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Abstract.
Graph convolutional neural networks (GCNs) have shown tremendous promise in address-

ing data-intensive challenges in recent years. In particular, some attempts have been made
to improve predictions of Susceptible-Infected-Recovered (SIR) models by incorporating hu-
man mobility between metapopulations and using graph approaches to estimate corresponding
hyperparameters. Recently, researchers have found that a hybrid GCN-SIR approach outper-
formed existing methodologies when used on the data collected on a precinct level in Japan.
In our work, we extend this approach to data collected from the continental US, adjusting for
the differing mobility patterns and varying policy responses. We also develop the strategy for
real-time continuous estimation of the reproduction number and study the accuracy of model
predictions for the overall population as well as individual states. Strengths and limitations of
the GCN-SIR approach are discussed as a potential candidate for modeling disease dynamics.

1. Introduction.
Compartment models are widely used in the modeling community to describe the spread of

infectious diseases [1]. Standard SIR model considers three compartments: S(t) - the number
of susceptible individuals, I(t) - the number of infected and R(t)-the number of recovered or
deceased at time t. Representing the infection rate parameter by β and removal rate parameter
by γ, the following system of equations is derived [2]:

(1.1)



dS(t)

dt
= −β

S(t)I(t)

N

dI(t)

dt
= β

S(t)I(t)

N
− γI(t)

dR(t)

dt
= γI(t)

where N = S(t) + I(t) +R(t) is the total population that is assumed to remain constant.
There are many modifications of the basic SIR model that have been proposed in the

literature [3]. For example, the SEIR variation of the model includes another compartment
for exposed individuals, while the SIRV variation incorporates a compartment vaccinated
populations. It is also possible to account for individuals who end up succumbing to the
disease and dying, as done in the SIRD variation and others like it. While these models are
very intuitive and mathematically tractable, their predictive properties are highly dependent
on the accuracy of the modeling parameters β, γ, and other parameters for the additional
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compartments. In fact, these basic parameters have been found to vary greatly between
subpopulations for a variety of diseases including COVID-19 [4, 5, 6, 7]. This realization has
motivated several groups to develop so-called “metapopulation SIR” or “SIR-network” models
which tackle this problem by splitting the overall population into a number of subpopulations
and allowing for variable infection and recovery rate parameters across these newly created
“metapopulations”[2, 8].

Metapopulation (“network”) SIR models for a total of M subpopulations typically have
the form [2, 9, 10]:

(1.2)



dSn

dt
= −Sn

M∑
m=1

βmnIm

dIn
dt

= Sn

M∑
m=1

βmnIm − γnIn

dRn

dt
= γnIn

where βmn are the corresponding interaction parameters accounting for the movements be-
tween subpopulations. These parameters may account for the change in mobilities between
different compartments and differences in vaccination policies in different regions, among
other conditions. Extensive numerical validation of the network-type SIR models has been
conducted in [2, 9] which demonstrated their efficiency in modeling certain disease outbreaks.

The caveat of this approach is the increase in computational complexity, the need to
estimate a larger set of parameters, and work with higher dimensional data. Data-driven
approaches promise to overcome the issues associated with mechanistic models [11]. In this
work, we explore the benefits o f c oupling t he metapopulation(network) S IR model w ith the
graph convolutional neural network (GCN) methodology which has enjoyed significant ad-
vances and popularity in recent years. With the recent developments in computational power,
neural networks have flourished, gaining significant popularity and enabling breakthroughs in
many fields [12, 13].

One advantage of GCN parameter estimation compared to that of standard convolutional
neural nets is its applicability to an arbitrary data structure as long as it may be represented
by a graph. It is also better able to draw on geographical relationships. Several authors
explored the GCN-SIR coupling, see the review provided in [3].

Drawing motivation from the work of Cao et al [8], we use GCNs to dynamically fit the
parameters of the metapopulation SIR model using a given time series of data. Similar to [8],
we focus on making predictions on the spread of COVID-19 with the GCN framework given
different “ horizons,” a nd c ompare t hese f orecasts w ith t he s tandard S IR m odel. There are
several distinctions in the approach presented in this work in comparison to the “mepoGNN”
model of [8]. In particular: (1) the mepoGNN model was trained on Japanese precinct data,
and our goal in this study is to model the spread of COVID-19 in the United States; (2)
in applying the original model to US data, we found the need to change several modeling

408



GCN - METAPOPULATION SIR COUPLING FOR PREDICTION ON US DATA

assumptions including choosing a different f orm o f t he mobility p arameter; ( 3) we analyzed
the predictions of the model on specific subpopulations and estimated the overall reproduction
number based on the metapopulation model.

More specifically, the goal of this work is to expand the scope of applicability of the model
proposed in [8] by training the data on a larger dataset and modifying the mobility parameters
to account for air travel between the states. In doing so, we address some of the limitations of
the original approach. In addition, we mathematically derive the closed form representation of
the reproduction number for the metapopulation (“network”) SIR model with time-dependent
parameters and show its consistency with results derived in the literature [2]. This enables us
to perform state-level predictions and pave a way towards a multi-level approach to increase
prediction accuracy. Finally, we develop a strategy to dynamically estimate the reproduction
number at various spatial resolutions and test it against the data.

The paper is organized as follows. In section 1 we introduce the model and the research
questions posed. In section 2 we have an overview of Graph Convolutional Neural Networks
as a technique and its use in our specific application. Section 3 defines the model architecture
more specifically, demonstrating the link between the metapopulation SIR and GCN aspects
of the model. Next, in Section 4 we present the data and numerical hyperparameters used in
the training and testing of the model followed by the derivation of the reproduction number
in Section 5 and numerical results in Section 6. We summarize our findings and open research
directions in Section 7.

2. Graph Convolutional Neural Networks.
Graph convolutional neural networks (GCNs), sometimes simply known as graph neu-

ral networks (GNNs), are an emerging technique that have shown promise in several areas
[14, 3]. Fundamentally, GCNs represent an expansion of the traditional neural networks.

Figure 1. Structure of a traditional neural
network with circles representing individual neu-
rons or inputs/outputs, and the arrows represent-
ing the passing of the value in the neuron to the
next layer of neurons through a weight.

The traditional neural network, a model inspired
by functioning of a biological brain, is a com-
putational model designed to perform tasks such
as classification, regression, and pattern recogni-
tion [15]. Its structure consists of interconnected
nodes, or “neurons,” which are then organized
into layers: an input layer, one or more hidden
layers, and an output layer. Each neuron takes
in information from the previous layer and out-
puts a weighted sum of the inputs that involves
parameters including weights and biases that are
constantly learned. This is followed by the ap-
plication of an activation function to introduce
non-linearity and enable the model to learn com-
plex patterns. Activation functions, such as the
sigmoid or ReLU (Rectified Linear Unit), play a
critical role in determining the network’s ability to capture intricate relationships within data.
Inputs to the network represent features of the problem being modeled, while the output cor-
responds to predictions or classifications. Figure 2 is a schematic representation of a standard
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neural network, illustrating the flow of information and transformations through its layers.
Graph neural networks replace the structure of the data on which a traditional neural

networks performs transformations, instead, applying transformations to data which repre-
sents a graph, utilizing relationships within this structure to enhance predictions and available
context [16].

More rigorously, graph neural network models may be defined as follows. Let G be defined
as the graph data such that G = (V, E). Where V is defined to represent set of nodes comprised
of |V | = M nodes. Similarly, we let E be such that E ⊆ V × V . Here it will be used to store
connection data between the nodes. The features may also be represented by the matrix
X = {x1,x2, ...,xM}T ∈ RM×D, where the feature vector xi is associated with node vi. Here,
D is used to denote dimension of the feature. By convention, we define an adjacency matrix
for G as A ⊆ RM×M , where Aij = 1 for existing edges and Aij = 0 otherwise. Figure 2 is
an illustration of embedding a graphical representation within the neural network framework
that was described earlier. Specifically, the figure shows that the convolution is applied on a
node-by-node basis, with the appropriate weights and biases.

In this paper we will be focusing on the subset of graph learning focused on node-level
tasks. In other words, the GCN framework will be used to predict properties associated with
individual nodes. As with any other neural network model, it will be necessary to train it using
a subset of nodes with known properties, or the training set. This training set of data will be
denoted as VL. The trained model will then be used to forecast the properties of unknown
nodes from a separate testing set of data. The aforementioned training can be represented by
the minimization of the following loss function:

(2.1) L(fθ(G)) =
∑
vi∈VL

ℓ(fθ(X,A)i; yi)

Figure 2. Structure of a GCN: each hidden layer operates on every node individually, gaining influence
from neighbors.
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Where θ is a vector containing the parameters of the model. The function fθ(X, A) is 
designated to forecast property values for each node, where yi is defined to represent the true 
state of the node vi. The difference b etween t he p redicted a nd t rue p roperties (fθ(·, · )i and 
yi respectively) is quantified using a  l oss function ℓ(·; · ). Examples of l oss functions that can 
be used include RMSE (Root Mean Square Error), MAE(Mean Absolute Error), smooth L1 
loss, and others.

We will use this GNN structure to model disease dynamics of metapopulations through SIR
models (1.1). The purpose of coupling the metapopulation SIR model to a convolutional neural
network is to achieve better accuracy in estimating hyperparameters by taking into account
communication/mobility of sub-populations between different regions. This is accomplished
by the mobility parameters assigned to the edges of a graph, as described below. Section 3
explains how this hybrid approach integrates GCNs with the SIR mechanistic model which
allows dynamic adjustment of the SIR model parameters. In contrast with the standard SIR
paradigm where modeling parameters are kept fixed, real-time data analysis used in training
the GCN informs the mechanistic model to improve its accuracy in real time.

3. GCN-SIR model description.

Consider system (1.2). Cao et al [8] chose the form βmn = βn

(
hmn
Nm

+ hnm
Nn

)
, where hmn

modeled mobility between regions m and n, and Nm, Nn represent the populations of the

regions, respectively. We denote the total population of the country by N =

M∑
m=1

Nm. This

leads to the following form of the metapopulation SIR model:

(3.1)



dSn

dt
= −Snβn

M∑
m=1

αmnIm

dIn
dt

= Snβn

M∑
m=1

αmnIm − γnIn

dRn

dt
= γnIn

where αmn = hmn
Nm

+ hnm
Nn

are the interaction coefficients modeling mobility. In their work,

they argued that following form of mobility was best suited for this task: hmn = α NnNm

(distmn)d+ϵ
,

where α, ϵ and d are the training hyperparameters and distmn is the distance between the 
regions.

To couple the SIR model with GNN formalism described above, the SIR model was repre-
sented via a graph with the n-th node representing the n-th state with associated Sn, In, Rn 
data being part of the feature space, mobilities αmn assigned to the edges and keeping γn, βn to 
represent recovery/immunity and infection rates, respectively. In the context of the notation
introduced in the previous section, X represents the input features of the dataset: currently
susceptible population, the currently infected population, and the recovered population, and
the mobility values – split across the metapopulations. More formally, for each xi in X, xn = 
(Sn, In, Rn, Hn), where Hn stands for the list of hnm values associated with the node n and all its 
neighboring states m ̸= n. We define A, the graph adjacency matrix, to be
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M × M with Aij , for 0 ≤ i, j < M and Aij = 1, as we utilize a complete graph with the 
mobilities acting as weights. The parameter vector, θt+1, includes the transmission rate βt+1 

and recovery rate γt+1 that are estimated by leveraging the outputs of the GCN trained on data 
available up to time t.

A graph convolutional neural network was trained using the somewhat complex archi-
tecture that has been claimed to be the first hybrid model that couples the metapopulation
SIR model with spatiotemporal graph neural networks. The code shared by the authors [17]
has been used as a basis for our investigation, where we implemented the GCN structure
as shown in Figure 3. This architecture consists of three main sections: the graph learning
module, the metapopulation SIR module, and the spatio-temporal module. For our model we
chose to use the adaptive version of the model proposed by Cao et al [17], where the mobilities
are initialized statically from an estimation based on population and distance. The spatio-
temporal module is comprised of a combination of spatio-temporal (ST) layers. Each layer is
created through combining a graph convolutional neural network layer with a gated temporal
convolutional network layer. The results from the spatio temporal module are then passed
through two fully connected layers with a ReLU (Rectified L inear) a ctivation f unction and
a Sigmoid activation function respectively, producing the predicted β and γ parameters [18].
These predicted parameters are fed into the final, metapopulation S IR module ( see Figure
3) which is detailed above, where a simple time marching method is used to propagate the

in the particular state n at a given timevariables. The number of daily confirmed cases Ynt+1 

t + 1 is predicted using the model (1.2) as follows:

(3.2) Y t+1
n = St

nβ
t+1
n

M∑
m=1

αmnI
t
m

This process continues iteratively until sufficient accuracy is attained. Note that compar-

ing to the formulation in [8], we did not drop the St
n term in our model and we trained the

neural network accordingly.
In essence, the process consists of the GCN continually learning the dynamical patterns

of of the data and adjusting the parameters of the metapopulation SIR model to minimize
the cost function (2.1) and improve the accuracy of the prediction. The SIR itself does no
learning, it operates entirely on the learning and output of the GCN.

4. Extending the model to US data.
In extending the original model to US data, we faced several challenges. There was a lack
of an easily accessible source for recovery data. In order to gather the data necessary it was
necessary to take several key steps. We started by sourcing data on daily infections from a
dataset downstream from official data by  the Johns Hopkins Center for Systems Science and
Engineering (CSSE) [19]. This provided confirmed i nfection d ata o n a  c ounty l evel which
was binned up to the state level to alleviate computational complexity concerns. Addition-
ally, the date standard format was reinterpreted as an integer day offset f rom t he fi rst day
found in the dataset. We also made the decision to exclude US territories, the District of
Columbia, Alaska, and Hawaii from the training and testing of our model as this would intro-
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Figure 3. Model architecture used in [8]. The predictions being made by the GCN passed through 
ReLU and Sigmoid Layers and then used as the parameters for the metapopulation SIR model which makes
the final predictions. In our work, we use model (3.1).

duce additional complexity into the geospatial relationships without benefiting the predictions
made significantly. S everal s upplementary d atasets were a dditionally u sed, s uch a s d ata on
the physical locations of state centers and US state populations [20, 21]. We were, however,
unsuccessful in obtaining a dataset that could sufficiently detail recovery data in  the United
States. This was a challenge as the model necessitated such data as an input, data which was
available in Japan but not for the US. To overcome this issue, we generated recovery param-
eter by numerically solving System 3.1 using an Euler approximation from an ad-hoc γ value
and the known real-world infection data which we sourced. We believe that this solution is
effective because while the recovery data i s somewhat approximate, the model’s performance
in predicting infections is still compared against the ground truth.

The mobility value approximation has been improved with an additional term in the
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formula to account for flight travel:

(4.1) hmn = α
NnNm

(distmn)d + ϵ
+ βmax(Nn, Nm)(1− δmn)

Namely, the last term allows to have significant mobility between densely populated states
even if the distance between them is large. Multiplying by the Kronecker delta function ,
(1− δmn), makes sure this term collapses to zero in the simple SIR model case when M = 1.

The following consistency analysis has been carried out. As a result of the model architec-
ture, the mobility values are not normalized and so it is necessary to balance them out using
the following:

Lemma 4.1. The Metapopulation model (3.1) is consistent with the standard SIR model if
and only if 2αN2 = ϵ.

Proof. Taking the limiting case of M = 1 subpopulation and denoting hmn = hnm = h,

βn = β,∀n = 1, . . . ,M , we obtain αnn =
2h

N
, where N = Nn = Nm for all n,m. It is clear

that since hmn = α
NnNm

(distmn)d + ϵ
, h = α

N2

ϵ
, so αnn =

2αN

ϵ
. Hence Snβn

∑M
m=1 αmnIm =

β
2αN

ϵ
SnIm which is equal to βSI/N under the condition that 2αN2 = ϵ

This allows to reduce the number of free parameters to α and d, simplifying the training of the
mobility parameters. Parameter ϵ was fixed in accordance with Lemma 4.1. The optimized
GCN hyperparameter values and training details are provided below in Table 1:

Symbol Description Value

α Mobility Scaling Factor 1.12× 10−6

d Distance Decay Factor 1.73
β Flight Travel Factor 5.98× 10−7

λ Learning Rate 2.5× 10−5

L Loss Function MAE
Optimizer Adam

Epoch Count 319

Table 1
Table of parameters used in the model

It must be noted that some run-to-run variance is expected in this model due to the random
nature of weight initialization in the GCN training. Additionally, hardware differences may
also slightly change results as using the GPU, CPU, or a dedicated accelerator will lead to
having minor differences in the driver and PyTorch backend implementations. In our case, we
performed our numerical analysis on a system equipped with an Intel Core i5-13600k CPU
and a NVIDIA RTX 3070 GPU for training acceleration.

5. Real-time tracking of the reproduction number.
One of the critical considerations that is important to keep in mind when modeling

COVID-19, as well as other infectious diseases, is the ability of the model to predict its spread.
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The threshold parameter R0, such that the disease free equilibrium (DFE) is asymptotically
stable for R0 < 1 and unstable otherwise, is called the basic reproduction number. A more
granular parameter accounting for the changes in population susceptibility, is the so-called
effective reproduction number, denoted as Rt = R0

St
N . Both measures are important tools for

the mathematical validation of epidemiological models, as well as for practical considerations.
Challenges and misconceptions in estimating these metrics are well documented [22, 23].

Local parameters of the evolving epidemic change based on mobility patterns, popula-
tion density and policy measures, the complexity of which creates significant difficulties for
decision-making. The need for accurate continuous real-time prediction of the reproduction
numbers in light of this variability has long been recognized and documented in the literature
[24]. Some of the proposed real-time estimation methods include the adaptive SIR method-
olgy (ASIR, [24]), where R0 is based on a sliding time window approach, and the introduction
of an “effective contact rate” to capture incidence dynamics over a given network [25]. We
argue that the graph neural network approach chosen in this work has a natural capability
to capture the evolution of modeling parameters in real-time, and hence it may provide an
opportunity to improve upon prior R0 predictions.

As noted in [26], there is a natural connection between R0 and Rt when it comes to study-
ing SIR population models. Namely, as we look at the equation for the infected population in
the standard SIR model,

dI

dt
= βS

I

N
− γI = γI(

β

γ

S

N
− 1) = γ(R0

S

N
− 1)I = γ(Rt − 1)I.

The role of the bifurcation parameter Rt is clear. It separates stable behavior of the disease-
free equilibrium I∗ = 0, for which dI

dt < 1 (for Rt < 1) from the unstable and possibly endemic
equilibrium when Rt > 1.

For the metapopulation SIR model considered in this paper, we can take a similar ap-
proach, following the framework described in [27]. Namely,

Theorem 5.1. Basic reproduction number for model (3.1) is given by R0 = ρ(DA), where
A = {Anm} = {αnm} is the mobility matrix and D = diag(β1

γ1
, . . . , βm

γm
) is the scaling matrix.

Proof. It is easy to see that the Jacobian of this model, linearized around the Disease
Free Equilbrium (DFE) x∗, can be represented as DF (x∗) = F − V , where Fnm = βnPnαnm

and V = diag(γ1, . . . , γm). Here, “F − V ” refers to the next generation matrix, where “F”
represents the inflow and “V ” represents the outflow, and the basic reproduction number is
calculated as the maximum eigenvalue of the matrix “FV −1”. We used the fact that the DFE
is represented by I∗n = 0, S∗

n = Nn for this model. As shown in [27], the DFE is stable when
ρ(FV −1) < 1 under certain conditions on F and V that can be shown to hold in this case.
Henceforth we arrive at the conclusion that for this model:

(5.1)

R0 = ρ(DA), where

A = {Anm} = {αnm} is the mobility matrix,

D = diag(N1β1

γ1
, . . . , Nmβm

γm
) is the scaling matrix

which proves the result of this theorem.

415



P. KISSELEV

From Lemma 4.1, we know that in the limiting case of M = 1 we have to satisfy

αnn =
2αN

ϵ
=

1

N
,

so since D = N
β

γ
the reproduction number of the metapopulation model R0 in this case

converts to the well known result R0 =
β

γ
.

This result provides a method for continuous evaluation of R0 based on the evolving set 
of infection parameters estimated by the neural network. As the neural net learns and adjusts 
the underlying mobility and recovery rates, we can use this estimation to more accurately 
predict the basic reproduction number. While strictly speaking the R0 concerns prediction at 
the DFE, the idea of this calculation is to adaptively predict the steady state behavior based 
on the adjusted model parameters.

6. Numerical results.
Results of our numerical experiments produced by applying the modified mepoGNN model

to US data are presented next. In particular, US state center-center distances and state 
population data was obtained from Kaggle [21]. Confirmed US COVID-19 cases were collected 
from the Github repository maintained by The Center for Systems Science and Engineering at 
Johns Hopkins University [28]. This dataset includes COVID-19 infection data from 3/1/2020 
to 4/12/2020, a period of 278 days. All simulations were run on the same hardware as 
mentioned previously: a an Intel Core i5-13600k CPU and a NVIDIA RTX 3070 GPU.1 In 
this analysis, the same configuration was used as in the original Cao et al paper: a 6:1:1, 
training:validation:testing split, where the training set is denoted on all figures by a dashed 
vertical line. The reason for including the training set data in the visualizations is that 
otherwise the timescale would be too small to see trends. Furthermore, this allows us to see 
the long-term behavior of the model in a way that is otherwise unclear.

Figure 4 shows predictions from the trained model based on a 1-day (left) and 7-day 
(right) horizon, respectively. The GCN-SIR model is juxtaposed with the standard SIR model 
trained on the same dataset. It can be seen that by taking into account variability between 
regions, the model improves upon the prediction provided by traditional SIR approaches. In 
addition, it takes advantage of the neural network’s learning capabilities to effectively train 
model parameters. In Figure 5 we look at the accuracy of the model predictions per state, 
choosing Virginia, New York, California, Ohio, Rhode Island and North Dakota as a sample 
containing large and small subpopulations. What we see is a strong model prediction for the 
densely populated states (New York, Virginia, California, Ohio) and a poor prediction for the 
less populous states (North Dakota, Rhode Island). To quantify the performance of the model, 
we use the R2 coefficient of determination as a measure of fit [29]. More specifically, it is 
computed with the following formula, where ȳ  is the mean of the true values, ŷ  is the

1The Python code is available at https://github.com/Peter-Kisselev/GCN-SIR.
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Figure 4. Metapopulation model prediction for US data based on real COVID-19 data, compared against 
the standard SIR model. Left panel: SIR-GCN Predictions on US COVID-19 data, 1 day horizon; Right 
Panel: SIR-GCN Predictions on US COVID-19 data, 7 day horizon. Training and testing datasets are 
separated by the vertical dashed line.

predicted value, and y is the true value:

(6.1) R2 = 1 −

n∑
i=0

(ŷi − ȳi)

n∑(yi − ȳi)
i=0

To test this hypothesis, we plotted the correlation between the R2 measure of fit and the 
corresponding state size in Figure 6. To account for the large variation in state populations, 
the populations are log-scaled. The graph clearly shows moderate correlation, confirming that 
large-size subpopulations enjoy a more accurate prediction by the GCN-SIR model, which is 
to be expected given that the size plays a critical part in the optimization algorithm used 
in training the GCN. It is also clear that a majority of the state-level predictions have an 
R2 > 0.6, which indicates reasonable performance overall.

Next, we performed numerical experiments to continuously estimate the basic reproduction 
number (R0) of the entire metapopulation model using the estimate derived earlier in (5.1). 
The numerical results of this estimation, compared to the standard SIR reproduction number 
calculation, are given in Figure 7. We can see the evolution of the R0 value over the course of 
the pandemic, roughly capturing the ups and downs of the infection represented in Figure 4. 
The higher frequency oscillations visible in the graphs are due to the day-by-day variations in 
the neural net predictions and the real-world fact that people tend to travel more on certain 
days of the week than others. It must be noted that while the overall R0 values obtained by
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Figure 5. Metapopulation model predictions for six US states. Training and testing datasets are 
separated by the vertical dashed line.

this approach were comparable to those available in the literature, state-level predictions were 
far less accurate. It indicates that a more granular county-based approach might be necessary
to resolve state-level estimations. As noted in Section 5, this adaptive R0 calculation is aimed 
at predicting the system behavior at the steady state and does not coincide with the effective
reproduction number (Rt) estimation which requires a more careful analysis of the St values.
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Figure 6. Correlation between the accuracy of fit for the metatpopulation SIR model and the size of the
state for 48 contiguous Unites states.

Figure 7. R0 number estimation using the GCN-SIR model.

7. Discussion and future work.
In this work we successfully adapted the hybrid GCN-SIR metapopulation model to predict the 
evolution of COVID-19 in the 48 continental states of the United States of America. In order 
to do so, we changed the formulations of the mobility parameters and derived the reproduction 
number formulation compatible with the standard SIR model. This allowed to streamline the 
process for training the hyperparameters to obtain a more robust implementation.
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Upon implementing these changes, we were able to obtain a high accuracy predictions for 
both 7-day and 1-day horizons for the entire United States. We noticed that individual state 
prediction accuracy was correlated with the state population, with densely populated states 
enjoying a better fit.

Based on the neural network approach to learn the infection rates in real time, we de-
veloped an alternative to the adaptive SIR method for estimating the reproduction numbers. 
Applying this approach to the entire US population, a reasonable prediction has been ob-
tained, giving reason to believe that further improvements may yield an even better predictive 
capability that would be of significant interest to policy makers and medical practitioners.

Overall, based on the results presented in this work, GCN-SIR metapopulation model 
seems to have a high potential for predicting improving predictions of the spread of infectious 
diseases based on sufficient am ount of  tr aining da ta. To  ou r kn owledge, th is is  th e first 
application of this type of a GCN-SIR coupling to real COVID-19 data collected within the 
USA. While these preliminary results are encouraging, we believe that additional work needs 
to be performed to validate the model on other types of data. High correlation of the R2 fitting 
parameter with the size of the subpopulations indicates that further improvements may be 
made to the choice of the mobility formulation, including learning mobility matrices in real 
time. Additional work could include building a better mobility estimation based on a more 
granular county-level data. All of our current attempts at a more granular model so far have 
run into issues with handling the sheer size of the model.

Future work will also include deriving more accurate state-level basic and effective re-
production number estimations and improvement of parameter estimation procedures. The 
possibility of additionally including the effect o f l ocal p olicy changes i nto t he model i s also 
one that we will consider in the future.
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