Quantum Cryptography from Post-Quantum Security to Quantum Money

Qipeng Liu UC San Diego

Backgrounds

- quantum computers
 - Google Sycamore, ..., IBM Osprey

understanding physics/chemistry

Examples

challenges:

Shor's algorithm

factoring in polynomial time

$$N = pq \longrightarrow \textcircled{0}{p,q}$$

encryption:

- RSA broken
- ElGamal broken
- ...

opportunities:

quantum key distribution

classically impossible!

Quantum Cryptography: A Landscape

Goal: understand **post-quantum** security and countermeasures

Post-Quantum

not capable of running Shor/Grover

NISQ quantum attacks

• unstable memory, shallow depth

utilizing quantum information

• quantum key distribution

Goal: interesting applications even with **NISQ** devices

Full-Scale Quantum

beyond encryption and key distribution

Goal: classically-impossible applications

Quantum Cryptography: A Landscape

This Talk:

- 1. quantum properties, and challenges to postquantum crypto
- 2. opportunities on new applications

3. future

1. Superposition Access

classical

• quantum: superposition access

• Examples: Shor's algorithm and Grover's a

Keccak[r,c](M): //Initialization and padding for $(x, y) \in \{\{0, ..., 4\}x\{0, ..., 4\}\}:$ S[x,y] = 0 P = M || 0x01 || 0x00 || ... || 0x00 P = P xor (0x00 || ... || 0x00 || 0x80)

//Absorbing phase for $P_i \in P$: for (x, y) such that $x + 5 * y < \frac{r}{w}$: S[x,y] = S[x,y] xor $P_i[x + 5y]$ S = Keccak-f[r+c](S)

//Squeezing phase Z = empty string while (output is requested): for (x, y) such that $x + 5 * y < \frac{r}{w}$: Z = Z || S[x,y] S = Keccak-f[r+c](S)

Return Z

Quantum-safe Signatures

Issues with quantum:

- 1. Existing Signatures are based on factoring, e.g., that used in BTC
- 2. Even replaced with assumptions based on lattices, security was little known

(especially those based on hash, e.g. Fiat-Shamir)

superposition access

NIST PQC Standardization workshops

Public-Key Encryption/KEMs	Digital Signatures
CRYSTALS-KYBER	CRYSTALS-Dilithium
	FALCON
	SPHINCS ⁺

- hash functions (usually modeled as a random function)
 - *H*(·)

Examples

- encryption, digital signature, ...
- now becomes a much developed area, many tools
- ideal cipher (usually modeled as a keyed permutation, with forward and backward interface)
 - $E(k,\cdot)$ and $E^{-1}(k,\cdot)$
 - little techniques to analyze
 - tools wanted!

2. No-Cloning Principle

No-Cloning Principle

- challenges:
 - security proof requires to ``**rewind**'' a protocol to its previous stage
 - trivial with classical protocols
 - not immediately possible with quantum
 - now, we have many tools to do quantum rewinding [LZ'19,...]
- opportunities:
 - QKE
 - much more than that!

This Talk:

1. quantum properties, and challenges to postquantum crypto

2. opportunities on <u>new applications</u>

3. future

From No-cloning to Money

- Unclonability
- (Public) Verifiability

$$\textcircled{}$$

Beyond Quantum Money

quantum money

[AC'12] [Zhandry'18] ...

subspace states

software copy-protection [Aaronson-Liu-L-Zhandry-Zhang]

Subspace States

• Hidden subspace state $|A\rangle$ for subspace A

Unclonability of subspace states

Unclonability:

• No quantum algorithm can:

$$|A\rangle \longrightarrow \boxed{\boxed{2}} \longrightarrow v \in A, u \in A^{\perp}$$

(analogue) uncertainty principle:

One cannot know both the position and speed of a particle, with perfect accuracy.

 $=\left(\left| A \right\rangle , O_{A} , O_{A^{\perp}} \right)$

limitations: $O_A, O_{A^{\perp}}$ needs to be **obfuscated** in a very strong sense

 O_A , $O_{A^{\perp}}$ needs to be **obfuscated** in a very strong sense

 $=\left(\left| A \right\rangle , O_{A} , O_{A^{\perp}} \right)$

Questions quantum money [AC'12] [Zhandry'18] ... subspace states

software copy-protection

[ALLZZ'21]

- 1. post-quantum candidate for program obfuscation
- 2. quantum states that possess more structures based on other mathematical structures?
 - unclonability, uncertainty principle
 - can be publicly verified
- some candidates: lattice, hash, isogeny, or any math objects you can name!

$$\boldsymbol{f} = \left(|\boldsymbol{A}\rangle, \boldsymbol{O}_{A}, \boldsymbol{O}_{A^{\perp}} \right)$$

limitations: $O_A, O_{A^{\perp}}$ needs to be **obfuscated** in a very strong sense

This Talk:

- 1. quantum properties, and <u>challenges to post-</u> <u>quantum crypto</u>
- 2. opportunities on new applications

3. future

Quantum Cryptography: Prospects

...

...