s comprehension. 
Lawyers and judges struggle to under-
stand policing and sentencing algorithms, 
politicians stretch to comprehend the full 
capabilities of state surveillance agencies, 
and electoral commissions barely grasp the 
algorithms and mathematical psychomet-
rics behind Cambridge Analytica’s targeted 

advertising. Thus, only mathematicians can 
begin the process of unveiling the meaning, 
validity, applicability, and reliability of 
modern mathematics, paving the way for 
judges, politicians, and regulators to step in.

Even if we feel that mathematical 
research is beyond all ethical consider-
ation, as academics we must ask our-
selves: What do our students do after 
graduation? We train them in a wide range 
of mathematics, but do we teach them to 
be aware of possible ethical issues in its 
use? As a society, we have long agreed 
that the so-called Nuremberg defense—
simply saying “I’m just doing my job” 
or “I was only following orders”—is not 
a valid excuse. Thus, it is imperative for 
us to teach ethics to our students and 
help them better contextualise their math-
ematical work. In April 2016, we began 
giving ethics seminars fea-
turing guest speakers from 
industry, academia, and 
intelligence agencies to 
researchers and students in 
the Faculty of Mathematics 
at Cambridge. Shortly 
thereafter, we organized the first con-
ference on “Ethics in Mathematics.”1 
Through observation and case studies, we 
noticed that mathematicians can demon-
strate what we term the “four levels of 
ethical engagement.” These levels form a 
recurring theme throughout our seminars.

The first level is the fundamental under-
standing that the practice of mathematics 
is not ethics free, and that ethical issues 
can surface in any mathematical work. One 
always performs mathematics in a social 
and political context, never in value-free 
isolation. Thus, all mathematicians must 
think about their individual responsibilities, 
as ethical issues may emerge at any time. 
This diligence can be as simple as con-
sidering environmental impact rather than 
merely optimising over time and money 
during a construction project. Mathematics 
can pose immediate or distant consequences 
that generally manifest as good, sometimes 
as not entirely good, and occasionally as 
downright bad. On this individualistic level, 
mathematicians modify and adapt their own 
ethical consciousness and actions, taking 
the important first step towards a more 
robust ethical awareness.

The second of these four levels involves 
mathematicians speaking out to other math-
ematicians, raising awareness of ethical 
issues among their peers. Individual math-
ematicians may recognize ethical issues in 
the mathematical work of others and try 
to inform them. They might precipitate 
unified action among their colleagues and 
locally bring about a collective ethical 
awareness and approach. Or they might 

1  http://www.ethics.maths.cam.ac.uk/
EiM1/

Mathematicians and Ethical Engagement
write an article about ethics for their com-
munity, as we have done here.

The third level is more complex. It 
teaches mathematicians to take a seat at 
the tables of power. Mathematicians often 
need to learn the specific skills required 
to work with politicians, corporate man-
agement, and other non-scientists. These 
include engaging in policy discussions, 
establishing and rationalising their math-
ematical work’s objectives, and commu-
nicating potential limitations and possible 
drawbacks. Engineers and computer sci-
entists are taught this at the undergraduate 
level, but mathematicians seldom receive 
such lessons explicitly. Many mathemati-
cians in advancing industry careers unex-
pectedly find themselves in positions that 
require these abilities. Mathematics is 
becoming an increasingly powerful social 

tool, and seeing its creators 
hiding behind formulae 
and retrospectively apolo-
gising is not appropriate. 
If we want to take credit 
for our output’s positive 
impact, we should also be 

able to defend and properly contextualise 
our work and engage in apparently non-
mathematical debates.

Our fourth and final level is the respon-
sibility of mathematicians to call out the 
bad mathematics of others by proactively 
seeking out, learning about, and acting 
upon instances where mathematics has 
“gone wrong” — possibly in unrelated 
organisations. However, bad mathemat-
ics occurs in two distinct forms. First, 
it can refer to the practice of claiming 
results that are not mathematically true. 
The catastrophic misuse of statistics in the 
trial of Sally Clark [2], which the Royal 
Statistical Society reprimanded through 
the release of a statement [5], is one such 
example. Bad mathematics can also refer 
to trained mathematicians’ inappropriate 
use of mathematics by giving it exces-
sive authority or directing it in ways that 
cause harm and exploit others. Members 
of any profession have the responsibility 
to hold their work—and the work of their 
colleagues—to high standards. Like statis-
ticians, engineers, and doctors, mathemati-
cians must adapt their own form of profes-
sional standards in academia, industry, 
and overall society. Some mathematicians 
are already questioning the validity and 
fairness of various decision-making algo-
rithms or identifying the potential harms 
of artificial intelligence (AI), bringing such 
dangers into public consciousness and pro-
posing workable solutions.

Practising ethics in mathematics is not 
binary, and mathematicians must consider 
various levels of engagement and ethical 
sensibility. Of course, our aforementioned 
four levels are an artificial and simplistic 

construct. One can refine them ad nauseum, 
but collectively they illustrate the depth and 
complexity of ethics in mathematics.

Not every mathematician will face prob-
lems pertaining to all levels, but everyone 
should remain aware of their social respon-
sibilities, acknowledge the existence of 
ethical issues in the mathematical context, 
and appreciate their complexity. We teach 
students a broad spectrum of mathemat-
ics to prepare them for a wide variety of 
academic and professional eventualities. 
Why shouldn’t we teach a broad spec-
trum of ethical situations in mathematics, 
which go beyond specialised courses such 
as ethics in AI? Lawyers, medics, biolo-
gists, engineers, physicists, and computer 
scientists learn subject-specific ethics 
because they will encounter these ques-
tions as professionals. Comprehending the 
seemingly-limitless uses of mathematics 
is difficult, and the ethical implications of 
modern mathematics depend on subtleties 
that only the mathematically-trained can 
understand. We are the only ones who can 
see behind the formulae. Thus, we should 
no longer leave these issues to profes-
sional ethicists and philosophers. No one 
else can address them, so we must.
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ETHICS  IN 
MATHEMATICS

Is it possible to heat a glass of 0°C milk 
to > °50 C  using only the heat from 

an identical glass of 100°C  water, thus 
cooling the water to < °50 C?  No heat is 
exchanged with the outside world, extra 
containers are available, and heat capacities 
per unit volume of the water and milk are 
assumed to be the same.

Despite the fact that heat flows “downhill” 
temperature-wise (the second law of thermo-
dynamics), one can indeed reverse the order 
of the two liquids’ temperatures, as illustrat-
ed in Figure 1. We scoop 1/ thn  of the milk 
into a ladle, dip the ladle in the hot water 
until the temperatures equalize, and dump the 
warmed milk into the glass on the right. After 
n  repetitions, all of the milk ends up in the 
last glass. Dipping the 0°C  milk ladle in the 
warm water reduces the water temperature 
by the same factor on each step:
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since the heat of n  units of 
water spreads equally among 
the n +1  units of liquid. 

After n  steps,1 with all of 
the milk in the third glass, the 
water therefore cools to 
   
 
       

100

1

100
36 8

1( )
.

+
≈ ≈ °

n
n e

C;

coincidentally, this is the human body tem-
perature. The milk’s temperature is thus 
≈ °63 C,  considerably above 50°C.This is 

1 We assume a small ladle, hence a large n.

Heat Exchange and Some Frivolous Aspects of e
actually the perfect temperature for cooked 
salmon. To summarize, 
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Even more surprising than the reversal 
of the order of temperatures is the fact 
that a near-perfect temperature swap is 
possible in principle. Biological evolution 
“invented” the mechanism of such a swap, 
which may be described in another article.
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MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 1. The milk is colder than the water 
at the beginning of the process and hotter 
than the water at the end. Figure courtesy 
of Mark Levi.
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where a  and f  represent forest tree birth 
and death rates respectively. This system is 
reduced by G S T F+ + + = 1  to

′ = − − −G G T F( )1u

      + − +ν βT GT

      
φ γ α( ( ))G G F F GF+ − − −1

′ = + − −T G G Fω γ( )( )1
      
( )1- - - - -G T F T TFν α

′ = − −F F( ( )a 1

      φ γ( ( )) .)G G F F+ − −1

The result is a complex system that is quite 
sensitive to the parameters (see Figure 2, 
on page 5). A variety of equilibria appear, 
and families of periodic orbits undergo 
complex transformations.

Levin and Staver were surprised to find 
heteroclinic orbits—trajectories that con-
nect and cycle between multiple states—
during which the system flipped from one 
state to another. At the saddle node bifurca-
tion, the orbit expands and approaches three 
coexisting unstable equilibria, which results 
in sharp, slow oscillations (see Figure 3).

These oscillations describe what the 
researchers call a “winnerless competi-
tion.” Hardy savanna trees invade grass-
lands, shade the ground, and reduce grass 
growth and fire risk. Diminished fires 
promote tree growth, and soon forests 
dominate the landscape. But forest trees 
are more sensitive to fires than savanna 
trees, and they give way to grassy plains as 
fire again sweeps across the land. 

Strangely, these patterns were not well-
behaved. “They didn’t have many of the fea-
tures that we expected of heteroclinic orbits,” 

Levin said. “Namely, as they approach the 
equilibrium they ought to be slowing down. 
That’s what we didn’t understand.”

Levin and Staver consulted Touboul, 
who was familiar with multiple timescales 
thanks to his neuroscience experience. 
However, unlike in the brain, all savanna 
species evolve at comparable timescales. 
“It’s the dynamics and the nonlinearity 
itself that create these heteroclinic cycles,” 
Touboul realized. “The cycles may have 
branches that are very fast and branches that 
are very slow.” Contrary to normal ecologi-
cal assumptions, the model demonstrated 
that the landscape could change indepen-
dently of any external process.

In this case, change—even rapid 
change—might just be a cycle from one 
state to the next rather than an indication 
that something or someone is pushing it. 
If something does drive it, like climate 
change, the corresponding effects would 
manifest in even the simplest model — as 
increased fire risk from less precipitation 
or faster tree growth due to warmer tem-
peratures, for example.

However, a real savanna is more than 
simplified trees and grass with constant 
rates of initiation and growth. Fires are spo-
radic. Tree growth depends on water, nutri-
ents, sunlight, and the voracity of predators. 
Researchers often assume that this extra 
“noise” averages out, but Touboul, Staver, 
and Levin realized that this was not the case 
upon examining these stochastic effects to 
test the model’s relevance to real systems.

Rather than averaging out, relatively 
small noise perturbations exacerbated bifur-
cations and caused the model to veer off. 
For noise perturbations away from bifurca-
tions, the system deviated only slightly from 
deterministic trajectories. But for ecological 
systems near the heteroclinic cycle, these 
perturbations triggered large amplitude peri-
odic oscillations between grassland, savanna 
woodland, and forest where the noiseless 
system stabilized on a fixed landscape.

In the vicinity of another transition called 
fold of limit cycles, these perturbations 
had the opposite effect. They dampened 
the emergence of oscillations in the model 
where such stochastic effects are ignored. 
“When I applied noise to the system, I was 
very surprised to see that noise could actu-
ally act both ways, either in creating regular 
oscillations or destroying existing oscilla-
tions in the noiseless system,” Touboul said. 
Figure 4 illustrates these novel results.

The team asserts that one should not 
view this model as predictive; an ecologist 
cannot simply tabulate all parameters, feed 
them into the model, and expect to know 
the landscape’s vegetation type in com-
ing centuries. Furthermore, parameters are 
difficult to estimate and check. “I can say 
with some confidence that when the system 
is pushed far enough, you will obtain these 
transitions,” Levin said. “But in ecological 
systems, one must be very cautious about 
using models for prediction.”

Touboul, Staver, and Levin are cur-
rently using paleoecological data to test 
the model’s ability to describe past eco-
systems. Ancient pollen grains embedded 
in layers of lake sediment provide clues 
about vegetation types that existed as 
early as 20,000 years ago. “It’s compli-
cated because the vegetation dynamics 
are often on the same timescale as climate 
change,” Staver said. “So it’s really dif-
ficult to determine if those cycles are 
occurring independently.” 

The team is also working to refine the 
model to account for spatial dynamics. The 
current model assumes the system is well-
mixed, but in reality, one patch of vegetation 
influences another even if they are identical.

The researchers’ work demonstrates an 
elegant and practical example of how 
simple starting conditions can produce 
highly complex non-equilibrium phenom-
ena. It is also a cautionary tale against 
ignoring the sometimes-substantial effects 
of ecological noise and ascribing change 
to external drivers. Their model provides 
scientists with an improved understanding 
of this complex ecological system — with 
expandable techniques to help understand 
global vegetation patterns and potential 
changes due to climate change. And it 
is not limited to savannas. Other multi-
layered systems—such as coral reefs, brain 
activity, and financial markets—would 
benefit from similar modeling.
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Figure 3. Heteroclinic loop and nearby periodic orbits. 3a. The heteroclinic loop (orange) joins a 
grassland, forest, and woodland equilibrium — all of which are unstable for those parameters. 
3b. For smaller values of the forest tree birth rate, periodic orbits emerge and progressively devi-
ate from this cycle. The forest equilibrium is stabilized for larger values. Figure courtesy of [1].

Figure 4. Complex responses to noise in various parameter regimes. 4a. Near the heteroclinic 
loop, an optimal level of noise triggers highly periodic responses, where the noiseless system 
stabilizes in a forest (stochastic resonance). 4b. An optimal level of noise cancels the oscilla-
tions in the noiseless system (inverse stochastic resonance) near the fold of limit cycles. 4c. 
Noise induces irregular switches between the different attractors in the bistable regime. Figure  
courtesy of Jonathan Touboul, adapted from [1].

Savanna Lifecycle
Continued from page 5
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Hossenfelder likens theory space to a box 
(see Figure 1). Each point in the box repre-
sents a different theory, and curves depict 
chains of theories related by implication, 
with high-resolution theories implying low-
resolution ones. The totality of such curves, 
presumably capable of branching and/or 
merging, is called the “flow” of theories.

If the curves emanating from different ver-
sions of a particular high-resolution theory 
appear to converge on a low-resolution theory 
of interest—marked by X in Figure 1—the 
latter is termed “natural,” since all versions of 
the high-resolution theory yield essentially the 
same low-resolution conclusions. Such con-
clusions “follow naturally” from the assump-
tions. But if the curves diverge and only a few 
pass near the low-resolution theory of interest, 
the latter is “fine-tuned” because it follows 
from only a handful of versions of the high-
resolution theory. These must be adjusted just 
right to suggest the low-resolution theory. 

In this case, one must know every detail of 
the high-resolution theory with precision to 
justify confidence in the low-resolution one.

The greater part of Lost in Math consists 
of interviews with leading physicists regard-
ing their opinions on significant issues facing 
the discipline. Why do they find the Standard 
Model unsatisfactory? Is susy the only viable 
alternative? Why is naturalness beautiful but 
fine-tunedness unattractive? Will the quest for 
beauty produce something better? Is the long-
sought “theory of everything” within reach?

Hossenfelder is a skilled interviewer, with 
a talent for drawing her subjects out on 
topics of mutual interest and an admirable 
distaste for trivial gossip. She is also humor-
ous at times. Better still, she seems well-
schooled in the subject’s history, including 
the disputes that have disrupted it over 
the years. Hossenfelder’s take on these is 
refreshing, as it rebuts the prevailing view 
whereby “progress in the sciences is made 
at the funerals of scientists.”

In hindsight, many historic scientific dis-
putes—such as those surrounding helio-
centricity and/or the reality of atoms and 
molecules—seem foolishly one-sided. Yet, 
says Hossenfelder, this was not always the 
case. In almost every instance, good argu-
ments seemed to exist on both sides of the 
disputed issue for many years. In time, the 
preponderance of evidence came to rest on 
one side or the other. But until scientists 

gathered decisive proof, the eventual out-
come remained unpredictable.

The argument surrounding heliocentrism is 
a prime example. Copernicus’ contemporaries 
found it hard to accept the model because the 
planets’ rotation around the sun should imply 
movement of the fixed stars in the sky as Earth 
travels from its nearest approach to the far-
thest remove of a given star. The magnitude of 
this movement, known as “parallax,” depends 
on the average distance between Earth and 
the star — a greater distance correlates with a 
smaller apparent change in position.

The stars do indeed change position slight-
ly during the course of a year. But because 
astronomers could not detect such miniscule 
changes until the 19th century, generations 
of people were forced to conclude that either 
Earth remained stationary or the fixed stars 
were exceedingly far. Moreover, since a 
beam of light from a distant star that passes 
through a circular aperture—such as an eye 
or telescope—will “smear out” and under-
go magnification, those distant stars seem 
gigantic in comparison with other celestial 

bodies, including the sun. Scientists also 
did not understand this magnification until 
the 19th century, so earlier generations of 
astronomers had to either agree with Ptolemy 
that the stars remain fixed in the “celestial 
sphere” or conclude that they were unimag-
inably large and distant. How surprising is it 
that many found the more familiar teaching 
both simpler and easier to accept? After all, 
simplicity has long been regarded as a reli-
able indicator of beauty.

Hossenfelder quotes Paul Krugman to 
the effect that “The economics profession 
went astray because economists, as a group, 
mistook beauty, clad in impressive-looking 
mathematics, for truth” [1]. Her interviews 
are meant to discover the extent to which 
physicists are in danger of making the same 
mistake. After failing to identify a consensus 
beyond “time will tell” among her impres-
sive roster of respondents, she elects to close 
on a positive note. “The next breakthrough 
in physics will occur in this century,” 
Hossenfelder writes. “It will be beautiful.”
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Figure 1. Sabine Hossenfelder depicts theory space as a box where chains of related theories form 
curves, with high-resolution theories implying low-resolution ones. Image courtesy of Basic Books.
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How a Chance Internship Inspired 
My Career in the Oil Industry
By Anusha Sekar

The story of my career begins at the 
midpoint of my graduate studies. 

After earning my master’s in mathemat-
ics from the Indian Institute of Science in 
Bangalore, India, I moved to the University 
of Washington (UW) to complete my Ph.D. 
I was working on my thesis in 2006 when 
my advisor, Kenneth Bube, hosted John 
Washbourne, a scientist from Chevron 
Corporation. Ken had a long history of col-
laboration with researchers at Chevron, but 
I had only a nebulous idea of the content of 
this research. John offered me an internship, 
but I was hesitant at first. At the time, my 
goal was to finish my thesis and work in 
math education. I wasn’t completely sure if 
I wanted to pursue a career in industry.

However, Ken and my husband convinced 
me to give it a try, and I completed my 
first internship in the summer of 2007 with 
John as my mentor. We worked on what 
appears at first to be a very simple problem: 
averaging certain properties of rocks from 
well logs. A single MATLAB function can 
seemingly achieve this, until you realize that 
you must combine these averages to yield 
the coefficients of a hyperbolic partial dif-
ferential equation (PDE). The objective is 
to average the coefficients for consistency; 
solving the PDE with both the original (finer 
grid) and averaged (coarser grid) coefficients 
must produce matching wavefields, i.e., the 
correct effective medium.

Geophysicists had already derived a for-
mula for this in one dimension [3]. Using 
their work, we numerically confirmed that 
the effective medium formulas produced 
the correct wavefields. The amount of math-
ematics, physics, and computer engineering 

necessary to understand this small prob-
lem was impressive. I was hooked! I also 
enjoyed my time at Chevron and met sev-
eral interesting people. The atmosphere was 
very collegial; colleagues shouted concepts 
across the hallway to one another and went 
out of their way to help each other. There 
were many fun lunches and even a hike 
on Mount Diablo. John convinced me to 
participate in a second internship the fol-
lowing summer, which solidified my desire 
to work in industry. I approached one of the 
team leads about a job, and thanks to good 
reviews from John, received an offer. John 
continues to mentor me to this day.

I returned to UW to com-
plete my thesis. About two 
months before I was to join 
Chevron, I discovered that 
I was pregnant. I had heard 
about so many unpleasant 
incidents involving pregnant 
women and corporations that I was con-
vinced my offer would be rescinded — or 
at least delayed. I called my team lead 
with the news and will never forget his 
response. “Don’t even think about waiting, 
Chevron has very good medical benefits!” 
he said. He assured me that I could start 
as planned and proceeded to preview the 
project on which I would be working. Six 
months into my pregnancy, I began my 
career at Chevron. With help and men-
toring from coworkers and support from 
family, I had a successful first year despite 
taking time off to have a baby. My man-
ager later confessed that his only concern 
was whether I would decide to stay home 
after the baby’s birth. 

Chevron’s culture is very conducive to a 
good work-life balance. I have met driven 

Navier-Stokes equations to study historical 
sedimentation [2], employ porous media 
flows to understand reservoir flow [5], and 
use data analytics to improve production 
[6]. The science that we develop is also 
applicable to other areas, like medicine.1 
I now work on inverse problems where 
an expensive hyperbolic PDE represents 
the forward engine [1]. Rich mathematical 
theory underlies the existence of solutions 
[4]. Local minima are a big headache, 
but there are ways to get around it [8]. 
However, unanswered questions pertaining 
to whether artificial intelligence can com-
pletely replace the physics remain [7].

You can easily lose your identity as 
an applied mathematician in industry. It 
is also quite tempting to stay within the 
cocoon of your particular industry and 
ignore other fields. In my role, I could 
choose to confine myself to academic work 
on geophysical problems. But mathemati-
cians can see patterns and understand a 
problem’s essence, extracting it out of 
the business in which it is embedded. It 
is important for us to capitalize on and 
develop this ability. Hence, networking 
and collaborating with other applied math-
ematicians within or outside your specific 
industry becomes crucial. This is where 
SIAM came in for me and inspired a few 
of us to create a SIAM Texas-Louisiana 
Section. The section provides a platform 
for applied mathematicians to establish or 
reestablish links with their peers. Thus far 
we have organized two successful work-

1  http://www.uh.edu/nsm/math/seminars-
and-events/Houston%20Imaging%20Sciences
%20Symposium/

women and men who dedicate the same 
amount of energy to both work and raising a 
family, and there is broad diversity in terms 
of gender and race. Employees also have 
a range of technical backgrounds, which 
allowed me—a mathematician with mini-
mal geophysics knowledge—to contribute.

My biggest struggle—and I believe this 
is true of all industry positions—was under-
standing the jargon. Sometimes my col-
leagues use words that mean one thing in 
mathematics but something entirely dif-
ferent in the world of oil. Furthermore, 
geologists and geophysicists have dif-
ferent interpretations of the same terms. 

Exploration geophysicists 
and whole-earth geophysi-
cists (seismologists) do not 
agree on some definitions. 
Acronyms abound. Even the 
Fourier transform is defined 
with a different sign on the 

exponent in certain instances! I could not 
digest the fact that some algorithms use 
adjoint operators of a non-unitary operator 
as their approximate inverse and still pro-
duce reasonable answers (some interesting 
mathematics validates this use [9]).

On the flip side, I have picked up a 
host of new topics; I learned more optics 
than I did in physics classes, gained much 
knowledge of signal processing, and prac-
ticed designing and writing code that oth-
ers can use. It was great to see algorithms 
validating theory and even better when 
results matched field measurements. I am 
constantly surprised and pleased that I can 
still use parts of my thesis to solve real-
world problems.

The oil industry utilizes a wide vari-
ety of mathematics. Researchers solve 
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Professional  Opportunities and Announcements

Williams College
Department of Mathematics and Statistics

The Department of Mathematics and Statistics 
at Williams College invites applications for a new 
tenure-track position in statistics, beginning fall 
2019, at the rank of assistant professor. A more 
senior appointment is also possible for a qualified 
candidate at a later stage in their career. The can-
didate should have a Ph.D. in statistics or a close-
ly-related field by the time of appointment. We 
are seeking candidates who show evidence and/
or promise of excellence in teaching and a strong 
research program that can engage undergraduate 
students. The candidate will become the seventh 
tenure-track statistician in the department, joining 
a vibrant and innovative group of statisticians 
within an established statistics major. For more 
information on the Department of Mathematics 
and Statistics, visit http://math.williams.edu/.

Candidates may apply via https://apply.
interfolio.com/50978 by uploading a cover letter 
addressed to Professor Richard De Veaux, a cur-
riculum vitae, a teaching statement, a description of 
research plans, and three letters of recommendation 
on teaching and research. The department is com-
mitted to building a diverse and inclusive commu-
nity. In your application materials, we also ask you 
to address how your teaching, scholarship, men-
torship, and/or community service might support 
Williams’ commitment to diversity and inclusion.

Expectations: The teaching load is two courses 
per 12-week semester and a winter term course 
every other January. The candidate will be expect-
ed to teach introductory statistics, core courses for 
the statistics major, and elective courses in their 
areas of interest. The successful candidate will 
establish an independent research program that 
results in scholarly publications. Williams College 

provides broad support for start-up funds, funding 
for student research assistants, faculty professional 
development funds, and a shared computer cluster 
for parallel computation.

Review of applications will begin on or after 
October 1st and will continue until the position 
is filled. All offers of employment are contin-
gent upon completion of a background check. 
Further information is available at https://fac-
ulty.williams.edu/prospective-faculty/back-
ground-check-policy/.

Williams College is a coeducational liberal arts 
institution located in the Berkshire Hills of western 
Massachusetts. The college has built its reputa-
tion on outstanding teaching and scholarship, and 
on the academic excellence of its approximately 
2,000 students. Please visit the Williams College 
website at http://www.williams.edu. Beyond fully 
meeting its legal obligations for nondiscrimina-
tion, Williams College is committed to building a 
diverse and inclusive community where members 
from all backgrounds can live, learn, and thrive.

California Institute of Technology
Department of Computing +           
Mathematical Sciences

The Computing + Mathematical Sciences 
(CMS) Department at the California Institute of 
Technology (Caltech) invites applications for a 
tenure-track faculty position in the fundamental 
mathematics and theory that underpins application 
domains within the CMS Department, the Division 
of Engineering and Applied Science (EAS), or the 
institute as a whole. Areas of interest include (but 
are not limited to) algorithms, data assimilation and 
inverse problems, dynamical systems and control, 
geometry, machine learning, mathematics of data 
science, networks and graphs, numerical linear 

algebra, optimization, partial differential equations, 
probability, scientific computing, statistics, sto-
chastic modeling, and uncertainty quantification.

CMS is a unique environment where research 
in applied and computational mathematics, com-
puter science, and control and dynamical systems 
is conducted in a collegial atmosphere; applica-
tion foci include distributed systems, economics, 
graphics, neuroscience, quantum computing, and 
robotics and autonomous systems. The CMS 
Department is part of the broader EAS Division, 
comprising researchers working in—and at inter-
sections of—the fields of aerospace, civil, elec-
trical, mechanical, and medical engineering, as 
well as in environmental science and engineering 
plus materials science and applied physics. The 
institute as a whole represents the full range 
of research in biology, chemistry, engineering, 
physics, and the social sciences.

A commitment to world-class research, as 
well as high-quality teaching and mentoring, is 
expected. The initial appointment at the assistant 
professor level is for four years and is contingent 
upon the completion of a Ph.D. degree in applied 
mathematics, computer science, statistics, or a 
related field in engineering or the sciences.

Applications will be reviewed beginning 
November 7, 2018, and applicants are encour-
aged to have all of their application materials, 
including letters of recommendation, on file by 
this date. For a list of required documents and 
full instructions on how to apply online, please 
visit https://applications.caltech.edu/jobs/cms.

Questions about the application process may 
be directed to search@cms.caltech.edu.

We are an equal opportunity employer and all 
qualified applicants will receive consideration for 
employment without regard to race, color, religion, 

sex, sexual orientation, gender identity, national 
origin, disability status, protected veteran status, or 
any other characteristic protected by law.

Boston University
Department of Mathematics and Statistics

The Department of Mathematics and Statistics 
at Boston University (BU) invites applications 
for a tenure-track assistant professor position in 
dynamical systems. BU is committed to building 
a culturally diverse faculty and strongly encour-
ages applications from female and minority 
candidates. All candidates are encouraged to 
describe in their application previous activities 
mentoring minorities, women, or members of 
other underrepresented groups, and how they 
plan continual engagement with related issues. 
Ph.D. required. Begins July 2019, pending bud-
getary approval. Commitment to research and 
teaching at the undergraduate and graduate 
levels is essential.

Submit cover letter, CV, research statement, 
teaching statement, and four recommenda-
tion letters (one of which addresses teaching) 
online to mathjobs.org. Alternatively, submit 
materials to: Dynamical Systems T-T Search, 
Department of Mathematics and Statistics, 
Boston University, 111 Cummington Mall, 
Boston, MA, 02215. Application deadline: 
December 15, 2018. We are an equal opportu-
nity employer and all qualified applicants will 
receive consideration for employment without 
regard to race, color, religion, sex, sexual ori-
entation, gender identity, national origin, dis-
ability status, protected veteran status, or any 
other characteristic protected by law. We are a 
VEVRAA Federal Contractor.

Data Science at the IMA: An Industry-Supported Initiative
By Benjamin Brubaker, Fadil 
Santosa, and Daniel Spirn

The Institute for Mathematics and its 
Applications (IMA) recently estab-

lished an agreement with Target and 
Cargill, launching a new era in indus-
trial collaboration at the institute. The two 
Minnesota-based companies are placing a 
substantial investment in the mathemati-
cal sciences — more than $2 million over 
a two-year period, likely representing the 
largest research grant from the industrial 
sector to a U.S.-based mathematical sci-
ences institute. “The partnership is a win-
win for everyone: the IMA, the University 
of Minnesota (UMN), the two companies, 
and the region,” Mostafa Kaveh, dean of 
the College of Science and Engineering 
at UMN, said. “We are completely behind 
this initiative and have provided signifi-
cant institutional support.”

The new initiative fits squarely within 
the central mission of the IMA: to con-
nect mathematics with its applications. 
The IMA’s history of collaboration with 
industry dates back to 1981. Its founders 
articulated a vision for an interdisciplin-
ary institute with substantial representation 
from industry and government scientists 
in the initial proposal submitted to the 
National Science Foundation (NSF). Since 
then, the IMA has become the go-to place 
for collaboration between industry and aca-
demia, with the following activities serving 
as mainstays of the IMA model: (i) industry 
outreach, (ii) Industrial Problems Seminars, 
(iii) industrial math modeling workshops, 
and (iv) industrial postdoctoral fellowships.

After the NSF’s 2015 decision to only 
partially fund the IMA’s renewal proposal, 
the institute sought to preserve institu-
tional activities through diversified funding 
sources. In addition to mitigating the inevi-
table ups and downs of government fund-
ing cycles, this approach aligns the IMA’s 
incentive structure to better represent its 
constituents. So the institute devised a new 
model that makes a compelling case for 
organizations to support it.

It seemed natural to partner with math-
ematically sophisticated companies located 
in the IMA’s own backyard. One of the first 
companies that the IMA approached was 
Target. Target’s Chief Data and Analytics 

Officer, Paritosh Desai—trained in opera-
tions research at Stanford University—has 
a vision for mathematics’ ability to provide 
companies with a competitive advantage. 
He was instrumental in shaping the new 
Data Science Consortium at the IMA and 
enlisting the participation of Cargill as a 
second founding member.

Although data science is an inherently 
interdisciplinary field, its underpinnings 
are mathematical and algorithmic. “While 
there are many spectacular successes in 
machine learning and artificial intelligence, 
fundamental understanding of their behav-
ior is still quite open,” Desai noted. “This 
is where we need more mathematics.” Such 
collaboration provides a meaningful source 
of interesting and important problems that 
expand the discipline’s boundaries.

The IMA has previously run programs 
on the mathematical aspects of data sci-
ence and is well positioned to address 
outstanding challenges in the field. Three 
distinct parts—the industrial postdocs pro-
gram, the research program, and the train-
ing program—reflect the earlier mainstay 
activities of the industrial portfolio and 
form the consortium’s core. The industrial 
postdocs spend half of their time working 
on directed company research projects. 
“The three IMA postdoctoral fellows in 
the Cargill data science group are already 
making an impact on our business by bring-
ing in new technologies,” James Weed, 
Vice President of Analytics and Digital 
Economy at Cargill, said. “We hope that 
they will consider remaining with Cargill 
when they are done.” One postdoctoral 
researcher started at Target last year, and 
two others will join the company this year. 
See accompanying sidebar for descriptions 
of the postdocs’ research projects.

The research program offers topics for 
thematic semesters, which are determined 
by consortium members in consultation 
with the advisory board. The board con-
sists of Desai, Weed, Katherine Ensor 
(Rice University), Peter Glynn (Stanford), 
Piotr Indyk (Massachusetts Institute of 
Technology), Gilad Lerman (UMN), 
and Joel Tropp (California Institute of 
Technology). A semester-long program 
on spatiotemporal forecasting took place 
in the spring of 2017, and a program on 
applications of machine learning to supply 

chains will be held this fall. The training 
program trains both students and com-
pany-based data scientists, providing the 
companies with both a talent pipeline and 
cutting-edge tools from academic research. 
These endeavors enhance the existing core 
activities at the IMA.

The IMA is using its collaboration with 
Target and Cargill to lay the foundation 
for a national data science resource. The 
initiative has many benefits that extend 
beyond the partner companies. With its 
workshops and scientists-in-residence pro-
gram, the institute continues to function as 
a center where mathematical scientists can 
congregate and collaborate. In addition, it 
acts as a training ground for mathematical 
scientists at various stages of their careers. 
The unique industrial postdoc program—
admired and imitated around the world—
offers industry work experience to recent 
Ph.D. graduates while retaining connections 
with academia. It opens career paths in 
industry while enhancing participants’ aca-
demic job prospects. The IMA also spon-
sors training programs for graduate students 
interested in transitioning to data science; 
these programs include an opportunity to 
work on industry problems — an experi-
ence that aids the students’ job search.

IMA leadership has always believed 
that the most exciting and transformative 
research arises from problems directly con-
fronting industry, government, and society. 
This new collaborative program presents 
yet another avenue to explore these ques-
tions and provides exciting possibilities for 
the future of academic-industrial partner-
ships in the mathematical sciences.

Benjamin Brubaker is a professor in the 
School of Mathematics at the University 
of Minnesota (UMN) and currently serves 
as the deputy director of the Institute for 
Mathematics and its Applications (IMA). 
His research interests lie in analytic num-
ber theory and representation theory. Fadil 
Santosa served as IMA director from 2008 
to 2017 and is a professor of mathematics at 
UMN. He works in inverse problems, opti-
mal design, and photonics. Daniel Spirn is 
the present director of the IMA, having pre-
viously served as deputy director from 2015-
2017. He is a professor in the School of 
Mathematics at UMN and works in analysis 
of nonlinear partial differential equations.

Industrial Postdoctoral Projects

Hossein Keshavarz received his Ph.D. in 
statistics from the University of Michigan 
in 2017. He worked on a natural language 
processing project with Spencer Schaber 
at Cargill. His current Cargill project—in 
collaboration with Hartmut Durchschlag—
focuses on algorithmic trading strategies 
derived from high-dimensional time series 
analysis, with applications in commodity 
futures. Keshavarz’s research at the IMA 
centers on change point detection in high-
dimensional, sparse graphical models. In 
this work, he actively collaborates with 
George Michailidis (University of Florida) 
and Yves Atchadé (Boston University).

Stuart Rogers earned his Ph.D. in 2017 
from the University of Alberta, where he 
studied dynamics and control. He worked at 
Lockheed Martin before attending graduate 
school. At Target, Stuart works with Kaveh 
Khodjasteh on recommender systems for 
shipment packaging based on mixed-inte-
ger linear programming. In terms of aca-
demia, he studies the dynamics and optimal 
control of rolling ball robots and falling 
cats. Stuart’s postdoctoral mentor is Peter 
Olver (University of Minnesota).

Guanglin Xu completed his Ph.D. in oper-
ations research at the University of Iowa 
in 2017. His IMA mentor is Shuzhong 
Zhang (University of Minnesota). With 
collaborator Andrés Merchán, Xu is 
developing optimal supply chains for ani-
mal nutrition for Cargill’s feed business. 
His research interest at the IMA is optimi-
zation under uncertainty, including multi-
stage and distributionally-robust optimi-
zation and their applications in healthcare 
and operations management.

Dongmian Zou received his Ph.D. in 2017 
from the University of Maryland under 
the direction of Radu Balan, who was 
incidentally an IMA industrial postdoc in 
2000. At Cargill, Zou works with Hartmut 
Durchschlag to forecast commodity prices 
and understand factors that drive their 
movement. His research mentor at the IMA 
is Gilad Lerman (University of Minnesota), 
with whom he is using the scattering trans-
form to examine fundamental issues in 
graph convolutional neural networks.
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A Visual Way to Teach the Fast Fourier Transform
By Jithin D. George

The algorithm behind the fast Fourier 
transform (FFT) has a simple yet beau-

tiful geometric interpretation that is fre-
quently lost in translation in a classroom. 
Here I provide a visual perspective that 
aims to capture the algorithm’s essence.

Students are often confused when they 
encounter the FFT for the first time. This 
confusion likely stems from two sources:

1. The belief that one needs to com-
pletely understand the Fourier transform to 
comprehend the FFT. This is not true; the 
FFT is simply an efficient way to compute 
sums of a special form, and the terms in the 
discrete Fourier transform (DFT) just hap-
pen to be in that form:
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2. The standard presentation of the 
Cooley-Tukey algorithm [1]. This is the 
heart of the FFT, and indicates that it is pos-
sible to decompose the DFT of a sequence 
of terms into a DFT of even terms and a 
DFT of odd terms. When applied recur-
sively, it results in a computational cost of 
O N N( log ).  Researchers generally use the 

following decomposition of A
k

 into odd 
and even terms to illustrate the idea:
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Let us take a simplified look at the 
terms in a DFT:
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One can visualize a e
n

ik nq  as the value a
n
 

located at angle k
n
q  on a unit circle in 

the complex plane. As n goes from 0 to 
N-1, the q

n
s divide the circle into N  arcs 

of angle 
2p

N
.  Each term in the summation 

in (3) is a multiple of a point on the unit 
circle in the complex plane (see Figure 
1). With this geometric view, the Cooley-
Tukey algorithm in (2) becomes obvious 
through Figure 2.

We can compute sums like the FFT in 
this way because the odd terms are a “rota-
tion” away from the even terms. This is 

quite elegant, but does not provide any new 
computational efficiency in itself. We are 
able to decompose a sum into two smaller 
sums of half the size, but still must calculate 
all of the sums. The smaller sums’ ability 
to be “recycled” into new sums gives the 
FFT its computational efficiency. We can 
recycle the two terms that when added yield 
A

1
 by subtracting them to produce A

5
 (see 

Figure 3, on page 12). This certainly saves 
some computational cost, but how much? 
To obtain the finer details, we must work 
out a simple example.

To that end, let us examine the DFT of 
the vector { , , , }a a a a

0 1 2 3  (see Figure 4, 
on page 12). We can obtain the FFT of 
{ , , , }a a a a
0 1 2 3  using the terms in Figure 

5 (on page 12). The first two terms are the 
FFT of { , },a a

0 2  and the last two form the 
FFT of { , }.a a

1 3
 Thus, one can decompose 

an FFT into an FFT of even terms and an 
FFT of odd terms. This saves a lot of com-

putational cost — almost half, since com-
puting the DFT naively yields ( ).N 2  It 
also varies from the decomposition of sums 
with a cost of ( ),N  where decomposition 
did not help conserve computational cost.

FFT{ , , , }a a a a
1 2 3 4  has the combined 

computational cost of FFT{ , },a a
1 3  FFT

{ , },a a
2 4  and 4

2
c ,  where c

2
 represents 

the cost of multiplication and addition 
for each A

n
.  

When expanding the FFTs recursively, FFT
{ , , , }a a a a
1 2 3 4  has the combined computa-

tional cost of FFT{ },a
1  FFT{ },a

3
 FFT{ },a

2
 

FFT{ },a
4

 and 8
2

c .  The cost 8
2

c  comes from 
the 4

2
c  cost of operations required to combine 

the one-point DFTs to form each of the four 
terms in Figure 5 (on page 12), plus the 4 2c  
cost from the previous step.

Naively computing the DFT with N   
points requires c N

1
2  work, while comput-

Figure 1. The “n”th term in a discrete Fourier transform can be expressed as the summation 
of points that lie on a circle separated by angle q

n
.

Figure 2. The circular representation of a discrete Fourier transform term can be split into the 
circular representations of its even and odd components (with a rotation).

See Fast Fourier Transform on page 12
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shops on data analytics and imaging and 
our first annual section meeting.2

People often ask me if I expect to con-
tinue in this line of work for the next few 
decades. I find it difficult to predict what 
the future will hold. Until non-hydrocar-
bon technology matures to a point where 
it reduces the need for hydrocarbons, the 
latter will remain a commodity required to 
power many things (including the medium 
on which you are reading this article). I am 
happy to be working on a small part of this 
fascinating real-world problem. While I 
don’t always get to work on problems that 
catch my fancy, those with business value 
are interesting enough. Above all, my col-
leagues are the main reason I continue to 
work in this field.

It often feels like I am juggling several 
hats — wife, mom, geophysics researcher, 
mathematician, programmer, SIAM work-
shop organizer, Girl Scout troop leader, and 
so on. Though I am sometimes afraid that 
they are all going to come crashing down, 
every day I get a little better at managing 
my time and prioritizing. The hats are still 
in the air and I am having fun for sure!

2  https://www.math.lsu.edu/siam-texas-
louisiana-section/
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We can apply this recursively log
2
N  

times to completely eliminate the qua-
dratic cost, leaving only the cost of N  one-
point DFTs plus log

2
N  combinations—

each requiring ( )N  work—for a total of 
( )logN N

2
 work.

Thus, the total cost in general is 
 ( ) log ( ) ( log ( )).N cN N N N+ ≈

2 2

An earlier version of this description is 
available in [2].

The figures in this article were provided 
by the author.

Are you a graduate student? Have you 
discovered a unique way to learn, teach, 

or understand a complicated mathematical 
concept? Write to us at sinews@siam.org! 
We may publish your insights in an upcom-
ing issue of SIAM News.
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Figure 3. The even and odd circles from Figure 2 can be recycled to yield a completely 
different term of the discrete Fourier transform.

Figure 4. All of the terms in the discrete Fourier transform of { , , , }a a a a
0 1 2 3

.

Figure 5. The top two terms are the discrete Fourier trans-
form (DFT) of { , },a a

0 2
 and the bottom two are the DFT of 

{ , }.a a
1 3

 Together they give the DFT of { , , , }a a a a
0 1 2 3

, as 
shown in Figure 4.

Anusha Sekar partakes in a hike with her family. Chevron’s flex-
ible work culture encourages a healthy work-life balance. Image 
credit: Bharad Anjur.
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