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Climate, Black Holes and Vorticity: 
How on Earth are They Related?
By George Haller

In short, they are related through oceanic 
eddies. Often called the weather of the 

ocean, eddies are gigantic vortices of swirl-
ing water. While they exist across a range 
of spatial scales, perhaps most fascinating 
are mesoscale eddies, varying between 100 
and 200 km in diameter. These eddies are 
too large to recognize from a ship or an 
airplane, but were too small to be visible in 
early satellite observations of the ocean. It 
wasn’t until the 1960s that they were first 
recorded due to improved satellite altimetry.

Coherent mesoscale eddies, which keep 
their integrity for extended times, are envi-
sioned to carry the same water body with-
out substantial leakage and deformation. 
Coherent fluid transport in the unsteady 
ocean, however, is not directly observable, 
and thus one must rely on sporadic observa-
tions of transported scalars, such as chloro-
phyll and temperature, to gain insight into 
material currents. Some exceptional chloro-
phyll patches captured by eddies drift in the 
ocean for up to a year or more (see Figure 
1a). The carrier eddies show no substantial 
mixing with surrounding waters, often creat-
ing moving oases for the marine food chain.

Why and How to Track Eddies?
Amidst concerns over climate change, 

episodic observations of material transport 
in the ocean are insufficient, and more 
quantitative and reliable eddy identifica-
tion tools are needed. For instance, the 
Agulhas rings, the largest mesoscale eddies 
in the ocean (see Figure 1b), are believed 

to transport warm and salty water from 
the Indian Ocean across the South Atlantic 
through the so-called Agulhas leakage, 
which is reportedly on the rise [3]. The 
rings might traverse as far as the upper 
arm of the Atlantic Meridional Overturning 
Circulation (AMOC), whose potential slow-
down due to melting sea ice in a warming 

climate is of current concern. This rise leads 
to the generation of more Agulhas rings, 
possibly weakening the AMOC slowdown 
[1]. To assess the validity of such hypoth-
eses, one must uncover the exact coherent 
cores of the Agulhas rings from available 
observational velocity data.

Figure 1a. Satellite image of a chlorophyll patch captured by an Agulhas ring. Image credit: NASA Earth Observatory/Jesse Allen. 1b. A sketch 
of the Agulhas leakage. Adapted with permission from Macmillan Publishers Ltd.: Nature [1], copyright (2011). 

See Black Holes on page 3

Tracing Genealogy Within an Invasion Wave
By Kerry Landman

Invasion waves arise in many systems, 
including wound healing, brain tumor 

expansion, and the displacement of indig-
enous species by an introduced species. 

Mathematical models of invasion sys-
tems are often described by Fisher’s equa-
tion, which contains two essential mecha-
nisms – the ability of the entities to move 
and increase in number through prolifera-
tion (cell division or reproduction). Fisher’s 
equation contains a diffusion term and a 
logistic growth term, which includes crowd-
ing effects involving a carrying capacity:
     

∂
∂

= ∂
∂

+ −





C
t

D C
x

C C
K

2

2 1λ .
  

				     (1)    

Phase plane arguments demonstrate 
that the partial differential equation (PDE) 
exhibits a travelling wave solution with 
a minimum wavespeed 2 Dλ .  Entities 
behind the wavefront are at carrying capac-
ity, so proliferation only occurs in the region 
of the wavefront, causing the travelling 
wave to steadily advance. We call this fron-

tal expansion. Such models are used to study 
population-level properties of invasion.  

Large Individual Variability Within 
the Predictable Travelling Wave

The enteric nervous system (ENS) is 
a large complex system—comparable in 
size to the spinal cord—in the wall of the 
gastrointestinal tract. It is responsible for 
normal gut function and peristaltic contrac-
tion, which forces food along the gastroin-
testinal tract. During vertebrate embryonic 
ENS development, a small population of 
immigrant neural crest cells (NCC) enters 
the stomach and progressively invades and 
colonizes the small and large intestine as 
a travelling wave over many days (mouse, 
chick), and weeks (human). The cells active-
ly move in a two-dimensional cylindrical 
shell within the gut wall and undergo many 
rounds of cell division (without cell death). 
Our group at the University of Melbourne 
has a decade-long collaboration with Don 
Newgreen’s Embryology Laboratory at the 
Murdoch Children’s Research Institute on 
this ENS cell invasion process.

The evolution of the NCC population den-
sity is well-described by Fisher’s equation. 
In addition, agent-based models facilitate 
the probing of more detailed information on 
cell-cell interaction. We use a square lattice 
agent-based model for our NCC invasion 
system, where an agent represents a single 
NCC. One agent at most can occupy a lat-
tice site at each timestep, defining an exclu-
sion process. We then assign probabilities 
to local rules describing cell motility and 
proliferation. Using these simple simula-
tion rules, a single realization produces a 
right-moving wave (with seeding agents 
on the left). Averaging over many simula-
tions leads to a predictable travelling wave, 
analogous to Fisher’s wave.

We label agents with different colors 
to observe the interactions between vari-
ous parts of the invasion wave. Progeny 
inherit the color of the parent agent, and all 
agents follow the same local rules. Every 
realization is slightly different, but at the 
population level each demonstrates frontal 
expansion as a result of progeny from the 
red and blue agents (see Figure 1).

In these models, we label every starting 
agent and determine the genealogy. The 
clonal contribution of each agent is highly 
variable, from minimal contribution to a 
few clones of overwhelming size, which we 
term superstars. We set out to determine 
how common these behaviors are, and if 
they could be shown experimentally. 

Superstars are apparent in every realiza-
tion (see Figure 2, on page 4). This behavior 
is the result of stochastic competition for 
space. All agents have the same ability to 
move and divide, but most become blocked 
by surrounding agents and thus can no lon-
ger do so. There is nothing inherently dif-
ferent about superstars. They just got lucky. 

Using ‘cloning-in-a-crowd’ experiments 
in gut explants, Dr. Newgreen’s lab showed 
that in a crowd of unlabeled NCC, a single 
cell lineage can be traced using a green 
marker inherited in cell division. After 
several days, the whole gut is full of NCC. 

See Invasion Wave on page 4

Figure 1. Clonal inequality as evidenced in three realizations (horizontal boundaries have 
periodic boundary conditions to emulate a cylindrical shell). Agents are labeled with different 
colors, and color is inherited by progeny. Top: moderate-size blue clone. Middle: a single 
blue agent has the large clone, responsible for invasion wave. Bottom: insignificant clone 
sizes. Image credit: B.J. Binder.
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Obituaries
By Mihalis Yannakakis and Cliff Stein

David Stifler Johnson, a leader in theo-
retical computer science, passed away 

on March 8, 2016, at the age of 70. David 
is well known for his fundamental contribu-
tions to NP-completeness theory, optimiza-
tion and approximation algorithms, and the 
experimental analysis of algorithms.

Born December 9, 1945, David received 
a B.A. in mathematics from Amherst 
College in 1967 and an M.S. in mathemat-
ics from the Massachusetts Institute of 
Technology (MIT) in 1968. After serving 
in the U.S. Army for two years, he returned 
to MIT, where he obtained his Ph.D. in 
1973. In his Ph.D. thesis, “Near-Optimal 
Bin Packing Algorithms,” David analyzed 
the performance of efficient bin packing 
algorithms, proving tight results on the 
proximity of the solutions they compute to 
the optimal solutions.

After his graduation, David joined 
AT&T Bell Laboratories, where he worked 
in the Mathematical Sciences Research 
Center from 1973 until 1996. He was 
head of the Mathematical Foundations 
of Computing Department from 1988 
onwards. When AT&T split in 1996, David 
joined AT&T Labs Research, serving as 
head of the Algorithms and Optimization 
Research Department until 2013. He then 
joined the faculty of Columbia University 
as a visiting professor in the Department of 
Computer Science.

David was a major contributor to the 
early development of the theory and appli-
cations of NP-completeness. This theory 
established a close relationship between 
many seemingly-intractable problems that 
arise in a diverse range of fields and are 
believed to be unsolvable in polynomial 
time. David (and his collaborators) showed 
the NP-completeness of many basic prob-
lems from a variety of areas and intro-
duced central concepts, e.g. the notions 
of strong NP-completeness and pseudo-
polynomial algorithms, that identify more 
specifically the source of intractability. 
However, David’s greatest impact in this 
field is through his book, Computers and 
Intractability: A Guide to the Theory of 
NP-Completeness, coauthored by Michael 
R. Garey and published in 1979. In addi-
tion to presenting the fundamentals of 
NP-completeness theory, the book contains 
an extensive, systematic compendium of 
NP-complete problems known at the time, 
making it an invaluable reference. It has 
served generations of computer scientists 
and engineers as a handbook for differ-
entiating computational problems that are 
solvable by practical, efficient methods 
from those that are not, and is one of the 
most cited references in all of computer sci-
ence. A year after its publication, David and 
Garey received the Operations Research 
Society of America’s Lanchester Prize. 

Beginning in 1982, David wrote “The 
NP-completeness Column: an Ongoing 

Guide,” a regular series of articles in the 
Journal of Algorithms and later The ACM 
Transactions on Algorithms, which cov-
ered new developments in the theory of 
NP-completeness and in related areas of 
algorithms and complexity theory.

David’s early work was also instrumental 
in laying the foundation for the theory of 
approximation algorithms, efficient algo-
rithms that compute nearly optimal solutions 
to hard optimization problems. Starting with 
his Ph.D. thesis, he designed and analyzed 
approximation algorithms for many impor-
tant problems, including packing and sched-
uling. David’s 1973 paper, “Approximation 
Algorithms for Combinatorial Problems,” 
is especially significant. In this paper, he 
studied central combinatorial 
problems like clique, graph 
coloring, set cover, and max-
imum satisfiability. He noted 
that, although these problems 
are polynomially equivalent 
in terms of reaching an opti-
mal solution, they are very 
different with respect to effi-
ciently finding good approxi-
mate solutions; this raised the 
question of how to classify 
the approximability of these 
and other hard combinato-
rial optimization problems. 
The area of approximation 
algorithms has flourished 
since then, building on the 
work of David and others, 
and continues to be one of 
the most active fields in theo-
retical computer science. The 
questions raised in David’s 
1973 paper eventually led to 
the development of the deep 
theory of probabilistically-checkable proofs 
some 20 years later, demonstrating that his 
algorithms were essentially optimal.

David also played a prominent role in 
laying out rigorous foundations for the 
experimental analysis of algorithms. In a 
series of highly influential papers in the 
late 80s and 90s, he performed a compre-
hensive experimental analysis of differ-
ent algorithms for important, well-studied 
problems, most notably the famous trav-
elling salesman problem, and of general 
methodologies like simulated annealing. 
His papers are emblematic of rigor and 
thoroughness, and set the standard for this 
kind of work. David also initiated and led a 
series of annual Implementation Challenges 
at the Center for Discrete Mathematics and 
Theoretical Computer Science (DIMACS) 
that fostered rigorous experimental research 
in the algorithms community.

Besides his personal research, David was 
heavily involved in the theoretical com-
puter science community, and has greatly 
impacted the field’s growth. In 1990, he 
founded the ACM-SIAM Symposium on 
Discrete Algorithms (SODA), a top venue 
for research in the field, and served as steer-

ing committee chair for 25 years. David 
organized and chaired many other confer-
ences, including the Federated Computing 
Research Conference and the ACM 
Symposium on Theory of Computing. 
He led the ACM Special Interest Group 
on Algorithms and Computation Theory 
(SIGACT) from 1987 to 1991, initiated 
several awards, chaired and served on many 
ACM and SIAM committees, and con-
tinued to impact the theoretical computer 
science community throughout his career. 
In recognition of his extraordinary contri-
butions, David received the first SIGACT 
Distinguished Service Prize for his “selfless 
dedication and personal initiative in serving 
the Computer Science Theory community.”

Numerous honors and prizes commem-
orate David’s research. He was named 
a SIAM Fellow in 2009, and was also 
recognized as an ACM Fellow and an 
AT&T Fellow. David received the Donald 
E. Knuth Prize for his contributions to the 
theoretical and experimental analysis of 
algorithms, and was elected to the National 
Academy of Engineering for his “contribu-
tions to the theory and practice of optimiza-
tion and approximation algorithms.”

David was a very generous, humble, and 
modest person. He cared deeply about peo-
ple, including the members of his depart-
ment, his colleagues, and researchers from 
all over the world who often contacted 
him with questions on NP-completeness, 
experimental analysis, purported proofs of 
P=NP or P≠NP, and other topics. David 
was a great mentor to young researchers, 
including the many students that interned 
in the Labs during his career. He advocated 
for and advanced the careers of countless 
members of the community, and kept a list 
of young researchers who should be chosen 
for conference program committees. He 
was an inspiration to all of his colleagues 
and will be greatly missed.

Mihalis Yannakakis is Hudson Professor 
of Computer Science at Columbia 
University. He was a friend and colleague 
of David at Bell Labs for many years. Cliff 
Stein is a professor of computer science 
and industrial engineering and operations 
research at Columbia University. He was 
David’s summer intern in 1991; David was 
a mentor, colleague, and friend ever since.

David Stifler Johnson, 1945-2016. Photo credit: http://
davidsjohnson.net/.

Errata and Clarifications

Missed Photo Credit: 
In the article entitled “Seven Decades of 
Mathematics and Mechanics” by Maria-
Carme Calderer and Richard James, which 
appeared in the April 2016 issue of SIAM 
News (Volume 49, Number 3), the photo 
of Maria-Carme Calderer, Jerry Ericksen, 
and Irene Fonseca was kindly provided by 
David Kinderlehrer.
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Eddy tracking methods used in ocean-
ography are Eulerian in nature, devised 
to highlight features of the instantaneous 
surface velocity field v x t( , ).  The same 
techniques are nevertheless also broadly 
believed to identify regions of elliptic (or 
vortical) trajectories x t( )  for  the ordinary 
differential equation (ODE) x v x t= ( , )  [4]. 
Classic examples in the theory of non-
autonomous ODEs show that such an infer-
ence is generally incorrect, even if v is 
just linear in the spatial variable x ∈2.  
Indeed, it is simple to construct spatially  
linear unsteady solutions of the Navier–
Stokes equation that are pronounced coher-
ent vortices by all instantaneous Eulerian 
criteria, yet the norm of their trajectories 
grows exponentially in time [7]. The same 
effect causes Eulerian eddy tracking meth-
ods to overestimate coherent eddy transport 
in the Agulhas leakage by about an order of 
magnitude [2].

Where do Black Holes Come In?
For unambiguous identification of per-

fectly coherent material vortices, one first 
needs a mathematical definition of their 
boundaries. Such a Lagrangian boundary 
should show no filamentation over a finite 
time interval [ , ],t t0  in contrast to the 
intense and inhomogeneous deformation 
of material surfaces in turbulent waters 
outside the vortices. Using elementary 
continuum mechanics, one finds that the 
parametrized initial position x s0 ( )  of such 
a coherent boundary must be a closed 
stationary curve of the averaged relative 
stretching functional 
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 This result reveals a surprising math-
ematical analogy between black holes 
in general relativity and vortices in the 
two-dimensional ocean [10]. In the for-
mer setting, a photon sphere is a nowhere 
space-like hypersurface of null-geodesics 
in space-time, with space-like projections 
that trap photons orbiting around a black 
hole forever [5]. In the context of the 
two-dimensional oceanic space-time, vor-
tex boundaries take the role of such photon 
spheres. This then implies [9] that a metric 
singularity of E xλ ( )0  must necessarily 
arise inside oceanic eddies (see Figure 2), 
just as metric singularities are believed 
to arise invariably inside black holes. So, 
at the level of a mathematical analogy, a 
material vortex to a two-dimensional ocean 
matches what a black hole is to Einstein’s 
four-dimensional space-time. 

Beyond providing a curious analogy, 
metric singularities of the generalized 
Green–Lagrange strain tensor Eλ  form 
the cornerstone of automated Lagrangian 
vortex detection schemes for large ocean 
data sets [13]. Figure 2a shows the evo-
lution of black-hole type vortices in the 
South Atlantic, computed as null-geodesics 
encircling metric singularities of Eλ [10]. 
The flow map Ft

t days
0

0 135+ is computed by 
integration from a satellite-altimetry-based 
surface velocity field v x t( , ).

Aren’t Vortices Supposed 
to be Related to Vorticity?

They are, but there is a cave-
at. An important axiom of con-
tinuum physics is that mate-
rial behavior, including mate-
rial transport by vortices, cannot 
depend on the observer describ-
ing the behavior.

Thus, a self-consistent defini-
tion of material eddies must be 
invariant under all Euclidean 
observer changes of the form 
x R t x b t= +( ) ( ),  where R t( )  
is a proper orthogonal tensor 
family and b t( )  is an arbitrary 
translation family. While the 
functional Qt

t
0

 defining black-
hole eddies is objective, the 
vorticity ω( , ) ( , )x t v x t= ∇× is 
not. Indeed, an observer change 
gives the transformed vorticity

 
    � � �ω ω( , ) ( ) ( , ) ( ),x t R t x t r tT= +

with the vector r  denoting the 
angular velocity of the frame 
rotation induced by R t( ).  Because of this 
r  term, the vorticity vector fails to trans-

form properly, as a vector under a linear 
operator R would. For this reason, vorticity 
has long been absent from the toolkit of 
objective Lagrangian [7] and even Eulerian 
[12] coherent structure detection.

A recent extension of the classic polar 
decomposition to non-autonomous process-
es, however, reveals an intrinsic connection 
between vorticity and objective material 
rotation. Valid in any finite dimensions, 
the dynamic polar decomposition theorem 
[8] guarantees a unique factorization of the 
flow gradient as
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where the dynamic stretch tensor Mt
t
0
 is 

the flow gradient of a purely straining flow; 
the mean rotation tensor Θt

t
0
 is the flow 

gradient of a spatially uniform rigid-body 
rotation; and the relative rotation tensor 
Φt

t
0

 is the flow gradient of the local devia-
tion from that mean rotation. The material 
rotation angle generated by Φt

t
0

 about its 
time-varying axis of rotation turns out to 
be a frame-invariant quantity. This objec-
tive rotation angle is surprisingly simple 
to compute: it is given by the Lagrangian-
Averaged Vorticity Deviation (LAVD),

LAVDt
t

t

t
x x s x s s ds

0
0

0 0( ) ( ( ; ), ) ( ) ,= −∫ ω ω

with ω( )t  denoting the spatial mean of the 
vorticity [11]. 

Defining rotationally-coherent eddy 
boundaries as surfaces evolving from out-
ermost tubular level sets of the LAVD 
provides the long-sought link between 
objective material eddies and vorticity. 
Unlike black-hole vortices, LAVD-based 
vortices may exhibit small tangential fila-
mentation in their boundaries (see Figure 
3a). The filaments, however, are bound 
to rotate with the material vortex without 

large-scale fingering into the surround-
ing turbulent waters. Figure 3b shows a 
three-dimensional example of this, with the 
velocity field generated by the Southern 
Ocean State Estimate (SOSE) model [14]. 
Material advection of this remarkably 
detailed material vortex boundary confirms 
the rotational coherence guaranteed by the 
dynamic polar decomposition.1

Remarkably, singular level sets at the 
core of nested tubular LAVD levels define 
vortex centers that can be proven to coin-
cide exactly with the observed cyclonic 
repellers and anti-cyclonic attractors for 
positively buoyant inertial particles [11]. 
Hence, LAVD-based eddy centers are pre-
cisely the mysterious drifting locations that 
collect floating debris in the ocean. Figure 
3c shows a numerical verification of this 
analytic prediction.

Implementing these mathematical advanc-
es in in situ analysis of the ocean and 
the atmosphere is an exciting perspective. 
Beyond quantifying mesoscale eddy trans-
port, black-hole and LAVD eddies of smaller 
scales could aid real-time decision making 
in environmental disasters (e.g. oil spills) 
or in search and rescue operations. On the 
other extreme of the eddy scale spectrum, 
these techniques offer a frame-indifferent 
identification of gigantic material vortices 
in the atmospheres of other planets, such as 

1  See online article (at sinews.siam.org) 
for animation

Jupiter’s Great Red Spot [6]. The quest to 
uncover coherent oceanic eddies has already 
lead to unexpected links to Lorentzian 
geometry and continuum mechanics, both of 
which deserve further exploration.
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Black Holes
Continued from page 1

Figure 2a. Closed null-geodesics of the two-dimensional generalized Green-Lagrange strain tensor are analogous to photon spheres in the four-
dimensional space-time. 2b. Materially advected coherent black-hole eddies in the Southern Ocean, identified from satellite data ranging over 
135 days (details in [9]). See online article (at sinews.siam.org) for animation. Image credit: George Haller and the Center for Environmental 
Visualization, University of Washington.

Figure 3a. Rotationally coherent vortex boundary and center defined from the LAVD. Image credit: George 
Haller. 3b. A three-dimensional Agulhas eddy boundary and eddy center  (details in [11]). 3c. Initial (red) 
and final (black) advected positions of LAVD-based Agulhas eddies over a period of three months. Floating 
objects (blue) converge to the centers of anti-cyclonic eddies; sinking objects (green) converge to the cen-
ters of cyclonic eddies  (details in [11]). See online article (at sinews.siam.org) for animation. Image credit 
for 3b and 3c: Alireza Hadjighasem, ETH Zürich.
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While most experiments had very few 
green-labeled cells, one showed a sea of 
green cells. This is the biological represen-
tative of a superstar – it is the cell that yields 
a disproportionately large contribution to 
the final population. These experiments 
show that clonal inequality is a reality, and 
that superstars do exist.

It is impossible to image all cells in the 
invading gut system, even with multicolor 
techniques. Hence, we can only trace a 
single lineage and collect data at a single 
time point in the gut experiments, unlike our 
agent-based models. However, researchers 
are currently developing techniques that 
could provide information on the number of 
cells in each generation.

In our agent-based models, we can color 
code the agents in the same generation, 
instead of visualizing individual lineages. 
Starting with generation-zero agents (as in 
Figure 2a), even a single realization shows 
that organization occurs within the spatial 
distribution of generation number during 
invasion, despite the large spatial variability 
of individual lineages. Can this organization 
be described with PDEs?

PDEs Describing Generation 
Number Density

We developed a new system of PDEs to 
describe each cell generation number [2], 
which we derived from probability argu-
ments and mean-field approximations. We 
considered how the average occupancy of 
each generation at a lattice site changes 
over a single timestep, while accounting 
for agents that leave and enter the site and 
noting that agents can only move into unoc-
cupied sites. The mean-field approximation 
assumes that the occupancy status of neigh-
boring sites is independent. Taking Taylor 
series expansions and the continuum limit 
leads to a coupled system of PDEs describ-
ing the generation number density n x ti ( , )  
in terms of the total density C:
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Terms with ( )1− C  arise due to the 
exclusion process, and the convective term 
arises due to the multi-species nature of 
the system. Of course, summing over all 
the generations gives Fisher’s equation (1). 
Solving this numerically, we obtain the 
spatial distribution of generation number 
density; it increases in an organized manner 
from left to right (see Figure 3).

Can the PDEs Predict Superstars?
From the PDE solutions, is it possible 

to predict lineage variability and the exis-
tence of superstars? To do so, we consider 
the flow of cells from one generation to 
the next at time t. From the spatial dis-
tributions, we know the number of  cells 
in each generation at time t. Mass bal-
ance arguments determine a relationship 
between the number of cells and the num-
ber of cells that have undergone division 
in each generation. An explicit formula for 
the generation transition probabilities is 
obtained in terms of the number of cells in 
each generation, which allows us to define 
a Galton-Watson process, appropriate for 
cell division [2], and subsequently generate 
cell lineage data.

Invasion Wave
Continued from page 1

For each 
branching pro-
cess, the simu-
lation runs until 
all the trees ter-
minate. We use 
a Lorenz curve 
[3], which com-
monly measures 
inequality of 
wealth distribu-
tion in econo-
metrics. For 
example, a plot 
of the cumula-
tive proportion 
of wealth versus 
the cumulative 
proportion of 
the U.S. popu-
lation gives a 
curve that is far from a 45-degree straight 
line. In our cellular context, we look at 
the number of initial cells and ask how 
much their Galton-Watson-generated lin-
eages contribute to the total final number 
of cells. It is highly unequal, and it grows 
more unequal as the cell proliferation rate 

increases. The prog-
eny of a few super-
stars dominate the 
final population.

This method, using 
solutions to PDEs, has 
provided a genealogy 
with highly asymmet-
ric lineages. It correct-
ly identifies the exis-
tence of superstars and 
associated properties. 
These results compare 
very well with agent-
based lineages. 

Within an embryo, 
the gut tissue is grow-
ing everywhere dur-
ing the development 
of the ENS. Adding 
domain growth to our 
PDE models general-
izes all the methods 
nicely. Furthermore, 
this technique for 
determining indi-
vidual data works 
for other PDEs that 
describe motility and 
proliferation events. 

Figure 2. Invasion wave and spatial distribution of agent tracings. (a) 
depicts the initial condition with 500 agents. (b) and (c) show two 
realizations of the travelling wave that moves progressively to the 
right, illustrating the largest and second largest single agent lineage 
tracing (pink and turquoise respectively) and the 498 other agent 
lineage tracings (all collected together in blue). In (b) there are sig-
nificant differences in the agent numbers between the two largest 
tracings, while in (c) the two largest tracings have a similar number 
of agents. Image credit: B.L. Cheeseman.

There is much interest in clonal advan-
tage through mutation in the cancer field, 
from the viewpoint of ‘expansion of the 
fittest.’ We have demonstrated differen-
tial clonal expansion in an invading cell 
population through PDEs, agent-based 
models, and experiments, and argue that 
luck (expansion of the luckiest) may have 
a surprisingly large effect on differential 
clonal expansion.
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Figure 3. Spatial distribution of PDE solutions for the generations 
n x t ii ( , )( , , ...)= 0 1 2 . The generation number i increases from left to right, 
each marked with a different color. The earlier generations, which corre-
spond to those well behind the wavefront, reach a steady state. The later 
generations, at the wavefront, continue to evolve for some further time. 
Image credit: B.L. Cheeseman.  

See Scientific Computing on page 6

The Future of High Performance 
Scientific Computing is Anything but Clear
By Bruce Hendrickson and Sivan Toledo

Cutting-edge scientific computing has 
relied for decades on what seems to 

be a never-ending parade of faster and 
faster computers. The continuously-grow-
ing power of supercomputers has been 
well documented by the TOP500 List,1 a 
website that publishes a biannual list of 
the 500 most powerful computers in the 
world. However, more recent signs indi-
cate that the underlying dynamics driving 
this growth are slowing down and will 
eventually stop, at least in their current 
form, in about a decade.

To help the high performance scientific 
community prepare for the future, three 
experts shared their views on the future of 
high performance computing with attend-
ees at the SIAM Conference on Parallel 
Processing for Scientific Computing, which 
was held in Paris, France, this April.

Panelists Horst Simon, deputy director 
of Lawrence Berkeley National Laboratory 
(and one of the authors of the TOP500 
List); Thomas Sterling, a professor and 
chief scientist of the Center for Research 
on Extreme-Scale Technologies at Indiana 

1  http://top500.org

University; and Mike Heroux, a senior 
scientist at Sandia National Labs, agreed 
that significant improvements in super-
computing will require overcoming major 
challenges. But interestingly, they had com-
pletely different views on what challenges 
are most important.

Discussing the underlying technologies 
used to build processors, memories, and 
communication channels, Simon argued that 
it is hard to know what’s coming next. All 
we know for sure is that progress is slowing 
down, and that the rate of progress will halve 
from its current level in a decade or less. He 
illustrated a clear slowing down in some sta-
ble metrics of progress in the TOP500 List. 
The rate of progress in performance of the 
trailing computer on the list (number 500) 
dropped in 2008, while the rate of progress 
in cumulative performance of the comput-
ers on the list dropped in 2013 (see Figure 
1, on page 6). This is clearly related to the 
nearing end of progress in photolithography, 
the technology that is used to mass-produce 
computer chips. This technology has been 
advancing at a fairly constant exponential 
rate known as Moore’s law from the early 
1970s, when Intel produced its first proces-
sor using photolithography with a feature 

size of 10μm. Photolithography is still used 
to produce computer chips today, but the fea-
ture size dropped to around 15nm, allowing 
semiconductor manufacturers to cram about 
a million times more transistors into a chip 
than 45 years ago. Experts expect this pro-
cess to continue for a while, down to 10nm 
and then 7 or even 5nm, but it is unlikely that 
it would go much further. At 5nm, transis-
tors are about 20 silicon atoms wide; below 
that, quantum effects take over the electronic 
principles that currently make computers 
tick. Furthermore, as feature sizes shrink, the 
cost to develop and build chip-manufactur-
ing plants skyrockets, making investments 
in them difficult to justify. At the current 
slower rate of progress, we will reach the 
7nm or 5nm limit in about a decade.

Simon and other experts believe that in 
the next few years, progress will rely on two 
emerging technologies that still lie within 
the domain of conventional photolithogra-
phy, which produces logic gates known as  
complimentary metal-oxide semiconductor 
(CMOS) gates. One is the three-dimension-
al stacking of chips, which can increase 
the density of memory and logic gates per 
unit volume. The other is silicon photon-
ics, which can reduce power consumption 

and improve data-transfer performance by 
tightly integrating digital electronics with 
optical communication links. Further in 
the future, Simon envisions three classes 
of technologies that may enable additional 
improvements in computing power. One is 
the so-called post-CMOS transistor, which  
aims to build memory cells and logic gates 
that exploit rather than suffer from quantum 
effects. There are many candidate technolo-
gies, but it is unclear which of them can be 
mass produced in a cost-effective manner. 
The second technology is quantum comput-
ing, though it is hard to tell how significant 
and general-purpose it may become. The 
third is an early-stage technology, called 
neuromorphic computers, which aims to 
mimic brains. However, it is fairly clear 
that no technology is poised to take over 
smoothly from von Neumann architectures 
and CMOS devices. We may well experi-
ence a period with very little progress in 
hardware capabilities.

Acknowledging the possible end of 
CMOS scaling, Thomas Sterling made 
a case for radically rethinking computer 
architectures and programming models. He 
reasoned that the architecture of super-
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Math Models Examine the Effectiveness of Car-Sharing
Texas Students Win Top Prize for Modeling Alternative Methods of Transport
When mass-produced cars hit the mar-

ket in the early 20th century, car 
ownership in developed countries soared. 
Now, as drivers increasingly feel the eco-
nomic burden of buying and owning cars, 
the market is undergoing a different kind 
of shift. Car-sharing, a form of short-term 
car rental frequently used for commuting, 
is experiencing unprecedented popularity; it 
offers consumers environmentally-friendly 
transportation without the complications and 
expenses of car ownership and maintenance.

But what factors determine the possible 
success of car-sharing in a given city, 
particularly from the perspective of auto 
and auto-sharing companies? Car-sharing’s 
worth—for both customers and auto cor-
porations—is contingent upon the amount 
of time an individual spends behind the 
wheel and the daily mileage. Options for 
car-sharing depend on customer need, and 
range from roundtrip and one-way sharing 
to multiple ownership of a single car. 

The various factors that influence car-
sharing’s success made it a perfect topic for 
the eleventh annual Moody’s Mega Math 
(M3) Challenge,1 an applied mathematics 
contest in which participating teams of 
high school juniors and seniors across the 
United States address a realistic problem 
in 14 hours using math. Sponsored by The 

1  https://m3challenge.siam.org/

Moody’s Foundation and organized by 
SIAM, the Internet-based Challenge invites 
the top six teams to present their work to a 
panel of judges and compete for scholar-
ships at Moody’s Corporation headquarters 
in New York City. 

“Moody’s Mega Math Challenge pro-
vides students with an outlet to investigate 
real-world problems while doing mathemat-
ics they understand, and that they already 
have in their toolbox,” said judge Ben 
Galluzzo (Shippensburg University), who 
served as a panelist at this year’s final pre-
sentations, which took place on April 25. 
“And that’s what really makes me excited 
about the contest, that you have this oppor-
tunity to take part in something that’s differ-
ent from the classroom. It gives you a taste 
of what real-world math would be like.”

Galluzzo and fellow judges Katie Fowler 
(Clarkson University) and Karen Bliss 
(Virginia Military Institute), who was also 
on the panel, wrote this year’s car-sharing 
problem.2 The problem asked participants to 
classify U.S. drivers based on their extent of 
car usage and create a model to determine 
which of four given car-sharing options—
roundtrip sharing, one-way sharing with 
manual car repositioning, one-way sharing 
with designated stations, and multiple own-

2   h t t p s : / / m 3 c h a l l e n g e . s i a m . o r g /
archives/2016/problem

ership of cars—would work best in different 
locations. The problem also asked students 
to consider the impact of future advances, 
such as self-driving and alternative-energy 
vehicles, on car-sharing.

Mathematical models, which use various 
mathematical techniques to measure real-
world situations and relay relevant conclu-
sions, can identify the types of car-sharing 

New York City Students Get a Glimpse of Math in Action
The collective “whoa” from everyone 

in the room said it all. With his coin 
“magic” trick, Tim Chartier not only cap-
tured the attention of the 50 high schoolers 
gathered at Manhattan’s High School of 
Economics and Finance early in the morn-
ing on their first day of spring break, but 
also indelibly linked the power of math to 
activities they had so far never associated 
with the subject. Not to mention, earned 
them bragging rights among friends for a 
long time to come.

Chartier, a mathematics professor at 
Davidson College, proceeded to explain 
the “magic,” a trick built upon a method 
of counting coins in an unusual way. 
“Math makes the magical logical,” he said. 
Describing the mathematical curve that 
forms when launching a bird on Angry 
Birds, the mathematical underpinnings of 
movie special effects, and the math behind 
improving a sports team’s performance, 
Chartier spoke the teenagers’ language 
while simultaneously opening their eyes to 
a world of possibilities with mathematics.

“Sometimes kids can be good at math 
but they’re not always sure why they’re 
learning it, so there can be a motivational 
gap between math and their actual learn-
ing,” said Chartier. “One of the things we 

are doing today is helping kids see why 
they should be learning math.”

After hearing all about mathematical 
applications in everyday problems, the 
students were ready to put this informa-
tion into action. Katie Fowler of Clarkson 
University led a mathematical modeling 
workshop1 with a real-world problem: how 
many cats would result from the breeding 
of two cats over several years? 

Presenting vastly different answers to this 
question from various animal humane soci-
eties, Fowler illustrated the need for help in 
the area, reinforcing the open-ended nature 
of mathematical modeling. “The problem of 
trying to understand the stray cat population 
can be approached on many different lev-
els,” Fowler explained. “Different groups 
of students will come up with very differ-
ent numbers, but they’ll be able to justify 
that based on the assumptions they make. 
They’ll see that there is more than one way 
to get an answer to a problem.”

Fowler explained the various compo-
nents of the modeling process to the group: 
defining the problem statement, making 
assumptions, assigning variables, creating 
a model, and validating the model with 

1  https://m3challenge.siam.org/news-
room/nyc-high-school-students-equate-math-
real-world-solutions

real data. She then asked students to con-
sider the multiple factors that could influ-
ence cat populations. Participants came up 
with relevant considerations, including the 
number of male versus female cats, mating 
age and times, litter sizes, the length of 
pregnancies, and so on. After a preliminary 
discussion, students split in groups to work 
on their math models.  

The objective of the Moody’s Mega 
Math Workshop, an outreach initiative by 
The Moody’s Foundation and SIAM, was 
to help students connect math to real-world 
issues. “I really enjoyed the workshop 
because it showed me how math is a part 
of our everyday lives, which you don’t get 
to see a lot,” said Destiny Santos-Ferrer 
of New Design High School. “We usually 
don’t see how math connects to the real 
world and how it’s used in multiple jobs 
and careers. [This workshop] incorporated 
what we are learning in different ways and 
made us more appreciative of math.”

The final speaker of the day was Lindsay 
Hall, a software engineer at Google. After 
sharing her personal experiences with math 
and computer science in high school, Hall 
described the many ways she uses math 
at Google. She gave students a chance to 
ask her questions about Google products of 
interest to them, and proceeded to explain 
the underlying math in each – such as find-

ing directions using Google Maps as a graph 
problem where the map calculates the short-
est way to get from one “node” to another. 

The workshop concluded with awards 
of $1,000 each in college scholarships 
to three random winners. The recipients, 
Naiomy Rangel of the High School of 
Economics and Finance, Maurice Avery 
Jr. of Marta Valle High School, and 
Chelsea Vicente of Queens Vocational 
and Technical High School, were also 
recognized at the Moody’s Mega Math 
Challenge awards reception at Moody’s 
Corporation headquarters and treated to a 
trip to the New York Stock Exchange to 
witness the Closing Bell ceremony.

“There’s not nearly enough extracurricu-
lar mathematics in New York City, so we 
have a number of students who are always 
hungry for more math and some kind of 
challenge,” said Dr. Philip Dituri, who 
accompanied his students to the workshop 
from New Design High School. “A lot of 
times students do modeling without being 
completely aware that they are modeling. 
Every time a kid answers a word problem 
in an algebra class, they model a real life 
situation with algebra, but they are not 
entirely aware that it is a modeling activity. 
I think this workshop gave them a real-
world perspective.”

— Karthika Swamy Cohen

The M3 Challenge winning team from St. John’s School in Houston, Texas, strikes a pose. 
From left: Dwight Raulston (coach), Eric Gao, Margaret Trautner, Nancy Cheng, Daniel Shebib, 
and Anirudh Suresh. Photo credit: Brad Hamilton.

Students collaborate at the Moody’s Mega Math Workshop, an outreach initiative by The 
Moody’s Foundation and SIAM. Photo credit: SIAM.

Students at the Moody’s Mega Math Workshop learn about math modeling and apply their 
knowledge to a real-world problem. Photo credit: SIAM.

See Car-Sharing on page 7
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Euler in the Age of Enlightenment
Leonhard Euler: Mathematical 

Genius in the Enlightenment. By Ronald 
S. Calinger, Princeton University Press, 
Princeton, NJ, 2016, 696 pages, $55.00.

As a graduate student in the history of 
science at the University of Chicago 

during the 1960s, Ronald Calinger consid-
ered writing his doctoral thesis on the life 
of Leonhard Euler. However, he bowed to 
advice from Saunders Mac Lane that the 
time was not yet right for such a project, 
since a massive effort to catalogue and 
translate Euler’s complete works was just 
getting underway. Only as that poject was 
nearing completion did he resume work on 
the book he had always intended to write. 

Calinger’s new book is neither a math-
ematical nor scientific biography. As the 
subtitle suggests, it is largely an attempt 
to position Euler within the pantheon of 
Enlightenment figures, including think-
ers such as Voltaire, Rousseau, and 
Montesquieu, as well as rulers like Charles 
II of England, Louis XIV of France, and 
Frederick the Great of Prussia, who char-
tered the royal scientific institutions that 
eclipsed the research performance of tra-
ditional universities for a time. There were 
about seventy such institutions by 1789.   

The Enlightenment seems to have begun as 
an extension of the Copernican Revolution, 
during which educated Europeans discarded 
traditional ideas about the natural world 
in favor of reason and experience. Shortly 
thereafter, they began applying similar 
thinking to social questions, including the 
rightful purpose and proper form of both 
government and religion. 

Not very much is known of Leonhard 
Euler’s early life. His father Paul III served 
as pastor of Saint Martin’s Church in the 
village of Riehen-Bettingen, some five kilo-
meters from Basel, Switzerland. Aware of 
their son’s extraordinary intellectual ability, 
Euler’s parents soon sent him to live with 
his maternal grandmother in Basel, where 
he could attend the city’s gymnasium. To 
supplement its rather meager offerings, they 
also arranged for him to be tutored by 
Johannes Burckhardt, a mathematically-
inclined theologian. In 1720, at the age of 
twelve, Euler enrolled at the University of 
Basel to prepare for a career in the clergy. 
There he encountered Johann Bernoulli, 
who had single-handedly turned Basel into 
a leading center for mathematics. From the 
age of sixteen, Euler devoted the bulk of his 
attention to that discipline. At eighteen, he 
wrote a short paper on isochronal curves, 

which appeared a year later in Leipzig’s 
Acta Eruditorum. That publication, together 
with the support of Bernoulli, led to an 
appointment at the recently-founded St. 
Petersburg Academy of Sciences.

In April 1727, 10 days before his 20th 
birthday, Euler left Basel aboard a Rhine 
riverboat, never to return. Arriving in St. 
Petersburg seven weeks later, 
he was greeted by a host of 
German speakers, among them 
Christian Goldbach, who was 
to stimulate Euler’s interest in 
the (then-unfashionable) subject of num-
ber theory. The two would correspond for 
more than thirty years.

Members of the new academy were 
expected to produce practical as well as 
scholarly results. 
While mastering 
Russian, Euler per-
formed studies of 
navigation and ship 
design, flood control, 
and map making. He  
also participated in 
the operation of the 
academy’s workshop 
and sawmill, served 
as an examiner for 
the military cadet 
corps, worked in 
the office of weights 
and measures, and 
helped to modify the 
St. Petersburg tariff 
laws. Before long he 
drew up plans for a 
rudimentary water 
turbine—destined 
to replace overshot 
waterwheels as the 
power source of 
choice in 19th century mills—a single cylin-
der steam engine, and a propeller with which 
to drive a steamship.

In 1733, Euler met and married Katharina, 
daughter of Swiss-born painter Georg Gsell. 
The marriage was apparently a happy one, 
despite the fact that only five of thirteen 
children survived to adulthood. The mar-
riage lasted nearly forty years, with almost 
half of them spent in St. Petersburg. 

Even before mounting the Prussian 
throne, Frederick the Great had dreamed of 
turning Berlin into an “Athens on the [River] 
Spree.” Voltaire, among others, convinced 
him of the need for a royal academy of sci-
ence, comparable to the ones in London, 
Paris, and St. Petersburg, and assured him 

that Euler’s appointment to the new insti-
tution would bestow much glory on it. 
Although not very interested initially, Euler 
became receptive when a movement to 
purge the Russian court of foreign influenc-
es caused him to fear for his personal safety.

In 1741, he moved to Berlin. Berlin 
academy director Pierre-Louis Maupertuis 

soon became a fast friend, and 
helped to make Euler’s early 
years in Berlin both happy and 
productive. However, follow-
ing the conclusion of the Seven 

Years’ War in 1763, during part of which 
Berlin was occupied by foreign troops, 
Frederick made it clear that Euler would not 
succeed Maupertuis as director. Thus, when 
Catherine the Great made him a princely 

offer to return to St. 
Petersburg in 1766, 
Euler jumped at the 
chance.

When Euler arrived 
in St. Petersburg 
for the first time, 
Newtonian theory 
was still encounter-
ing resistance from 
partisans of the 
older Cartesian and 
Leibnizian alterna-
tives; the Paris acad-
emy was a stronghold 
of the former. The 
age-old practice of 
mingling science with 
mysticism did not die 
easily, in Europe or 
elsewhere. Newton 
himself studied alche-
my, was never sure 
that his laws would 
suffice to explain all 

celestial motion, and suspected that divine 
intervention would occasionally be required 
to avoid potential collisions. Likewise Euler, 
when asked if a comet could ever strike 
Earth, replied that it was indeed possible but 
would never happen because any such catas-
trophe would violate God’s biblical promise 
to protect mankind. On the other hand, 
critics of Newtonian theory objected to the 
occult nature of the “action at a distance” 
implicit in his law of gravitation.

In time, the debate surrounding Newtonian 
theory came to focus on five presumably-
verifiable predictions, namely those con-
cerning tidal motion, the shape of the planet 
Earth, the orbits of comets, planetary and 
lunar motion, and fluid dynamics. Euler 

eventually addressed all five issues, most 
prominently those concerning comets and 
planetary and lunar motion. He postponed 
his study of fluid dynamics for almost twen-
ty years, possibly to avoid duplicating the 
efforts of his close friend Daniel Bernoulli. 
In time, the Paris Academy became a bas-
tion of Newtonian theory.

Perhaps the most decisive episode in the 
debate surrounding Newtonian theory con-
cerned irregularities in the orbit of the moon. 
At one point, mathematician Alexis Clairault 
suggested that a correction to Newton’s 
inverse square law of gravitation involving 
an inverse fourth power was necessary to 
fully account for the observed anomalies. 
Several years passed before Euler was able 
to confirm to the satisfaction of his con-
temporaries that Newton’s law suffices to 
explain all that could then be observed. It 
was by no means the most acrimonious dis-
pute in which Euler became involved.   

In 1751, Maupertuis’ claim of priority for 
the principle of least action was disputed 
by mathematician Samuel König, who pro-
duced a copy of a 1707 letter from Leibniz 
to a colleague, in which such a principle 
was clearly enunciated. Rather than claim-
ing priority for himself (as he might well 
have done), Euler magnanimously took the 
side of his friend Maupertuis and personally 
accused König of forgery before the Berlin 
Academy. That verdict remained more or 
less intact until, some 150 years later, addi-
tional copies of the 1707 letter surfaced in 
the Bernoulli archives.

Anyone seeking a concise account of 
Euler’s mathematics, or particular parts 
thereof, should look elsewhere. Many 
excellent expositions are available, includ-
ing [1, 2, and 3]. Calinger describes the age 
in which the man lived, along with the intel-
lectual currents and political realities that 
drew his attention to particular problems. Is 
that not enough to ask of any book?
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Scientific Computing
Continued from page 4

computers has remained stagnant, relying 
on interconnected von Neumann compute 
nodes. Sterling believes that new archi-
tectures will be necessary to increase the 
power of supercomputers beyond about 
1018 floating-point operations per second. 
Even with current machines, the movement 
of data is the limiting factor in performance 
and consumes the bulk of the power. To 
circumvent this limitation, Sterling argued 
that future architectures will have to seam-
lessly blend computational and arithmetic 
units with memory in order to optimize data 
transfers, instead of optimizing the utiliza-
tion of arithmetic units. He also believes 
that these future architectures will be based 
on data-flow models, rather than the von 
Neumann model. Programs will execute in a 
highly asynchronous and dynamic manner.

Mike Heroux asserted that any major 
change to computer architectures will have 
a dramatic impact on large simulation codes. 
Consequently, he feels that the biggest chal-
lenge will be developing software with the 
complexity and sophistication to actually 
benefit from future supercomputers, and 
that such software may not materialize 
without significant investments in software 
engineering. In the national labs, new simu-

lation codes are being written not by single 
scientists, not even by teams of scientists, 
but by large collections of teams from dif-
ferent labs and universities. These teams 
consist of both application scientists and 
computer scientists. This scale of software 
development is necessary in order to build 
novel multiphysics, multiscale simulations. 
Such massive efforts require new software-
engineering skills, training for the use of 
new tools, and new incentive structures 
from both publishers and funding agencies.

One clear message from the panel discus-
sion was that a major change is coming to 
supercomputing. Many other sessions at 
the conference touched on the same topics, 
including minisymposium sessions on next-
generation architectures, post-Moore era 
tuning, new types of accelerators, extreme-
scale scientific software engineering, and 
more. There is a strong consensus that cur-
rent approaches are running out of steam, 
but little clarity on what will come next. 
It is safe to say that the next decade in 
supercomputing will be marked by both 
uncertainty and opportunity.
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Figure 1. The growth in the floating-point performance of supercomputers, based on the 
TOP500 list. The graph shows the 2008 slowdown in the growth-rate of the floating-point 
performance of the least-powerful computer among the world’s 500 most powerful computers 
(bottom data series) and the 2013 slowdown in the growth-rate of the cumulative performance 
of the top 500 supercomputers (top data series). The performance of the most powerful com-
puter (middle data series) in the world is not a smooth function of time, which makes it a poor 
metric for assessing growth rates. Figure courtesy of [1] © 2015 IEEE.
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that would be most beneficial based on 
population density, traffic, geographical 
location, and demographics.

“Car-sharing is a very timely and compli-
cated problem, in that it brings in econom-
ics as well as urban studies, and many dif-
ferent parts of math,” said Steven Strogatz, 
a SIAM Fellow and speaker at the awards 
ceremony. “I saw students using probabil-
ity theory, some geometry, some calculus, 
so it’s reflective of the challenges of math 
modeling if the students do go on to profes-
sions that use math.” 

To tackle the complicated Challenge 
question, the first-place team from Saint 
John’s School in Houston, Texas, created 
a function that determines the expected 
number of miles driven per day based on 
the population density and number of driv-
ing hours for multiple regions. The students 
then produced a normal distribution around 

the expected average value for the number 
of miles driven per day, and integrated a 
weighted cumulative density function of that 
distribution over time. This allowed them to 
categorize drivers as low, medium, or high 
car users based on hours and daily mileage. 

The team validated its model by test-
ing in two starkly different regions—New 
York City and suburban Englewood Cliffs, 
NJ—and demonstrating that the former 
had a larger proportion of cars moving 
shorter distances while the latter had a 
larger proportion moving longer distances. 
Next, they determined which of the four 
given types of car-sharing would work best 
in four pre-determined cities.

“We took about 200,000 data points 
from a traffic survey in 2009 and found 
data about population density in the four 
cities we were assigned to analyze,” said 
Margaret Trautner, member of Saint John’s 
winning team. “We also used a lot of data 
about how humans move around in gen-
eral, like how fast people walk, how much 

they walk per day, and how close they live 
to different stations.”

The team determined the “price” of car-
sharing for a user based on both financial 
and opportunity cost, or time spent by 
a user in combination with the value of 
a user’s time. Charting cost versus user 
salary, the students factored in an indi-
vidual’s salary and specific situation (such 
as how long and how frequently he/she 
would need a car) to determine which car-
sharing option would be most appropriate 
for a given user. This user-benefit model, 
combined with the population density of 
a given region, then estimated the number 
of potential car-share users in each region. 
The revenue and expenditure per user 
for each business model, along with the 
potential number of users in each region, 
provided an estimate of a car-sharing com-
pany’s expected profit.

Government websites that analyze traffic, 
provide health-related information about 
how far people walk per day, and offer 
housing analysis were helpful in perfecting 
the model, said Trautner. Among the four 
cities specified by the problem, the win-
ning team found that Richmond, VA, and 
Poughkeepsie, NY, would be most profit-
able for car-sharing, Richmond because it 
has more individuals overall that can afford 
car-sharing and Poughkeepsie because it 
has more individuals within a given area. 
The other two cities—Riverside, CA, and 
Knoxville, TN—wouldn’t fair as well. The 
students determined that the best business 
models were the free-floating and one-way 
models. While the round-trip Zipcar model 
yields a relatively equal profit, an individual 
is much more likely to use a one-way car. 
The team then adjusted this for usage, cost, 
and revenue to consider the effects of alter-
native energy vehicles and self-driving cars.

While Trautner, who stumbled across 
the Challenge during an online search  for 

scholarships, has never used car sharing 
herself, she was quick to note its appeal. 
“Cities are growing a lot, so a lot of people 
can’t afford vehicles, but they have to get 
around huge cities,” she said. “I’m from 
Houston, and it’s a huge city. We don’t 
have public transportation that works very 
well, so everyone has to have some sort of 
vehicle they can drive around in.”

The champion team from Saint John’s 
School—which will split $20,000 in schol-
arship money—consisted of seniors Nancy 
Cheng, Eric Gao, Daniel Shebib, and 
Anirudh Suresh, in addition to Trautner. 
The team, selected from over 1,100 teams 
across the country, was deservedly elated. 

“We were looking at a picture of last 
year’s finalists winning the championship, 
and it feels kind of reminiscent of that situ-
ation. Being in their shoes is a really incred-
ible thing,” said Anirudh Suresh. “It’s also 
really cool that we’re from Texas, since the 
other top teams are from the east coast area. 
To see a team from this region opens up the 
possibility for future years.”

This was both the first team from Saint 
John’s to ever compete in the M3 Challenge 
and the first team from Texas to win the 
competition.

Dwight Raulston, coach of the champion 
team and instructor of mathematics and 
English, praised the Challenge’s creativity 
and positive impact on students. “You’re 
taking ideas apart and putting them together 
in different ways, providing your own 
unique contribution, and you get something 
out of it,” he said. “I think this is, in a sense, 
an artistic endeavor. You’re creating some-
thing for other people to use and enjoy, 
analogously to how artists create art.”

Visit the M3 Challenge playlist on SIAM’s 
YouTube channel3 for contest videos.

—  Lina Sorg and Karthika Swamy Cohen

3  https://www.youtube.com/c/siamconnect

Car-Sharing
Continued from page 5

Members of the M3 Challenge winning team from St. John’s School in Houston, Texas, 
present their model to the judges. From left: Daniel Shebib, Eric Gao, Anirudh Suresh, Nancy 
Cheng, and Margaret Trautner. Photo credit: Brad Hamilton.
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Particles with Negative Mass 
and the Krein–Moser Theory
Imagining objects with negative mass 

may seem like a scholastic exercise. But 
as it turns out, we can interpret some real 
physical phenomena as the occurrence of 
particles with negative mass.

As a glimpse of the strange 
world with negative masses, 
Figure 1 shows two mass-
es of equal magnitude but 
opposite sign connected by a 
Hookean spring. Initially all is at rest and 
the spring is stretched, pulling the masses 
towards each other. In response, the posi-
tive mass will accelerate to the right as 
expected; the negative mass, being pulled 
to the left, will accelerate against the pull, 
i.e. to the right as well. So the whole sys-
tem will accelerate to the right, with the 
distance between the masses remaining 
constant.  Formally, the positions x and y 
of our particles satisfy

 
   
       

mx F my F = − = −, ,

where F is the force of the spring. Addition 

gives 
d
dt

x y
2

2 0( ) ,− =  so that the distance 

x y− = constant (since  x y=  at t = 0 ) as 
claimed, and subtraction results in

            

d
dt

x y F m
2

2 2( ) / / ,+ =

showing that indeed the midpoint acceler-
ates at a constant rate F m/ .

This acceleration occurs with no exter-
nal forces applied and does not contradict 
Newton’s second law, since the total mass 
of the system is zero. The fantastic world of 
negative masses can have spaceships which 
require no fuel and no external sources of 
energy to accelerate 
in any desired direc-
tion (here the dis-
cussion is limited to 
the one-dimension-
al world, but one 
can imagine a 3D 
construction along 
the lines of Figure 
1, with the astronaut 
pushing or pulling 
on the right mass 
and controlling the 
direction of acceleration.) There is no con-
tradiction with the conservation of energy 
since the kinetic energy of our system 
remains zero and the potential energy of the 
spring remains constant at all times (with 
the initial conditions as specified).

Consider  now  the  regular  harmonic  
oscillator x x+ = 0,  with mass m = 1 and 
Hooke’s constant k =1.  Multiplying both 
sides by −1 yields a mathematically equiva-
lent system − − =x x 0.  Physically, we 
can interpret this as describing the motion 
of a particle of negative mass attached to 

a spring with the negative Hooke’s con-
stant. Until such a system is touched, it 
will behave as a normal mass-spring one. 
But when connected to a “normal” sys-

tem—say, by a weak Hookean 
spring—an instability may 
result. Informally, we can trace 
the mechanism of this instabil-
ity to Figure 1; if the positive 
mass “trails” the negative one, 

then the interaction will cause both masses 
to accelerate. This is not difficult to see 
formally on a simple model of two har-
monic oscillators connected by a spring 
with a small Hooke’s constant ε :

 
          





x x y x
y y x y
+ = −

− − = −




ε
ε
( ),
( ).

We have 
d
dt

x y x y y x
2

2 2( ) ( ) ( ),+ + + = −ε  

so that x y+  behaves as a forced harmonic 
oscillator. And the forcing 2ε( )y x−  sat-

isfies 
d
dt

y x y x
2

2 0( ) ( ) ,− + − =  the equa-

tion of the harmonic oscillator with the 
frequency and therefore in resonance with 
x y+ ,  causing the amplitude of oscilla-
tions of x y+  to grow linearly.

All this is the tip of a very nice theory 
developed by Mark Krein and indepen-
dently by Jürgen Moser. In the 1950s, 
physicists working at Brookhaven National 
Labs made a puzzling experimental obser-
vation: a simple resonance consisting of 
two frequencies becoming equal led to 
an instability in some settings but not in 
others. Upon hearing of this phenomenon, 
Moser provided an explanation [3], and 
it turned out that Krein had explained the 
same phenomenon a few years earlier [1]. 
The explanation boils down to a beautiful 
analysis of symplectic matrices; the details 
can be found in the cited papers of Krein 
and Moser or in [2].

To give the flavor of the Krein-Moser 
result, we recall that the spectrum of a sym-
plectic matrix is symmetric with respect 
to the unit circle, as illustrated in Figure 

2 (this fact is known as the Poincaré-
Lyapunov theorem). And thus a simple 
eigenvalue cannot leave the unit circle 
under small perturbation of a matrix (within 
the symplectic class); otherwise, an extra 
mirror image eigenvalue would appear. A 
simple eigenvalue can only leave a circle if 
it meets another eigenvalue. But not every 
meeting of eigenvalues causes them to 
leave the unit circle.

 In the Krein-Moser theory, every eigen-
value is assigned a symbol + or –.1 The 
“direction of rotation” of the eigenspace, 

as measured by the sym-
plectic 2-form, gives the 
sign. And the beautiful 
result is that if two same-
sign eigenvalues on the 
unit circle meet (under the 
deformation of a symplec-
tic matrix), they harmlessly 
“pass through each other,” 

1  One need not limit the 
attention to simple eigen-
values, but I want to skip 
such details.

Figure 1. Two masses of opposite sign con-
nected by a spring. Acceleration happens 
with no external force applied.

Figure 2. The Lyapunov-Poincaré theorem: the symmetric spec-
trum of a symplectic matrix.

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 3. Collision of the same-sign eigenvalues does not lead to insta-
bility; collision of the opposite-sign eigenvalues does.

See Krein-Moser on page 11
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The Final Touch?
Solving Smale’s 17th Challenge Problem
By James Case and Michael Shub

In 1998, Stephen Smale published a list 
of 18 challenge problems for the 21st 

century. Two of them also appeared on 
David Hilbert’s 1900 list of 23 challenge 
problems for the 20th century. Others 
were unmistakably of 20th century origin, 
including #17, which seeks an algorithm 
capable of computing approximately—in 
low-order polynomial average time—a 
single zero of a system of n polynomial 
equations in n complex unknowns.

In the late 1970s, seeing the need for a 
complexity theory applicable to problems 
in numerical analysis, Smale determined 
that the most useful methods would yield 
only approximate solutions and be prone 
to occasional failure. So he looked for 
algorithms α  capable of providing—with 
high probability—an approximate solution 
of a particular problem P of a given type in 
an acceptable amount of time. Specifically, 
if T P( , )α  denotes the amount of time 
required by algorithm α  to find an approx-
imate solution for a particular P in the 
class of interest, if it is possible to impose 
a manifold structure on that class, and if 
a probability measure is defined on the 
resulting manifold M, Smale asked if the 
“average computation time” E T P( ( , ))α  
is bounded by a low-order polynomial in 
| |,P  the “size” of the problem P M∈ ,  
and the reciprocal r of the probability of 
algorithm failure.

In 1980, Smale wrote a paper he called 
“The Fundamental Theorem of Algebra,” 
in which he sought something like a con-
structive proof of the classical result. To 
that end, he defined, for any complex poly-
nomial f of order d, the problem
 ( )P       Find ζ such that f ( ) .ζ = 0

The class of all such f forms a manifold M,  
indeed a vector space, in an obvious fash-
ion. He next defined z to be an approximate 
solution of P if z is close enough to an 
actual solution ζ  for Newton’s method to 
converge rapidly (i.e. quadratically) to ζ  
when starting from z. Each actual solution 
ζ  of P is thus surrounded by a neighbor-
hood composed of approximate solutions, 
which typically fill only a small portion of 
the basin of attraction in which ζ lies. 

Basins of attraction are topologically 
complicated, even for a single polyno-
mial like z4 1= ,  and need not fill the entire 
domain of definition. The basins them-
selves are typically open sets, separated by 
highly irregular (fractal) “curves” of mea-
sure zero, consisting of starting points from 
which Newton’s method fails to converge. 
Moreover, because Newton’s method can 
admit attracting periodic points, there may 
on occasion be open sets of starting points 
from which the method fails to converge.

Smale employed homotopy methods 
for finding approximate roots of univari-
ate polynomials. Such methods work by 
embedding a given problem P M∈  in a 
continuum of problems P Mt ∈ ,  defined 
for 0 1≤ ≤t ,  of the form 

( )Pt         
 Find ζ ( )t  such that

                     F t t( ( ), ) ,ζ = 0
      
where F z g z( , ) ( )0 =  has an obvi-
ous root ζ ( )0  and F z f z( , ) ( ).1 =  
The methods then choose a partition 
π = = < < < ={ }0 10 1t t tm  of the unit 
interval and attempt to solve the problems
P i mti
; ( )=1 1  successively, using ζ ( )ti−1  as 

a starting point in the search for ζ ( ).ti  The 
combination F z t t f z t g z( , ) ( ) ( ) ( )= + −1   
seems the most obvious choice for F ( , ),⋅ ⋅  

and is doubtless the one most frequently 
chosen. Indeed, Smale makes this choice 
when developing an upper bound on the 
number of intermediate problems Pti  to 
be solved approximately while solving P1.  
Each solution curve ζ ( );t t0 1≤ ≤  of Pt  
is surrounded by a (variable-width) strip of 
approximate solutions. There are at most d  
such strips, which can merge and/or bifur-
cate repeatedly as t advances from 0 to 1.

Smale subsequently investigated the 
computational complexity of various other 
problems, including the average computa-
tion time of the simplex method of lin-
ear programming. His results were later 
improved by Nimrod Megiddo [6]. He 
also sought, in collaboration with Michael 
Shub, to extend his results on the funda-
mental theorem of algebra to systems of 
complex polynomials.

Let f f fn= …( , , )1  be a system of 
n real or complex polynomials in the n 
unknowns  z zn1,...,  and consider the class 
of problems

( )′P        Find ζ ζ ζ= …( , , )1 n

               such that f ( ) .ζ = 0
  

It is easy enough to impose a manifold 
structure on the set of all such systems f, 
and to define a probability measure on the 
resulting  M. 

In order to take advantage of Bezout’s 
theorem on the number of zeros of a sys-
tem of complex homogeneous polynomi-
als, they began by letting d dn1, ,…  be the 
degrees of f fn1, , ,…  and homogenizing 
each fi  by multiplying each constituent 
monomial by the power of an auxiliary vari-
able z0  needed to increase its degree to di .  
The result is a system of n homogeneous 
polynomials of degrees d d dn= …( , , )1  in 
the n +1 variables z zn1, , .…  A variant of 
Newton’s method, known as the projective 
Newton’s method, applies to such systems.

If ( )d  is the vector space of all 
homogenous systems f = 0  of degree 
d, then dim( )d  can be shown to be 
N Ci

n
n
n di= =
+Σ 1 where Cn

m  is a binomial 
coefficient, and the number of solutions 
ζ ζ ζ= …( , , )1 n  is known by Bezout’s the-
orem to be B di i= Π .  In particular, if each 
di  is 2, then N n~ /3 2while B n= 2 .  The 
number of solutions ζ  is thus exponential 
in n, dashing any hope for a polynomial-
time algorithm that produces all solutions.

With only a few equations of high 
degree, the problem ′P  can be reduced via 
exact symbolic techniques (Gröbner bases, 
resultants, and the like) to that of solving 
a univariate polynomial of degree B in 
polynomial time. But that fact alone does 
not lead to a solution of Smale’s problem 
#17, even in combination with the afore-
mentioned homotopy methods.

In a series of five papers co-authored 
with Shub—which came to be known as 
the Bezout series—Smale established the 
surprising fact [7] that a zero of n com-
plex polynomial equations in n complex 
unknowns can be found approximately, on 
average, in time polynomial in N alone. 
But the proof demonstrated only existence. 
It was neither constructive nor uniform.

In 2008-2009, a pair of papers by Carlos 
Beltrán and Luis Miguel Pardo [1, 2] 
described a probabilistic algorithm—where 
the machine must first select at random a 
point of departure from which to launch the 
chosen algorithm α —for solving ′P  with 
high probability in polynomial average 
time. This led some to consider #17 solved. 
Others disagreed, on the ground that Smale 
was seeking a deterministic method that 
would work for certain.

Beltrán and Pardo select at random an 
n n× +( )1  matrix A and solve Aζ = 0  for  
ζ /= 0.  They then select, again at random, 

a homogeneous system g of higher degree 
that vanishes at ζ .  The resulting pair 
( , )g ζ  then serves as a starting point for 
the required homotopy, and the computa-
tion time T P( , )′ α  is averaged over the 
two random choices.

In 2011, Felipe Cucker and Peter 
Bürgisser announced a deterministic variant 
of the Beltrán-Pardo algorithm for solving 
′P ,  applicable only to a restricted range of 

degrees and dimensions [4]. And finally, 
in July of 2015, Pierre Lairez revealed a 
complete solution [5] of Smale’s problem.

Instead of choosing A and g at random, 
Lairez uses the input f itself as a random 
element. He chooses a precision ε ,  and 
rounds off the coefficients of the polyno-
mial system f to that precision, thereby 
producing an approximation g of f. Lairez 
then fixes g and considers the set of all f 
that round to the same g. The coefficients 
of h f g= −  are then effectively random, 
and may be used to produce a random 
matrix A and a random non-linear system 
g  vanishing at a non-zero solution ζ
of Aζ = 0.  By doing so, Lairez reduces 
the problem ′P  to a member of the class 
shown by Beltrán and Pardo to be solvable 
in average polynomial time.

Lairez spoke about all this at the Simons 
Institute in Berkeley, CA, last December. 
He ended his talk by posing a problem 
17bis  asking for proof that ′P  can be 
solved approximately by an algorithm α  
whose average running time E T P( )( , )′ α  
is a low-order polynomial in the two most 
natural measures of the size and tractability 
of a given ′∈P M ,  namely the length of 
the input sequence and the condition num-
ber of the derivative matrix  f  at a root. 
Such an estimate has already been devel-
oped [3] under the hypothesis that geode-
sics in M can be adequately approximated 
with respect to a metric that arises naturally 
in the study of homotopy methods.
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Network Data: Dealing with Incompleteness and Bias
By Sucheta Soundarajan and 
Jeremy D. Wendt

While network analysis is applied in 
a broad variety of scientific fields 

(such as physics, computer science, biology, 
and the social sciences), the methods used 
to construct networks and the resulting bias 
and incompleteness have drawn more lim-
ited attention. For example, in biology, gene 
networks are typically developed via experi-
ment – many actual interactions are likely yet 
to be discovered. In addition to this incom-
pleteness, the data-collection processes can 
introduce significant bias into the observed 
network datasets [2, 3]. For instance, a clas-
sic random walk used to observe part of the 
World Wide Web network would be more 
likely to find high-degree nodes than a ran-
dom selection of nodes [1]. Unfortunately, 
such incomplete and biased data collection 
methods are often necessary.

At the recent Workshop on Incomplete 
Network Data (WIND),1 held at Sandia 
National Laboratories2 in Livermore, CA, 
researchers from academia, industry, and 
national labs gathered to discuss perspec-
tives on dealing with incomplete network 
data. WIND was organized by Tina Eliassi-
Rad (Northeastern University), James Ferry 
(Metron, Inc.), Ali Pinar (Sandia), and C. 
Seshadhri (University of California, 
Santa Cruz).

The workshop highlighted a host 
of areas with biased graph sam-
ples. Dennis Feehan (University of 
California, Berkeley) and Forrest 
Crawford (Yale University) both dis-
cussed a particularly interesting prob-
lem from the social sciences – deter-
mining how to accurately estimate the 
size of hidden or rare groups in mas-
sive populations by querying survey 
respondents. Bradley Huffaker (Center 
for Applied Internet Data Analysis, 
University of California, San Diego) 
presented problems related to obtain-
ing an accurate map of the Internet, 
and Jaiwei Han (University of Illinois 
at Urbana-Champaign) described 
techniques for supplementing explicit 
graphs using unstructured text mining.

Three main approaches emerged. 
The first approach involves estimat-
ing properties or characteristics of the 
global network, given only a partial 
observation of that network. For exam-
ple, can one estimate the number of 
triangles (i.e., “A” knows “B” knows 
“C” knows “A”) in the full network 
with only partial access to the full 
network data (e.g., Tammy Kolda, 
Sandia)? The second approach entails 
performing data collection in such a 
way as to reduce bias or increase the 
quality of the information obtained. 
For instance, how can one sample a 
node uniformly and at random from a 
graph, where access to data is through 
a random walk-like crawl (e.g., Ravi 
Kumar, Google)? The third approach 
identifies algorithm degradation result-
ing from noise or incomplete data and 
designs algorithms to be more robust. 
For example, local spectral methods 
provide results akin to full-graph spec-
tral methods, without the effects of 
problems in distant parts of the graph 
(e.g., Michael Mahoney, University of 
California, Berkeley; David Gleich, 
Purdue University).

These categories are complementary, 
and a real-world application of network 
analysis on incomplete data would ide-
ally incorporate all three techniques. 
The third category (understanding the 

1  http://eliassi.org/WIND16.html
2  Sandia National Laboratories is 

a multi-program laboratory managed 
and operated by Sandia Corporation, a 
wholly owned subsidiary of Lockheed 
Martin Corporation, for the U.S. 
Department of Energy’s National 
Nuclear Security Administration under 
contract DE-AC04-94AL85000.

robustness of existing algorithms against 
noise or incompleteness) is an important first 
step in any such unified approach.

David Kempe (University of Southern 
California) discussed the problem of algo-
rithm robustness at the workshop. He point-
ed out that in real-world network data, 
“Noise is the norm, not the exception,” and 
that understanding the effects of noise on 
algorithmic tasks is critical. To illustrate this 
point, he considered the problem of influ-
ence maximization; in a network setting, if 
we assume that an individual’s beliefs can 
affect their neighbors’ beliefs, which nodes’ 
beliefs should we influence to have the great-
est effect on the beliefs of the population as 
a whole? Kempe argued that the influence 
probabilities (i.e., the probability that node 
“A” will influence the belief of node “B”) 
can have a large effect on which nodes are 
selected; but any estimates of these prob-
abilities are likely to be inaccurate!

Kempe also considered the effect of noise 
or incomplete data on community detection 
(the problem of clustering the nodes of a 
network into cohesive groups). He argued that 
the output of community detection methods 
can also be significantly affected by noise or 
missing edges in the network. For example, 
missing edges might lead an algorithm to 
identify two communities. If those edges were  

to be present, the algorithm would find only 
one community. Kempe argued that commu-
nity detection on incomplete network datasets, 
while not sufficient for drawing conclusions, 
may be appropriate for suggesting hypotheses, 
which are then verified by other means.

Along similar lines, Anil Vullikanti 
(Virginia Tech) considered how noise can 
affect the core decomposition of a graph. 
A core of a graph is, in essence, a ‘dense’ 
or ‘central’ part of the graph and, among 
other applications, can be used to measure 
the importance or centrality of nodes in 
the network. Through experimental results, 
Vullikanti demonstrated that k-cores are 
unstable when the network is perturbed in 
degree-biased ways (that is, the probability of 
a perturbation affecting a node depends on the 
number of connections the node has). This is a 
critical problem because one of the most com-
mon ways of obtaining network data (crawl 
via breadth-first search) leads to just this kind 
of degree-biased sampling.

Other research presented during the work-
shop proposed techniques to overcome miss-
ing data or noise, including strategies for 
counteracting bias or generating more accurate 
network samples. Many attendees presented 
early solutions that show great promise.

However, the consensus among WIND 
attendees was that incomplete data presents 

a daunting challenge to performing accurate 
network analysis. Several critical questions 
remain: How do we measure or estimate the 
noise, bias, or incompleteness of network 
datasets? What tests could we run to thor-
oughly assess the effects of these data errors 
on later analyses?

References
[1] Kurant, M., Markopoulou, A., & 

Thiran, P. (2010). On the bias of BFS. 
In 22nd International Teletraffic Congress 
(pp. 1-8). Amsterdam, Netherlands.

[2] Leskovec, J., & Faloutsos, C. (2006, 
August 20-23). Sampling from large 
graphs. In 12th International Conference 
on Knowledge Discovery and Data Mining 
(KDD). Philadelphia, PA.

 [3] Maiya, A.S., & Berger-Wolf, T.Y. 
(2010, April 26-30). Sampling community 
structure. In 19th International World Wide 
Web Conference. Raleigh, NC.

Sucheta Soundarajan is an assistant pro-
fessor at Syracuse University. Her research 
is in the area of social network analysis, 
including topics related to network sam-
pling, incomplete network data, and com-
munity detection. Jeremy D. Wendt is R&D 
staff at Sandia National Laboratories. His 
research focuses on machine learning, text 
mining, and graph analytics, especially 
when driven by social analytics.



June 2016 SIAM NEWS • 11

Send copy for classified advertisements and announcements to: marketing@siam.org; 
For rates, deadlines, and ad specifications visit www.siam.org/advertising.

Students (and others) in search of information about careers in the mathematical sciences 
can click on “Careers and Jobs” at the SIAM website (www.siam.org) or proceed directly 

to www.siam.org/careers.

Professional Opportunities 
and Announcements

Academia and Industry Meet at Emory 
University’s SIAM Student Meeting
A   major goal of SIAM student chap-

ters is to motivate interest in applied 
mathematics and computational science. 
Chapters offer students opportunities to 
share ideas with peers and faculty members 
across a broad range of disciplines, and 
explore career opportunities in both indus-
trial and academic environments.

With this in mind, the Emory University 
Chapter of SIAM (Atlanta, GA) hosted 
“Math & Industry: Happily Ever After” 
this past March with the dual aim of 
highlighting similarities and differences 
between industrial and academic environ-
ments and emphasizing the value of math-
ematics as a versatile and powerful tool for 
real-life applications.

Invited speaker Lior Horesh shared his 
experience and expertise as both a math-
ematician in industry and a researcher 
in academia. As a research scientist in 
the Mathematical Sciences and Analytics 
Department at the IBM T.J. Watson 
Research Center and an adjunct associate 
professor in the Department of Computer 
Science at Columbia University, Horesh 
straddles both worlds. As undergraduate 
attendee Claire Lin put it, “Dr. Horesh spoke 
from his own experiences in collaborative 
research settings, and addressed the essen-
tial concerns and challenges of working in 
interdisciplinary fields. For applied math-
ematicians nowadays, interactions between 
academia and industry are inevitable.”

Horesh began by focusing on the chang-
ing nature of modern research, namely that a 
single researcher can no longer tackle many 
of today’s challenges. In the past, examin-
ing the individual strength of a research 
group’s members quantified its effective-
ness. However, as the breadth of projects 
extends beyond the capabilities of any sin-
gle individual, the mentality for assessing 
capabilities is shifting towards collective 
intelligence: the shared intelligence result-
ing from the joint efforts, cooperation, 
and rivalries of numerous individuals. This 
mindset is exemplified, for instance, by the 
success of Wikipedia, Linux, CAPTCHA, 
and other open innovation policies that har-

ness collective knowledge to great effect. 
With the recent advancements and growing 
interest in the field of artificial intelligence 
(AI), the collaborative scope can be even 
further extended, as stated by the MIT 
Sloan Center for Collective Intelligence, to 
investigate “how people and computers can 
be connected so that—collectively—they 
act more intelligently than any person, 
group, or computer has ever done before.”1 

Horesh then gave examples of how both 
academia and industry approach this chal-
lenge. Industries like IBM provide a collab-
orative research environment that joins pro-
fessionals from a broad range of scientific 
and technical fields. In such a context, the 
diversity of skills fosters interactions across 
disciplines that lead to innovative ideas. 
The broad scope of problems research-
ers face at industrial research institutions 
not only encourages continuous learning 
and professional evolution but also cre-
ates more robust, scalable research output, 
capable of surpassing the proof stage and 
delivering effective solutions. Thus, indus-
trial research institutions offer a stimulating 
environment that increases the productivity 
of each individual and the quality of the 
group’s collective work.

However, diverse and high-impact 
research cannot abstain from academ-
ic influences and external collaboration. 
Horesh detailed academic interactions in 
industrial environments that exist in the 

form of teaching/mentoring and research 
guidance. Collaboration with academic 
peers is encouraged and often leads to 
joint publications, conference co-chairing, 
joint patents, and internship programs. For 
those from academia, interacting with the 
industrial realm is an opportunity to explore 
and draw useful insights and perspectives 
on current work. Indeed, these interactions 
allow both sides to critically reconsider 
conventions, practices, and prejudices, and 
also introduce new, interesting problems 
and challenges to solve.  

“I particularly liked the insight Lior gave 
about research (and its motivations) done in 

1  http://cci.mit.edu/

industry versus academia,” said Samy Wu, a 
graduate student in the applied mathematics 
program at Emory. “The talk was informal 
enough to engage a large audience and tech-
nical enough to convey important details.”

Horesh concluded by describing the ideal 
symbiosis of industrial and academic envi-
ronments. The two sides share the universal-
ity of mathematical models, which encom-
pass a large variety of real-world problems, 
and the promise of fruitful collaborations 
should persuade the mathematics and sci-
ence communities to persevere through the 
challenges posed by linking industry and 
academia. Although physicists, computer 
scientists, business leaders, and mathemati-
cians all speak fundamentally different lan-
guages as a byproduct of the environments 
in which they learn their craft, creating 
effective means of communication between 
these disparate worlds is paramount for both 
understanding complex problems outside 

the domain of expertise and attaining solu-
tions to pressing real-world problems.  

“Dr. Horesh gave compelling arguments 
for the benefit of embracing work with 
individuals of diverse backgrounds, be it 
fields of study or industrial and academic 
affiliations,” said Clarissa Garvey, a gradu-
ate student in Emory’s computer science 
program. “I thoroughly enjoyed the pre-
sentation and ensuing discussion.” 

Horesh encouraged the students to 
value and learn from the differences while 
embracing the difficulties of cross-disci-
plinary research. And above all, to dare, 
explore, and try, even if we stand chances 
to fail. As Einstein said, “If we knew what 
it was we were doing, it would not be 
called research, would it?” 

— Sofia Guzzetti, for Emory University 
SIAM Student Chapter

Lior Horesh speaks to attendees of Emory University’s SIAM student chapter event, “Math & 
Industry: Happily Ever After.” Photo credit: Alessandro Barone.

Emory University’s SIAM student chapter event, “Math & Industry: Happily Ever After.” Image 
credit: Lior Horesh.

Krein-Moser
Continued from page 8

staying on the unit circle, and thus not 
causing an instability. But the colliding 
eigenvalues of opposite sign “bump” each 
other off of the unit circle, as in Figure 3 
(on page 8). We can interpret this collision 
as a same-frequency resonance between 
two oscillators, one of them involving a 
negative mass. And the Krein-Moser sign 
of an eigenvalue can be interpreted as the 
sign of an imagined mass.

All figures in the article are provided by 
the author.
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Applied Algebra and Geometry: A SIAGA of Seven Pictures
By Anna Seigal

S IAM’s brand-new journal, the SIAM 
Journal on Applied Algebra and 

Geometry, will feature exceptional research 
on the development of algebraic, geomet-
ric, and topological methods with strong 
connections to applications. The cover of 
the new journal shows seven pictures. By 
describing these pictures and discussing the 
topics they represent, we hope to give read-
ers a glimpse into the world of algebraic, 
geometric, and topological problems of 
interest to applied mathematicians. 

This article is the final installment of a 
three-part series.

5. Geometric Modeling
The Context

Geometric modeling is an area of 
applied mathematics that uses piecewise 
polynomial functions to build computer 
models that describe shapes in space.

One tool that is used for such model-
ing is a parametric curve called a Bézier 
curve, named after the French engineer 
Pierre Bézier who worked in the automo-
tive industry.

A Bézier curve models smooth motion 
through time or space. Each curve is 
defined by a number of control points, 
which specify its shape and location. These 
points simplify manipulation of the curve 
on a computer interface; changing the loca-
tion of the control points causes a reliable 
change in the curve.

A collection of d +1  control points 
P Pd0 , ,…  defines a Bézier curve of degree  
d. The simplest example is when the degree 
is 1, with two control points P0 and P1.  In 
this case, the Bézier curve is the line that 
connects the two points 

          B t t P tP( ) ( )= − +1 0 1

for t between 0 and 1. A degree 2 example 
is given by
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A Bézier curve has a ‘control polygon’ 
associated with its control points, which is 
found by taking the line segments connect-
ing adjacent control points. The convex hull 
of the control polygon contains the curve, 
and the control polygon has other interest-
ing properties as well. For instance, it can be 
used in approximation of the original curve.

The Figure
Figure 1 shows a generalization of Bézier 

curves to a two-dimensional Bézier surface. 
It is from [4].

Bézier surfaces provide convenient ways 
to make smooth two-dimensional surfaces, 
such as for the design of car parts. A Bézier 
surface is defined in terms of a collection 
of control points in three-dimensional space

              
{ , , },, ,P Pd d0 0 1 2

…

which now is indexed by two indices rather 
than one. It is described parametrically by
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A list of ( )( )d d1 21 1+ +  control points gives 
a surface of degree d d1 2  via this process.

The control points are shown in blue, and 
the Bézier surface is shown below them 
in green. We now have a two-dimensional 
analogue of the control polygon. The surface 
sits below the convex hull of the control 
points, which is identified by red lines con-
necting the blue points. This polyhedral 
structure connects geometric modeling to 
polyhedral geom-
etry, described in last 
month’s installment.1 

Applications often 
demand the inves-
tigation of further 
properties of Bézier 
curves and surfaces, 
such as how they 
intersect with one 
another. One step 
in the process is 
obtaining an implicit 
formula from a sur-
face’s parametric 
description. That is, 
finding the relations 
amongst the coordi-
nates that are satis-
fied for all points on 
the surface. Here, 
computational alge-
braic geometry tools 
are very useful.

6. Tensors 
The Context

Tensors are the higher-dimensional ana-
logues of matrices. They are like matrices, 
but with three or more dimensions, and are 
represented by an array of size n nd1 × × ,  
where nk  is the number of ‘rows’ in the kth 

direction of the array. 
The entries of the 
tensor A are denoted 
by Ai id1…

, where 
i nk k∈ …{ , , }1  iden-
tifies which row in the 
kth direction you are 
viewing. Just as for 
a matrix, the entries 
of a tensor are ele-
ments in some field, 
for example real or 
complex numbers.

Tensors occur natu-
rally when it makes 
sense to organize data 
by more than two 
indices. For instance, 
if we have a function 
that depends on three 

or more discretized inputs f x y z( , , )  where 
x x xn∈ …{ , , },1 1

 y y yn∈ …{ , , },1 2
 and 

z z zn∈ …{ , , },1 3
 then we can organize the 

values of A f x y zijk i j k= ( , , )  into a tensor 
of size n n n1 2 3× × .  Tensors are increasing-
ly widely-used in many applications. This is 
especially true of signal processing, where 
the uniqueness of a tensor’s decomposition 
allows us to find the different signals com-
prising a mixture. They have also been used 
in machine learning, genomics, geometric 
complexity theory, and statistics.

1 https://sinews.siam.org/DetailsPage/
tabid/607/ArticleID/798/Applied-Algebra-
and-Geometry-A-SIAGA-of-Seven-Pictures.
aspx 

Data analysis techniques 
are currently limited to a 
matrix-centric perspective. 
Tremendous effort to extend 
the well-understood proper-
ties of matrices to the higher-
dimensional world of tensors 
is attempting to overcome this 
limitation. A greater under-
standing of tensors paves the 
way for exciting new devel-
opments that can cater to the 
natural structure of tensor-
based data, for example, in 
experimental design or con-
founding factor analysis. Such 
understanding and analysis 
uses interesting and compli-
cated geometry.

One requirement for com-
putability of a tensor is a 
good low-rank approxima-
tion. Tensors of size n nd1 × ×  have 

n nd1 …  entries, and 
this quickly becomes 
unreasonably large 
for applications. 
Matrices can be ana-
lyzed via their sin-
gular value decompo-
sition, and the best 
low-rank approxi-
mation is obtain-
able directly from 
this decomposition 
by truncating at the 
rth largest singular 
value. For tensors we 
can also define useful 
related notions such 
as eigenvectors, sin-
gular vectors, and the 
higher order singular 
value decomposition.

The Figure
In addition to 

depicting the well-known Rubik’s Cube, 
Figure 2 is a cartoon of a tensor of size 
3 3 3× × .  Such a tensor consists of 27 values.

To understand the structure contained in a 
tensor, we use its natural symmetry group to 
find a presentation that is simple and struc-
turally transparent. This motivation also 
underlies the Rubik’s puzzle, although the 
symmetries can be quite different: a change 
of basis transformation for the tensor and a 
permutation of pieces for the puzzle.

Despite being small, a 3 3 3× ×  tensor 
has interesting geometry. A generic tensor 
of size 3 3 3× ×  has seven eigenvectors in 
2.  We show in [1] that any configuration 
of seven eigenvectors can arise, provided no 
six of the seven points lie on a conic.

7. Visualization of Algebraic 
Varieties
The Context

There is a vast mathematical toolbox of 
techniques that enable understanding of alge-
braic varieties. It’s great when we can actu-
ally draw the algebraic variety 
in question using visualization 
software. When possible, this 
allows us to make the most 
direct observations.

Although it poses an obvi-
ous restriction on the number 
of dimensions in which we can 
work, even visualizing particu-
lar slices through our variety of 
interest is structurally reveal-
ing. Large polynomials with 
many terms can be hard to 
grasp. Modern-day computer 
tools convert these equations 
into helpful pictures, aiding 
comprehension.

The Figure
Figure 3 shows a Kummer 

surface. It was made by Oliver 
Labs using the visualization 

software ‘Surfex.’ Many beautiful pictures 
have been created in this way: for more, see 
the picture galleries from the ‘Imaginary: 
Open Mathematics’ website.2

This figure is an example of an irreduc-
ible surface in three-dimensional space 
of degree four. In general, these surfaces 
have at most 16 singular points. Kummer 
surfaces are those that attain this upper 
bound. The 16 singular points represent 
the 2-torsion points on the Jacobian of the 
underlying genus 2 curve.

Figure 3 also represents the problem-solv-
ing areas of coding theory and cryptography, 
which contain a broad range of applied alge-
bra and geometry. The group law on an ellip-
tic curve is fundamental for cryptography. 
Similarly, the group law on the Jacobian of 
hyperelliptic curves has been used for cryp-
tographic purposes (see [2, 3]). The latter is 
by Kristin Lauter from Microsoft Research, 
who is president of the Association for 
Women in Mathematics (AWM).
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Figure 1. A generalization of a Bézier curve to a two-dimensional 
Bézier surface. Figure courtesty of [4].

Figure 2. The Rubik’s Cube is also a cartoon of a tensor 
of size 3x3x3. Rubik’s Cube® used by permission, Rubik’s 
Brand Ltd. www.rubiks.com.

Figure 3. A Kummer surface has applications in coding 
theory and cryptography. Image credit: Oliver Labs.


