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Abstract

In this work, we formulate a data driven optimal control model involv-
ing differential equations to capture the population dynamics of the wolf
and moose populations in Isle Royale National Park, Michigan. A numeri-
cal solver implemented in the Python language is used to obtain solutions,
and these are analyzed to identify optimal strategies for augmentation of
the declining wolf population.

1 Introduction

Isle Royale is an archipelago in the northwestern section of Lake Superior
where wolf and moose populations have coexisted since at least the 1940s [6].
With the moose comprising 90% of the wolf’s diet on Isle Royale, these ani-
mals have been the source of many studies over the previous 50 years [7, 12].
Although the wolves and moose have maintained average population sizes of
around 25-50 wolves per 1000 square kilometers and 1–2 moose per square kilo-
meter, the wolves have declined to a single pair in recent years due to genetic
depression caused by inbreeding [6, 7]. Concerned that the extinction of wolves
on Isle Royale would cause the moose to grow too large and negatively impact
the archipelago’s ecosystem, the National Park Service (NPS) has begun rein-
troducing wolves to the island, bringing the total wolf count up to 17 wolves by
2020 [6]. Currently, the goal is to add enough wolves to the island to rebuild the
wolf population to 20-30 wolves [6]. In this paper, we develop a mathematical
model and utilize optimal control theory to determine optimal strategies for the
NPS to reintroduce wolves to Isle Royale in order to achieve stable wolf and
moose populations. In particular, Section 2 discusses the predator-prey model
we used to describe the wolf and moose population dynamics on Isle Royale.
Section 3 presents our optimal control problem. Section 4 discusses our numeri-
cal simulations and their results, and Section 5 analyzes those results to provide
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insights on successful and unsuccessful augmentation strategies. Ultimately, our
results suggest that successful augmentation occurs when the wolves are imme-
diately augmented to a size of 12 and no further augmentation is implemented
after the end of the first year of the augmentation period.

2 Establishing the Predator-Prey Model

2.1 Logistic Predator-Prey System

In our work, we used differential equations to model the wolf and moose pop-
ulations of Isle Royale. Several sources, such as [4, 6], indicated that Isle Royale
has limited resources and food for the moose. Prior to the arrival of wolves, the
moose became engaged in a cycle of extreme growth followed by heavy death
once their food sources became exhausted [4]. The choice to model population
dynamics with a predator-prey system came about with the knowledge that the
population growth of the wolves is directly tied to the moose population. The
moose are such a large part of the wolves diet that their population size directly
impacts how large the wolf population can become. The same can be said for
the moose whose population growth is dependent on the size of the wolf popu-
lation, and the amount of resources that the island contains. In order to model
this limited amount of available food for the moose, we decided to model the
population dynamics via a logistic predator-prey system of differential equations

dM

dt
= rM(1− M

K
)− cMW (1)

dW

dt
= −eW + fMW, (2)

where r,K, c, e, f > 0 and W and M are the number of wolves and moose on Isle
Royale at time t, respectively. Logistic models utilize a parameter K called the
carrying capacity, which in our problem reflects the amount of resources needed
to sustain the moose, thereby preemptively incorporating a limit on how large
the moose population can become. rM(1− M

K ) refers to the growth rate of the
moose population that is limited by the carrying capacity. −cMW refers to the 
death rate of moose caused by wolf and moose interactions. −eW represents 
the death rate of wolves. Finally, fMW represents the positive effects o f wolf 
and moose interactions for the wolf population.

2.2 Equilibrium Points
Insight into how the logistic predator-prey system behaves locally can be 

obtained from the system’s equilibrium points, the ordered pairs (M, W ) for 
which (1) and (2) are simultaneously 0. Setting (1) and (2) simultaneously equal 
to 0 and solving for M and W yields that the logistic predator-prey system’s 
equilibrium points are (0,0), (K, 0), and (e/f, r(1 − e/(fK))/c). In order to 
classify these equilibrium points’ stability, we compute the eigenvalues of the
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Jacobian of the linearized right hand side of the logistic predator-prey system,

DF (M,W ) =

[
r − 2rM

K − cW −cM
fW −e+ fM

]
,

at the equilibrium points. For (0,0), we obtain the eigenvalues r and −e. Since
e, r > 0, one of the eigenvalues ofDF (0, 0) is positive while the other is negative.
Therefore, (0,0) is a saddle point (see Figure 1). This signifies that some nearby
solutions to (0,0) will converge to the equilibrium point, thereby modelling the
extinction of both populations, while others diverge from 0 in one of the two
populations. The equilibrium point (K, 0) has the eigenvalues −r and −e+fK.
If e > fK, then (K, 0) attracts nearby solutions, implying that the wolves will
go extinct and the moose will approach Isle Royale’s carrying capacity. However,
if e < fK, then (K, 0) is a saddle point.

We now consider (e/f, r(1− e/(fK))/c). For the rest of this subsection, we
will assume that 1−e/(fK) is positive so that we can prescribe physical meaning
to this equilibrium point’s stability. (e/f, r(1− e/(fK))/c) has the eigenvalues(
−er ±

√
e2r2 − 4fK(erfK − e2r)

)
/(2fK). Since e, r > 0, −er < 0. Thus, if

e2r2 − 4fK(erfK − e2r) < 0,

then (e/f, r(1− e/(fK))/c) is a spiral attractor (see Figure 2), signifying that,
for nearby solutions, the sizes of the wolf and moose populations will oscillate
as they eventually converge to R(1− e/(fK))/c and e/f , respectively. If√

e2r2 − 4fK(erfK − e2r) < er,

then the equilibrium point is an attractor; nearby solutions will converge to
the equilibrium point without undergoing the oscillations of the spiral attractor
case. Finally, if √

e2r2 − 4fK(erfK − e2r) > re,

then the equilibrium point is a saddle point.
Since the wolf and moose population sizes from the data have been oscillating 

over time, and since (e/f, r(1 − e/(fK))/c) is the only equilibrium point that 
does not involve the extinction of either population when

r(1 − e/(fK))/c > 0,

it is desirable for (e/f, r(1 − e/(fK))/c) to be a spiral attractor after we apply 
optimal control theory to logistic predator-prey system. Therefore, to help us 
determine when (e/f, r(1 − e/(fK))/c) is a spiral attractor, we will rewrite

e2r2 − 4fK(erfK − e2r) < 0

so that this criterion can be computed with fewer operations. We will accomplish 
this by rewriting the inequality so that K is expressed in terms of the other three
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Figure 1: Example phase plane of
the system centered around the EP
(0,0).

Figure 2: Example phase plane of a
spiral attractor and solution curve
with initial condition (750,14).

variables. Rewriting the inequality, it follows that (e/f, r(1 − e/(fK))/c) is a
spiral attractor if

4f2K2 − 4efK − er > 0.

The left hand side of this inequality is a quadratic in terms of K whose vertex
is (e/(2f),−e2 − er). Although −e2 − er < 0, since 4f2 > 0, this quadratic is
positive if K lies outside of the closed interval between the quadratic’s zeros

K =
e±

√
e2 + er

2f
.

Thus, (e/f,R(1− e/(fK))/c) is a spiral attractor if

K >
e+

√
e2 + er

2f
or K <

e−
√
e2 + er

2f
.

However, the right side of the second inequality is negative. Therefore, since
K > 0, the equilibrium point is a spiral attractor when

K >
e+

√
e2 + er

2f
>

e

f
.

2.3 Parameter Values for the Model

Following the utilization of a logistic model, literature reviews were con-
ducted to ascertain ranges for the parameter values to fall within. Our value 
for r (r = 0.371) was based on [8]. An approximation for K (K = 2753) was 
obtained by averaging the moose carrying capacities of Isle Royale computed 
in simulations from [5]. The values of c, e, and f did not have direct paral-
lels in literature; they were fit t o t he w olf a nd m oose p opulation d ata from 
[11] between 2004 and 2018. A copy of this data is included in Table 2 in 
Appendix A. A Python algorithm was created to solve the system of differen-
tial equations and which used a minimization function to fit the data via the
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Relative Error
2004-2011 2012-2018

Moose 0.20904 0.12527
Wolves 0.13150 0.35172

Table 1: Table containing the relative ℓ2 errors of our best fit parameters.

Levenberg-Marquardt method. This worked by minimizing the least squares
error, in other words, minimizing the squared difference between the model so-
lution and the data. Accuracy was determined by the relative error as well as
visual confirmation that the general trends of the fit solution were aligning with
the measured data.

The decision was made to incorporate piecewise dynamics for our e and f
values because the dynamics of the wolf population changed during the final
years of our time interval, largely due to inbreeding in the wolf population [6].
Since the shift in dynamics occurred only in the wolf population, the condi-
tions for the different piecewise components were based on the value of W . The
particular W value that marked the shift in the wolf population dynamics was
determined by calculating the inbreeding effective population size. The inbreed-
ing effective population size relates to “the rate of decrease in heterozygosity”
across generations, and therefore provides information about “the short term
survival of the population” [13]. An upper bound for the inbreeding effective
population size can be computed with the formula

Ne =
T − 1

1
N(0) +

1
N(1) +

1
N(2) + ...+ 1

N(T−1)

, (3)

where T is the number of years a population has existed and N(t) is the popu-
lation size in year t [13]. Using the data from [11], we computed that the upper
bound is approximately 13.688. Moreover, according to the data from [11],
the wolf population never rebounded in size when the total number of wolves
was below 12. Combining this fact with the upper bound, we concluded that
the inbreeding effective population size is 12 wolves. Since the wolf population
dropped below 12 in 2012, we broke up our time interval from 2004-2018 into
2004-2011 (before inbreeding) and 2012-2018 (with inbreeding).

Running our least squares algorithm on these two time intervals with a va-
riety of starting points, we obtained that the best parameter values are

r = 0.371; K = 2753; c = 0.015;

e(W ) =

{
0.2 W ≥ 12
0.59999 W < 12

; f(W ) =

{
0.0003 W ≥ 12
0.000217 W < 12

.

The relative ℓ2 error for these fits a re g iven i n Table 1 . Graphs o f our b est fit 
solutions can be found in Figures 3 and 4.

We now evaluate the locations and types of our logistic predator-prey sys-
tem’s equilibrium points when the model uses our best fit parameters. When
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Figure 3: Model M(t) solution us-
ing our best fit parameters.

Figure 4: Model M(t) solution us-
ing our best fit parameters.

W < 12, the equilibrium points are (0,0), (2753,0), and approximately
(2764, -0.103). As stated earlier, (0,0) is a saddle point. Since 0.5999 >
(0.000217)(2753) = 0.597, (2753,0) is an attractor. Finally,

e2r2 − 4fK(erfK − e2r)

≈ (0.6)2(0.371)2 − 4(0.0003)(2753)((0.6)(0.371)(0.0003)(2753)− (0.6)2(0.371))

≈ 0.051 > 0.0495 ≈ e2r2 > 0.

Therefore, (2764,-0.103) is a saddle point. Extending our logistic predator-prey
system in time using our best fit parameters (see Figure 5), we can see that the
wolf and moose populations are converging to (2753,0), so the wolves are headed
to extinction while the moose are growing to our approximated moose carrying
capacity of Isle Royale. Moreover, since the W value for the equilibrium point
(2765,-0.103) is negative, the logistic system has no equilibrium points in which
M and W are both positive. Thus, the wolf and moose populations cannot both
converge to stationary, non-extinct population sizes when W < 12.

When W ≥ 12, the equilibrium points are (0,0), (2753,0), and approximately
(667,18.7); (0,0) is still a saddle point. Since 0.2 > (0.0003)(2753) = 0.8259,
(2753,0) is a saddle point. Finally, since

e+
√
e2 + er

2f
=

0.2 +
√
(0.2)2 + (0.2)(0.371)

2(0.0003)
≈ 896.6 < 2753 = K,

(667,18.7) is a spiral attractor. Therefore, when W ≥ 12, it follows that the wolf 
and moose populations will oscillate in size over time; as long as W never drops 
below 12, both populations will converge to stationary, non-extinct population 
sizes of approximately 667 moose and 19 wolves (see Figure 6 for an example). 

These computed values for the equilibrium points and the nature of the wolf 
and moose population dynamics described by our model capture the trends of 
the population dynamics and are suitable for augmentation study for multiple 
reasons. First, as described by our inbreeding coefficient, when the wolf popula-
tion is less than 12 in size, genetic inbreeding prevents the wolf population from
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Figure 5: Phase plane around (K, 0)
with W < 12 and initial condition
(2,1475).

Figure 6: Phase plane around
(667,19) with W ≥ 12 and exam-
ple initial condition (750,14).

successfully sustaining itself on Isle Royale, thereby causing the wolves to reach
extinction and enabling the moose population to grow to the carrying capac-
ity. On the other hand, if the wolf population does not drop below 12 in size,
then genetic inbreeding does not take over the population, thereby enabling the
wolves to maintain stable population dynamics. The value of W ≈ 18.7 is an
appropriate value for the spiral attractor equilibrium point because the median
wolf population size before 2012 was 19.5 wolves and 18.7 > 12. Although the
value M ≈ 667 differs from the median moose population size before 2012 (951
moose) by approximately 284 moose, this value still lies within the range of
the number of moose typically observed on Isle Royale (see [6]). Moreover, our
model’s ability to capture the general trends in the moose population with a
sufficiently small relative ℓ2 error and accurately describe the wolf population
dynamics also minimizes the significance of this difference.

In 2018, there were less than twelve wolves on Isle Royale [11]. According to
our model, the wolf population is headed for extinction; in order to avoid the
extinction of the wolves, it is necessary for humans to help the wolf population
grow via a process like augmentation. In order for any wolf augmentation to be
successful, it is necessary for the National Park service to bring the wolf pop-
ulation up to at least 12 wolves in such a way that the wolf population never
oscillates below 12 wolves in size.

3 Optimal Control Model

Having developed a model that describes the wolf and moose population
dynamics on Isle Royale, we are now ready to cast our augmentation problem
as an optimal control problem. To do so, we let the term u(t)W (t) represent
the rate at which wolves are added to Isle Royale on a yearly basis, where u(t)

is our control function and
∫ t

0
u(s)W (s) ds represents the number of wolves that

have been added to Isle Royale by time t. We chose our augmentation term to 
be of this form since it reflects how the augmentation rate will depend on how
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many wolves are on Isle Royale at time t. Since the rate of augmentation will
directly impact the growth rate of the wolves, we rewrote our logistic model as

dM

dt
= rM(1− M

K
)− cMW (4)

dW

dt
= −eW + fMW + uW. (5)

Also, since wolves will not be removed from Isle Royale, we imposed the restric-
tion that u(t) ≥ 0 ∀ t.

According to [9, 10], the NPS is planning on adding 20-30 wolves to Isle
Royale over a 3 year period, potentially introducing more wolves over the fol-
lowing 2 years if necessary, and refraining from further augmentation after then.
Since wolves will be added for at most 5 years, we set our final time T to be 5
years. To represent how the NPS is wanting to initially add at most 30 wolves
before evaluating if further augmentation is necessary, we imposed that∫ T

0

uW dt ≤ 30.

We considered two initial conditions to see how different initial wolf and
moose population sizes would impact our simulations. For the first case, we set
M(0) = 975 and W (0) = 8, the recorded population sizes in 2013. Since the
data from Isle Royale did not have any entries that had between 3 to 8 wolves,
and since an initial population size of 2 to 3 wolves is not very realistic under
our differential equations model’s assumptions about well mixing, we used our
differential equations model to compute the initial conditions M(0) = 932 and
W (0) = 5.

For our problem, we considered two separate sets of performance measures.
For the first one, we sought to maximize the number of wolves and moose at the
end of the augmentation period while simultaneously minimizing the number
of wolves that had to be augmented onto Isle Royale. In equation form, this
performance measure was written as

max
u

W (5) +BM(5)−A

∫ 5

0

u2(t) dt− C

∫ 5

0

uW dt, (6)

where A ∈ {1, 20, 100}, B ∈ {0, 0.25, 0.5, 0.75, 1, 2}, and C ∈ {0, 0.5, 1, 20, 100}
are constants representing the weight factors of each of the terms. Our values
for A were taken from the values Bodine et al used for their A weight factor
in [3]. Portions of performance measures deemed more important are given
higher weight values. Since the wolf augmentation plan is largely concerned
with preventing the wolf population from going extinct, we evaluated that it
was of greater importance to maximize the final number of wolves than the final
number of moose. This was reflected by the values chosen for B (the moose
weight factor) that are less than 1.

For our second performance measure, we sought to minimize the squared
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difference between the number of wolves present at the end of the augmenta-
tion period and 19 wolves, the approximate W value of the equilibrium point
(e/f, r(1− e/(fK))/c) when W ≥ 12, in conjunction with minimizing the num-
ber of wolves that were added to Isle Royale. We prioritized getting the final wolf
population as close as possible to the equilibrium point value to test whether or
not that would lead to successful augmentation. In addition, although the NPS
is planning on a five year augmentation phase (see [9]), we wanted to see how
adjusting the length of the augmentation period would impact how the wolves
are augmented. Due to this, we set our final time T to be either 5, 10, or 15
years rather than only 5 years. In equation form, this objective functional was

min
u

(W (T )− 19)2 +A

∫ T

0

u2(t) dt+ C

∫ T

0

uW dt, (7)

where A ∈ {1, 20, 100, 1000}, C ∈ {0, 0.5, 1, 20, 100, 1000}, and T ∈ {5, 10, 15}
are constants.

In summary, our optimal control problem sought to find a function u(t) that
satisfied either (6) or (7) subject to the constraints

dM

dt
= rM(1− M

K
)− cMW

dW

dt
= −eW + fMW + uW∫ T

0

uW dt ≤ 30

u(t) ≥ 0

and exactly one of the following initial conditions: M(0) = 975 and W (0) = 8, 
and M(0) = 932 and W (0) = 5.

Our different o ptimal c ontrol s imulations were s olved numerically through 
the GEKKO Optimization Suite, “a Python package for machine learning and 
optimization of mixed-integer and differential a lgebraic e quations” ( [1]). We 
refer the interested reader to [2] for an in depth description of GEKKO. In 
addition to solving our optimal control problem, we sought to determine which 
optimal control strategies would successfully prevent the wolf populations from 
going extinct. Therefore, after finding the optimal solution u∗, we solved (4)-(5) 
from t = 0 to t = 80 with the wolf and moose population sizes at t = 0 being 
their respective sizes at the end of the augmentation period in order to predict 
whether or not the wolves would go extinct after augmentation.

4 Results

For this section of our paper, we first f ocus on our s imulations with ( 6) as 
our performance measure and then present our results using (7). The value of 
the objective functional for each of the following simulations is given in Table 3 
in Appendix A.
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4.1 Performance Measure (6)

4.1.1 Case 1: A=1; B=0,0.25,0.5; & C=1

Figure 7: Simulations with performance measure (7), A = C = 1, M(0) = 975, 
and W (0) = 8. The solid, dash-dot, and dashed lines correspond to B = 0, 
B = 0.25, and B = 0.5, respectively.

We begin by fixing A and C  and allowing B  to vary, reflecting how a change 
in the importance of maximizing the number of moose will impact augmentation. 
When A = C = 1, we assigned little importance to the cost of wolf augmentation 
while varying the importance of maximizing the number of moose. Figure 7 
shows our results for all values of B that yielded an optimal solution u(t) when 
using the initial conditions M(0) = 975 and W (0) = 8. In all simulations, 
wolves were immediately added to obtain a population size of around 12 wolves; 
in the B = 0 simulation, the wolves underwent another augmentation that began 
around the start of the third year of the augmentation phase. The wolves never 
went extinct in any simulation. The results of the simulations with M(0) = 932 
and W (0) = 5 were similar to the simulations with M(0) = 975 and W (0) = 8.

4.1.2 Case 2: A=20; B=0,0.5,1,2; & C=20

For the case of A = C = 20, we assigned some importance to the cost of 
wolf augmentation and continued to vary B. Figure 8 shows the results when 
M(0) = 975 and W (0) = 8. Each case avoided wolf extinction. The first three 
cases had immediate augmentation to bring the wolf population to around 12 
in size and afterwards ceased augmentation. The B = 2 case was similar except 
the augmentation occurred later and over a longer time period. The trials when 
M(0) = 932 and W (0) = 5 behaved similarly except the augmentation occurred 
more gradually over longer time intervals. Nevertheless, all of those trials except 
the B = 2 case had all of the augmentation occur within year one.

4.1.3 Case 3: A=100; B=0,0.25,0.5,0.75; & C=100

Next, we performed the same trials with A = C = 100. Figure 9 shows 
the results for B = 0, 0.75, 1, 2 when M(0) = 975 and W (0) = 8. For both sets
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Figure 8: Simulations with performance measure (7), A = C = 20, M(0) = 975,
and W (0) = 8. The solid, dash-dot, dashed, and dotted lines correspond to
B = 0, B = 0.5, B = 1, and B = 2, respectively.

Figure 9: Simulations with performance measure (7), A = C = 100, M(0) = 
975, and W (0) = 8. The solid, dash-dot, dashed, and dotted lines correspond 
to B = 0, B = 0.25, B = 0.5, and B = 0.75, respectively.

of initial conditions, wolves were immediately augmented to about 12 in size; 
augmentation ceased after that. Wolf extinction was always avoided.

4.1.4 Case 4: A=1,20,100; B=0; & C=1

After Cases 1-3, we fixed B  a nd C  a nd v aried A  t o s ee h ow t he c ost of 
augmentation shaped the augmentation. Figure 10 shows the results when 
M(0) = 8 and W (0) = 975. These simulations behaved similarly to the sim-
ulations with M(0) = 975 and W (0) = 8 in Case 1 in Subsection 4.1.1. In 
each trial, the wolf population was immediately augmented to about 12 wolves; 
further augmentation ceased except for the A = 1 case when wolves were added 
toward the end of the augmentation phase. All trials avoided wolf extinction. 
The case when M(0) = 5 and W (0) = 932 behaved similarly.
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Figure 10: Simulations with performance measure (7), B = 0, C = 1, M(0) =
975, and W (0) = 8. The solid, dash-dot, and dashed lines correspond to A = 1,
A = 20, and A = 100, respectively.

Figure 11: Simulations with performance measure (7), B = 0.5, C = 1, M(0) = 
975, and W (0) = 8. The solid, dash-dot, dashed, and dotted lines correspond 
to A = 1, A = 20, and A = 100, respectively.

4.1.5 Case 5: A=1,20,100; B=0.5; & C=1

Figure 11 shows when M(0) = 8 and W (0) = 975. For both initial condi-
tions, the trials behaved similarly to the simulations in Subsection 4.1.4 except 
that the second augmentation phase did not occur when A = 1 and the aug-
mentation was more gradual when A = 20, M(0) = 932, and W (0) = 5.

4.1.6 Case 6: A=20; B=0; & C=0,1,20,100

Figure 12 shows the trials when M(0) = 975 and W (0) = 8. The wolves went 
extinct only when C = 0. In that case, the wolves had immediate augmentation 
and a later augmentation, causing the wolves to grow to about 45 wolves by 
the end of the five y ears. As revealed by the extended solution curves in Figure 
12, the extinction resulted from the wolves overeating the moose and then not 
having enough moose to sustain themselves. In the other solutions, the later 
augmentation did not take place; the resulting smaller wolf populations did not 
overeat the moose. The trials when M(0) = 932 and W (0) = 5 were similar.
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Figure 12: Simulations with performance measure (7), A = 20, B = 0, M(0) =
975, and W (0) = 8. The solid, dash-dot, dashed, and dotted lines correspond
to C = 0, C = 1, C = 20, and C = 100, respectively.

4.1.7 Case 7: A=20; B=0.5; & C=0.5,1,20,100

Figure 13: Simulations with performance measure (7), A = 20, B = 0.5, M(0) = 
975, and W (0) = 8. The solid, dash-dot, dashed, and dotted lines correspond 
to C = 0.5, C = 1, C = 20, and C = 100, respectively.

Figure 13 considers when M(0) = 975 and W (0) = 8. For both sets of initial 
conditions, the main augmentation occurred within year one; the wolves avoided 
extinction.

4.2 Performance Measure (7)
4.2.1 Case 8: A=1,20,100,1000; C=1; & T=5

We now consider objective functional (7). Our first trials kept C  and T  fixed 
and varied A. Figure 14 shows the results when M(0) = 975 and W (0) = 8. 
Similar to previous cases, both initial conditions had the augmentation occurring 
within the first y ear t o g et t he wolves t o a round 1 2 i n s ize; t he wolves never 
went extinct.
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Figure 14: Simulations with performance measure (7), C = 1, T = 5, M(0) =
975, and W (0) = 8. The solid, dash-dot, dashed, and dotted lines correspond
to A = 1, A = 20, A = 100, and A = 1000, respectively.

Figure 15: Simulations with performance measure (7), A = 20, T = 5, M(0) = 
975, and W (0) = 8. The solid, dash-dot, dashed, and dotted lines correspond 
to C = 0.5, C = 1, C = 20, and C = 1000, respectively.

4.2.2 Case 9: A=20; C=0,0.5,1,20,100,1000; & T=5

Figure 15 displays many of the trials when M(0) = 975 and W (0) = 8. 
Both initial conditions had similar augmentation results to the previous cases: 
augmentation occurred within the first year to reach 12 wolves and then largely 
stopped for the rest of the five years.

4.2.3 Case 10: A=20; C=1; & T=5,10,15

Finally, we fixed A  a nd C  a nd varied T  t o s ee h ow t he l ength o f t he aug-
mentation phase impacted the augmentation. Figure 16 displays the trials when 
M(0) = 975 and W (0) = 8. Wolf extinction never occurred; outside of some 
augmentation toward the end of the augmentation period when T = 15, all 
augmentation occurred in the first 2  y ears. For the M (0) = 932 and W (0) = 5 
case, the T = 10 trial had no solution; no analysis was performed on these initial 
conditions.
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Figure 16: Simulations with performance measure (7), A = 20, C = 1, M(0) = 
975, and W (0) = 8. The solid, dash-dot, and dashed lines correspond to T = 5, 
T = 10, T = 15, respectively.

5 Conclusions

In our studies, we have performed many simulations pertaining to wolf aug-
mentation on Isle Royale. Although these simulations are not meant to be 
prescriptive, they were accurately based on data from Isle Royale and thus pro-
vide general insights into successful and unsuccessful augmentation strategies. 
When the augmentation was delayed, the moose population often grew too large 
and caused the wolf population size to undergo high amplitude oscillations that 
led to wolf extinction. However, when wolves were immediately augmented, this 
phenomena was avoided. Hence, these trends imply that the wolf augmenta-
tion should be immediate rather than delayed. For our trials with immediate 
augmentation, successful augmentation typically occurred when the wolf pop-
ulation size was immediately augmented to around twelve wolves and further 
augmentation stopped by the end of year one. This reveals that the wolf pop-
ulation should be mainly augmented within the first year o f the augmentation 
period.

Despite its many strengths, this model also had limitations. In particular, 
the small number of wolves, which reached a total of two in 2016, diminishes the 
efficacy of  our ordinary differential equation model which assumes well mixing. 
Though the wolves belong to the same pack and are likely to interact, a much 
larger population size is typical of the assumptions embedded within this model. 
Nevertheless, the strategies detailed above which saw success, namely the im-
mediate addition of wolves to Isle Royale within one year, were replicated in all 
of our simulations.
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A Supplemental Materials

Year
Wolf

Population
Size

Moose
Population

Size
Year

Wolf
Population

Size

Moose
Population

Size
2004 29 750 2012 9 750
2005 30 540 2013 8 975
2006 30 450 2014 9 1050
2007 21 385 2015 3 1250
2008 23 650 2016 2 1300
2009 24 530 2017 2 1600
2010 19 510 2018 2 1475
2011 16 515

Table 2: This table contains the recorded wolf and moose population sizes on
Isle Royale from 2004 to 2018. This data is taken from [11].
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Case Number
and Performance
Measure

A B C Objective Functional Values

Case 1 (PM 6) 1 0, 0.25, 0.5 1
M(0) = 975 and W (0) = 8: 14.2, 254, 583
M(0) = 932 and W (0) = 5: -1.92,285,572

Case 2 (PM 6) 20 0, 0.5, 1, 2 20
M(0) = 1475 and W (0) = 2: 299, 575, 696, 263
M(0) = 975 and W (0) = 8: -105, 135, 375, 615
M(0) = 932 and W (0) = 5: -194, 356, 907, 2360

Case 3 (PM 6) 100 0, 0.25, 0.5, 0.75 100
M(0) = 975 and W (0) = 8: -605, -365, -125, 114
M(0) = 932 and W (0) = 5:-1717, -1427,-1133,-862

Case 4 (PM 6) 1, 20, 100 0 1
M(0) = 975 and W (0) = 8: 14.2, -17.9, -193
M(0) = 932 and W (0) = 5: -1.92, -128, -1021

Case 5 (PM 6) 1,20,100 0.5 1
M(0) = 975 and W (0) = 8: 583, 454, 359
M(0) = 932 and W (0) = 5: 572, 514, -439

Case 6 (PM 6) 20 0 0, 1, 20, 100
M(0) = 975 and W (0) = 8: 6.47, -17.9, -105
M(0) = 932 and W (0) = 5: -173,-128,-194

Case 7 (PM 6) 20 0.5 0.5, 1, 20, 100
M(0) = 975 and W (0) = 8: 456, 454, 375, 42.2
M(0) = 932 and W (0) = 5: 518, 514, 356, -319

A T C

Case 8 (PM 7) 1, 20, 100, 1000 5 1
M(0) = 975 and W (0) = 8: 6.31, 47.6, 215, 2099
M(0) = 932 and W (0) = 5: 12.6, 216, 1043, 6631

Case 9 (PM 7) 20 5 0, 0.5, 1, 20, 100, 1000
M(0) = 975 and W (0) = 8: 43.5, 45.6, 47.6, 126.7, 459,4196
M(0) = 932 and W (0) = 5: 162, 167, 216, 215, 939, 7290

Case 10 (PM 7) 20 5, 10, 15 1
M(0) = 975 and W (0) = 8: 47.6, 63.8, 32.4
M(0) = 932 and W (0) = 5: No solution

Table 3: The above table details values obtained from the recorded simulations
using performance measures 6 and 7 (PM 6 & PM 7). Each case corresponds
to the subsections in our results, and in each simulation, one of the values is
varied. These values consist of A,B,C, and T.
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