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Abstract

We construct new representations of hypergeometric integrals in terms of Kampé de Fériet
functions. Our method is based on recently developed integral formulas that allow to express
certain integrals through Wronskians.
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1 Introduction

One of the standing issues in calculus and its applications is the closed-form resolution of inte-
grals. While numerical methods allow to determine any definite integral to arbitrary precision,
these methods are essentially restricted to integrals that do not involve unknown parameters.
Furthermore, in many applications it is useful to have a closed-form expression of the integral
that can be processed further before evaluating at particular numerical limits. Since only few
integrals admit their resolution in closed-form, it is desirable to have resources at hand for
finding them. Known integrals are tabulated in books, such as [1] [9] [15], and they can also
be found using online databases [16]. A particularly important integrals class are integrals of
special functions [5] [11]. Such functions arise as solutions of linear differential equations that
govern systems in applied mathematics, physics, economics, engineering, and many other fields.
Special functions cannot be represented through a composition of elmentary functions (such as
exponentials and powers), but are typically defined by means of integrals or power series. Due
to this property it is very difficult to resolve integrals of special functions in closed form, such
that very few of them are known and tabulated in the aforementioned resources. It is there-
fore desirable to develop methods that can resolve integrals of special functions. In this work
we will present such a method, together with applications that focus on a particular kind of
special functions, called hypergeometric functions [1]. These functions are especially important
in quantum physics, where they describe the behaviour of many fundamental systems, see for
example [13] and references therein. Hypergeometric functions contain many special and elemen-
tary functions as particular cases [16], such as elliptic integrals and several types of orthogonal
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polynomials. In order to construct closed-form integrals of hypergeometric functions, we use
a recently developed method [6] [12] that arises from the supersymmetry formalism in quan-
tum mechanics. This method allows to express certain single and multiple integrals of special
functions in terms of their Wronskians. In the single-variable case the domain of integration is
arbitrary, such that we essentially obtain a closed-form representation of the indefinite integral.
While multiple integration is limited to triangular domains, two of the vertices can be chosen
arbitrarily. The remainder of this work is organized as follows. In section 2 we introduce Kampé
de Fériet functions that we will use in subsequent sections. Section 3 summarizes basic facts
about two formulas for the resolution of single and double integrals that were obtained in [6] [12].
In the following sections 3 and 4 we apply our formulas to integrals of confluent hypergeometric
and hypergeomtric type, respectively.

2 Kampé de Fériet functions

One of the key concepts that we use throughout this work is the Kampé de Fériet (KdF)
function that generalizes hypergeometric functions in two variables. While a detailed discussion
of these functions and their properties can be found in [8] [14] [7], the purpose of this section is to
state their definition and present relationships with partial derivatives of certain hypergeometric
functions. In the following we introduce several sets of parameters, using the notation (αp) for
the ordered list (α1, ..., αp) of parameters and ((αp))n for the product of Pochhammer symbols
(α1)n...(αp)n, where ((α0))n = 1. A KdF function is formally defined as

p:r;u

F
q:s;v

[
(ap) : (cr) ; (fu)
(bq) : (ds) ; (gv)

∣∣∣∣∣ x, y
]

=

∞∑
m=0

∞∑
n=0

((ap))m+n ((cr))m ((fu))n
((bq))m+n ((ds))m ((gv))n

xm yn

m! n!
, (1)

where x and y are complex numbers. This double series can be interpreted as a generalization of
the two-variable hypergeometric function. Convergence criteria for the series are established in
[8] [14]. In this note we will use KdF functions to represent partial derivatives of hypergeometric
functions that are taken with respect to their parameter arguments. Since covering arbitrary-
order derivatives for general hypergeometric functions is beyond the scope of this work, we
restrict ourselves to stating the first-order partial derivatives of the confluent hypergeometric
function 1F1 and the hypergeometric function 2F1 in terms of KdF functions. For details on the
construction of the following identities, the reader may refer to [2]-[4].

∂

∂a
1F1(a, b, z) =

z

b

1:2;1

F
2:1;1

[
a+ 1 : a, 1 ; 1
b+ 1, 2 : a+ 1 ; 1

∣∣∣∣∣ z, z
]

(2)

∂

∂b
1F1(a, b, z) = −a z

b2
1:2;1

F
2:1;1

[
a+ 1 : b, 1 ; 1
b+ 1, 2 : b+ 1 ; 1

∣∣∣∣∣ z, z
]

(3)

∂

∂a
2F1(a, b, c, z) =

b z

c

2:1;2

F
2:1;1

[
a+ 1, b+ 1 : 1 ; a, 1
c+ 1, 2 : a+ 1 ; 1

∣∣∣∣∣ z, z
]

(4)

∂

∂b
2F1(a, b, c, z) = −a b z

c2
2:1;2

F
2:1;1

[
a+ 1, b+ 1 : 1 ; b, 1
c+ 1, 2 : b+ 1 ; 1

∣∣∣∣∣ z, z
]

(5)

These identities can also be used to represent derivatives of other hypergeometric functions,
such as the confluent hypergeometric function of the second kind or Tricomi function. We will
comment on this aspect in more detail below.
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3 Wronskian integral formulas

We will now introduce the main tool that is used throughout this work, a particular kind of
integral formula that resolves certain integrals in terms of Wronskians. For real numbers a, b, α, β
that satisfy the constraints a < b and α < β, we define the set D ⊂ R2 as the rectangular region
D = (a, b) × (α, β). Furthermore, we assume that the functions u and v are smooth, linearly
independent solutions of the differential equation

∂2

∂x2
y(x, λ) + [λ− V (x)] y(x, λ) = 0, (x, λ) ∈ D, (6)

where V is continuous on (a, b). Under these assumptions, certain integrals of the solutions
admit a representation in terms of Wronskians [6] [12]. As a consequence, this representation
allows for integration through mere differentiation. Starting out with single-variable integration,
for x0, x ∈ (a, b) and (x, λ) ∈ D we have the identity [6]

x∫
x0

u(t, λ)2 dt = Wu, ∂u
∂λ
(t, λ)

∣∣∣x0

x
= Wu, ∂u

∂λ
(x0, λ)−Wu, ∂u

∂λ
(x, λ), (7)

provided the integral on the left side exists. Note that the symbol W stands for the Wronskian
of the functions in its index. Its should be clarified here that the variable of differentiation in
the Wronskian is x. More precisely, we have

Wu, ∂u
∂λ
(x, λ) = u(x, λ)

∂u(x, λ)

∂x ∂λ
− ∂u(x, λ)

∂λ

∂u(x, λ)

∂x
.

The counterpart of formula (7) for double integration reads

x∫
x0

x1∫
x0

[
u(x2, λ)

u(x1, λ)

]2
dx2 dx1 =

=
1

u(x0, λ)

∂

∂λ
u(x0, λ)−

1

u(x, λ)

∂

∂λ
u(x, λ) +Wu, ∂u

∂λ
(x0, λ)

x∫
x0

1

u(t, λ)2
dt. (8)

We observe that the domain of integration is a right triangular region in the x1-x2-plane. The
result (8) that was obtained in [12], can be slightly improved for our purposes. In particular,
we want to remove the single-variable integral from the right side of (8) in order to have an
integral-free representation. To this end, we recall that the solutions u and v of (6) are linked
through the reduction-of-order formula. Taking into account our integration limits and the fact
that the Wronskian of u and v is not necessarily equal to one, this formula can be written as

1

Wu,v(λ)

[
v(x, λ)

u(x, λ)
− v(x0, λ)

u(x0, λ)

]
=

x∫
x0

1

u(t, λ)2
dt. (9)

Note that the Wronskian Wu,v(λ) does not depend on x or x0 [10]. Now, upon substitution of
(9) into the identity (8), we obtain the final result

x∫
x0

x1∫
x0

[
u(x2, λ)

u(x1, λ)

]2
dx2 dx1 =

=
1

u(x0, λ)

∂

∂λ
u(x0, λ)−

1

u(x, λ)

∂

∂λ
u(x, λ) +

Wu, ∂u
∂λ
(x0, λ)

Wu,v(λ)

[
v(x, λ)

u(x, λ)
− v(x0, λ)

u(x0, λ)

]
. (10)
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We observe that the right side of this relation does not contain any integral anymore, such that
the double integral on its left side is expressed entirely through partial derivatives. We further
remark that the identities (7) and (10) can be generalized to multiple integration of arbitrary
even order [12], which is beyond the scope of this work.

4 Confluent hypergeometric integrals

We will now demonstrate how specific integral formulas for confluent hypergeometric functions
can be constructed from (7) and (10). To this end, we need to find functions u and v that
are of confluent hypergeometric type and satisfy a differential equation of the form (6). A
straightforward approach to finding such functions is to transform the confluent hypergeometric
equation into the shape (6). Depending on the choice of transformation we obtain an infinite
class of functions that solve an equation of the latter type. Hence, let us start out by considering
the confluent hypergeometric equation [1]

z ψ′′(z) + (b− z) ψ′(z)− a ψ(z) = 0, (11)

where a, b are real-valued constants. The general solution of (11) can be written in the form [1]

ψ(z) = c1 1F1(a, b, z) + c2 U(a, b, z), (12)

provided b is not a nonpositive integer. Here, 1F1 and U denote confluent hypergeometric
functions of the first and second kind, respectively. Furthermore, c1 and c2 stand for arbitrary
constants. In order to apply our integral formulas (7) and (10), we must bring equation (11) to
the form (6). To this end, let us introduce

y(x) =

√
1

z′(x)
z(x)

b
2 exp

[
−z(x)

2

]
ψ[z(x)], (13)

where the coordinate change z is a smooth function and we assume that ψ solves (11). The
function (13) is a solution of the equation

y′′(x) +W (x) y(x) = 0, (14)

where W is given by the expression

W (x) =
z′(x)2

z(x)

[
−a+ b

2
− b2

4 z(x)
+

b

2 z(x)
− z(x)

4

]
− 3 z′′(x)2

4 z′(x)2
+

z′′′(x)

2 z′(x)
. (15)

The transformation (13) renders our general solution (12) in the form

y(x) =

√
1

z′(x)
z(x)

b
2 exp

[
−z(x)

2

]{
c1 1F1

[
a, b, z(x)

]
+ c2 U

[
a, b, z(x)

]}
. (16)

It is important to observe that (14) does not match (6) yet because the parameter λ has not
been defined. In order to do so, we must choose the coordinate change z in such a way that
a constant additive term is generated in (15). More precisely, inspection of (6) shows that the
required form is W = λ−V for a constant λ and a function V . This form is only attained if the
coordinate change z is chosen suitably. Since there are infinitely many ways of obtaining this
form, we restrict ourselves to some examples.
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4.1 Single integration

Let us first present an example for our integral formula (7) by choosing the particular coordinate
change

z(x) = −x
2

4
. (17)

Upon substitution into (15) we must obtain an expression that contains an additive constant.
After performing the substitution and renaming a = λ, the function W takes the form

W (x) = λ− b

2
− x2

16
− 3

4 x2
+

2 b− b2

x2
,

As desired, the right side contains a constant term. We can therefore match the latter expression
with the general form W = λ− V from (6), if we choose

V (x) =
b

2
+
x2

16
+

3

4 x2
− 2 b− b2

x2
. (18)

Consequently, our identity (7) is applicable to the present example. It remains to determine the
function u in the latter identity. This function is simply the solution of (6) associated with (18),
that we can obtain by plugging (17) into (16). We get

y(x) = exp

(
x2

8

)
xb−

1
2

[
c1 1F1

(
λ, b,−1

4
x2

)
+ c2 U

(
λ, b,−x

2

4

)]
. (19)

Before we continue, let us briefly make a statement about the monomial term on the right side
of (19). Taking into account the setting (17), the latter monomial term is obtained as follows√

1

z′(x)
z(x)

b
2 = (−1)

1
2 4−

b
2 xb−

1
2 .

Since we are merely interested in solutions of equation (16), irrelevant constant factors can be
discarded. This is why in (19) we only retain the monomial term without the constants. For the
sake of simplicity let us now incorporate the additional settings c1 = 1, c2 = 0. After renaming
y(x) = u(x, λ), we obtain from (19)

u(x, λ) = exp

(
x2

8

)
xb−

1
2 1F1

(
λ, b,−x

2

4

)
. (20)

We are now ready to apply our identity (7) to this function. In order to do so, we will evaluate
the right side of the latter identity. Evaluation of the Wronskian gives the following result

Wu, ∂u
∂λ
(x, λ) =

x2b

2 b
exp

(
x2

4

){
λ 1F1

(
λ+ 1, b+ 1,−x

2

4

)
∂

∂λ
1F1

(
λ, b,−x

2

4

)

− λ 1F1

(
λ, b,−x

2

4

)
∂

∂λ
1F1

(
λ+ 1, b+ 1,−x

2

4

)}
.

We observe that this expression contains two partial derivatives with respect to the first argument
of the confluent hypergeometric function. These derivatives can now be replaced by means of
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the identity (2). We obtain the result

Wu, ∂u
∂λ
(x, λ) = −x

2b

2 b
exp

(
1

4
x2

){
1F1

(
λ, b,−x

2

4

)
1F1

(
λ+ 1, b+ 1,−x

2

4

)

− λ 1F1

(
λ+ 1, b+ 1,−x

2

4

)[
− x2

4 b

]
1:2;1

F
2:1;1

[
λ+ 1 : λ, 1 ; 1
b+ 1, 2 : λ+ 1 ; 1

∣∣∣∣∣− x2

4
,−x

2

4

]

+ λ 1F1

(
λ, b,−x

2

4

)[
− x2

4 b

]
1:2;1

F
2:1;1

[
λ+ 2 : λ+ 1, 1 ; 1
b+ 2, 2 : λ+ 2 ; 1

∣∣∣∣∣− x2

4
,−x

2

4

]}
. (21)

Upon plugging the function (20) and the Wronskian (21) into the integral formula (7), we obtain
the overall result

x∫
x0

exp

(
t2

4

)
t2b−1

1F1

(
λ, b,− t

2

4

)2

dt = (22)

=
t2b

2 b
exp

(
t2

4

){
1F1

(
λ, b,− t

2

4

)
1F1

(
λ+ 1, b+ 1,− t

2

4

)

− λ 1F1

(
λ+ 1, b+ 1,− t

2

4

)[
− t2

4 b

]
1:2;1

F
2:1;1

[
λ+ 1 : λ, 1 ; 1
b+ 1, 2 : λ+ 1 ; 1

∣∣∣∣∣− t2

4
,− t

2

4

]

+ λ 1F1

(
λ, b,− t

2

4

)[
− t2

4 b

]
1:2;1

F
2:1;1

[
λ+ 2 : λ+ 1, 1 ; 1
b+ 2, 2 : λ+ 2 ; 1

∣∣∣∣∣− t2

4
,− t

2

4

]}∣∣∣∣∣
x

x0

, (23)

This identity provides a closed-form evaluation of the confluent hypergemetric integral on its
left side in terms of Kampé de Fériet functions. To the best of our knowledge, this result has
not been stated before in the literature. Now, observe that we picked a particularly simple u
from (19) by setting c2 = 0, which removes the confluent hypergeometric function of the second
kind. This is no restriction to our formula (7), as we will see now. Suppose that in (19) we
employ the opposite setting c1 = 0, replacing 1F1 by U on the left side of (23). Using the known
link between the confluent hypergeometric functions [1], we get

x∫
x0

exp

(
t2

4

)
t2b−1 U

(
λ, b,− t

2

4

)2

dt =

=

x∫
x0

exp

(
t2

4

)
t2b−1

[
Γ(b− 1)

Γ(λ)

(
− t

2

4

)1−b

1F1

(
λ− b+ 1, 2− b,− t

2

4

)

+
Γ(1− b)

Γ(λ− b+ 1)
1F1

(
λ, b,− t

2

4

)]2

dt.

After multiplying out the brackets we can split the integral into three parts, each of which allows
for the application of (7) and subsequent replacement of the derivative through KdF functions.
Since the calculation and the resulting expressions will be very long, we omit to show them here.
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Example: elementary case. Although the purpose of (23) is the construction of integrals
that contain confluent hypergeometric functions, there are many special cases of parameters
settings that render the integral in (23) elementary. Let us employ the choice λ = −1, b =
1/4, x0 = 0 and x = 1. We get

1∫
0

(t2 + 1)2√
t

exp

(
t2

4

)
dt = 4 exp

(
1

4

)
− 2 exp

(
1

4

)
1:2;1

F
2:1;1

[
0 : −1, 1 ; 1

5
4 , 2 : 0 ; 1

∣∣∣∣∣ − 1

4
,−1

4

]

+
4

5
exp

(
1

4

)
1:2;1

F
2:1;1

[
1 : 0, 1 ; 1

9
4 , 2 : 1 ; 1

∣∣∣∣∣ − 1

4
,−1

4

]

= −4 exp

(
−1

4

)
+ (8− 8 i) Γ

(
5

4

)
− 2 E 3

4

(
−1

4

)
,

where E stands for the exponential integral. This result can be verified by direct evaluation of
integral in (23).

Example. In this example we present another particular case of the integral on the left side
of (23). Our goal is to derive an alternative representation of the following identity that can be
found in [9]. For any real λ we have

∞∫
0

exp (−s u) ub−1
1F1 (λ, b, u)

2 du =
Γ(b) s2λ−b

(s− 1)2λ
2F1

(
λ, λ, b,

1

(s− 1)2

)
,

provided Re(b) > 0 and Re(s) > 2. (24)

Before we continue, let us focus on the particular case of this identity that arises if λ is a negative
integer or zero. In this situation (24) holds for all values of s that satisfy Re(s) > 0. This is so
because the confluent hypergeometric function in the integral of (24) degenerates to a Laguerre
polynomial of degree λ. We observe that in the special case s = 1 the right side of (24) becomes
undefined. While it is possible to retain its form by interpreting it in the sense of a limit s→ 1,
we will now use our previous result (23) to find an alternative form of (24) for the case s = 1.
Recall that during the subsequent calculations in this paragraph we need to make the standing
assumption that λ is a nonpositive integer. We start out by substituting u = −t2/4 in the latter
integral, which gives

x∫
x0

exp (−u) ub−1
1F1 (λ, b, u)

2 du = −1

2

(
−1

4

)b−1
2i
√
x∫

2i
√
x0

exp

(
t2

4

)
t2b−2

1F1

(
λ, b,− t

2

4

)2

dt. (25)

We note that the integral on the left side is real-valued. Thus, the same must be true for the
integral on the right side of (25), despite its integration interval being on the imaginary axis.
While the exponential and the hypergeometric function have real-valued arguments, we must
impose the following convention on the monomial

t2b−2 =
(
t2
)b−1

.

Thus, an imaginary value of t will result in a real-value of the monomial. Now, we observe that
up to constant factors and integration limits, the new integral (25) coincides with its counterpart
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on the left side of our formula (23). Combination of this formula and (25) gives the result

x∫
x0

exp (−u) ub−1
1F1 (λ, b, u)

2 du =

=
ub

b
exp (−u)

{
1F1 (λ, b, u) 1F1 (λ+ 1, b+ 1, u)

− λ u

b
1F1 (λ+ 1, b+ 1, u)

1:2;1

F
2:1;1

[
λ+ 1 : λ, 1 ; 1
b+ 1, 2 : λ+ 1 ; 1

∣∣∣∣∣u, u
]

+
λ u

b
1F1 (λ, b, u)

1:2;1

F
2:1;1

[
λ+ 2 : λ+ 1, 1 ; 1
b+ 2, 2 : λ+ 2 ; 1

∣∣∣∣∣u, u
]}∣∣∣∣∣

2i
√
x

2i
√
x0

(26)

This is a closed-form representation of the integral in (24) for s = 1 and arbitrary integration
limits. Before we state our result, let us note that the right side of (26) vanishes for u = 0, while
its first term becomes zero as u goes to infinity. Taking into account these simplifications, we
obtain the limit representation

∞∫
0

exp (−u) ub−1
1F1 (λ, b, u)

2 du =

= lim
x→∞

λ (−4 x)
b
2
+1

b2
exp

(
−2i

√
x
)

×

{
1F1

(
λ+ 1, b+ 1, 2i

√
x
) 1:2;1

F
2:1;1

[
λ+ 1 : λ, 1 ; 1
b+ 1, 2 : λ+ 1 ; 1

∣∣∣∣∣2i√x, 2i√x
]

+ 1F1

(
λ, b, 2i

√
x
) 1:2;1

F
2:1;1

[
λ+ 2 : λ+ 1, 1 ; 1
b+ 2, 2 : λ+ 2 ; 1

∣∣∣∣∣2i√x, 2i√x
]}

. (27)

This representation complements identity (24) for s = 1, assuming that λ is a nonpositive
integer. As a final remark let us mention that in the latter case we can rewrite identity (24) by
expressing the confluent hypergeometric and the hypergeometric functions on the left and the
right side by Laguerre and Jacobi polynomials, respectively.

4.2 Double integration

Let us now construct a formula involving double integration of confluent hypergeometric func-
tions by means of our identity (10). For the sake of simplicity, we will again make use of the
function (20). We will obtain a closed-form expression for the double integral in (10) by evalu-
ating its right side. To this end, we need to provide a function v that solves equation (14), such
that (20) and v are linearly independent. We can obtain such a function from (16) by setting
c1 = 0 and c2 = 1. This gives

v(x, λ) = exp

(
x2

8

)
xb−

1
2 U

(
λ, b,−x

2

4

)
. (28)
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Upon substitution of (20) and (27) into the right side of (10), we get the following result

1

u(x0, λ)

∂

∂λ
u(x0, λ)−

1

u(x, λ)

∂

∂λ
u(x, λ) +

Wu, ∂u
∂λ
(x0, λ)

Wu,v(λ)

[
v(x, λ)

u(x, λ)
− v(x0, λ)

u(x0, λ)

]

=

∂
∂λ 1F1

(
λ, b,−x2

0
4

)
1F1

(
λ, b,−x2

0
4

) −
∂
∂λ 1F1

(
λ, b,−x2

4

)
1F1

(
λ, b,−x2

4

)

+
x2b0 Γ(λ+ 1) exp

(
x2
0
4

)
2 b (−1)b 22b−1 λ Γ(b) 1F1

(
λ, b,−x2

4

)
1F1

(
λ, b,−x2

0
4

)
×

[
1F1

(
λ, b,−x

2

4

)
U

(
λ, b,−x

2
0

4

)
− 1F1

(
λ, b,−x

2
0

4

)
U

(
λ, b,−x

2

4

)]

×

[
1F1

(
λ, b,−x

2
0

4

)
1F1

(
λ+ 1, b+ 1,−x

2
0

4

)
− λ 1F1

(
λ+ 1, b+ 1,−x

2
0

4

)

× ∂

∂λ
1F1

(
λ, b,−x

2
0

4

)
+ λ 1F1

(
λ, b,−x

2
0

4

)
∂

∂λ
1F1

(
λ+ 1, b+ 1,−x

2
0

4

)]
.

This expression contains derivatives of the function 1F1 that we can replace using the rules (2)
and (3). After making the replacements and plugging (20) into the left side of (10), the latter
identity takes its final form

x∫
x0

x1∫
x0

exp

(
x22
4

− x21
4

)
x1−2b
1 x2b−1

2

1F1

(
λ, b,−x2

2
4

)
1F1

(
λ, b,−x1

1
4

)
2

dx2 dx1

=
1

1F1

(
λ, b,−x2

0
4

) [
− x20
4 b

]
1:2;1

F
2:1;1

[
λ+ 1 : λ, 1 ; 1
b+ 1, 2 : λ+ 1 ; 1

∣∣∣∣∣ − x20
4
,−x

2
0

4

]

− 1

1F1

(
λ, b,−x2

4

) [
− x20
4 b

]
1:2;1

F
2:1;1

[
λ+ 1 : λ, 1 ; 1
b+ 1, 2 : λ+ 1 ; 1

∣∣∣∣∣ − x2

4
,−x

2

4

]

+
x2b0 Γ(λ+ 1) exp

(
x2
0
4

)
2 b (−1)b 22b−1 λ Γ(b) 1F1

(
λ, b,−x2

4

)
1F1

(
λ, b,−x2

0
4

)
×

[
1F1

(
λ, b,−x

2

4

)
U

(
λ, b,−x

2
0

4

)
− 1F1

(
λ, b,−x

2
0

4

)
U

(
λ, b,−x

2

4

)]

×

{
1F1

(
λ, b,−x

2
0

4

)
1F1

(
λ+ 1, b+ 1,−x

2
0

4

)
− λ 1F1

(
λ+ 1, b+ 1,−x

2
0

4

)

×
[
− x20
4 b

]
1:2;1

F
2:1;1

[
λ+ 1 : λ, 1 ; 1
b+ 1, 2 : λ+ 1 ; 1

∣∣∣∣∣ − x20
4
,−x

2
0

4

]
+ λ 1F1

(
λ, b,−x

2
0

4

)

×
[
− x20
4 b

]
1:2;1

F
2:1;1

[
λ+ 2 : λ+ 1, 1 ; 1
b+ 2, 2 : λ+ 2 ; 1

∣∣∣∣∣ − x20
4
,−x

2
0

4

]}
. (29)
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To the best of our knowledge the integral formula (28) has not been stated yet in the literature.
We omit to show further examples that involve more general forms of the integrand because
evaluation of (10) would result in very long expressions.

Example: Bessel functions. Let us choose λ = 1/2, b = 1 and x0 = 0. Upon substituting
these values in our formula (28), we obtain the integral formula

x∫
0

x1∫
0

x2 I0

(
x2
2
8

)2

x1 I0

(
x2
1
8

)2 dx2 dx1 =
x2 exp

(
x2

8

)
4 I0

(
x2

8

) 1:2;1

F
2:1;1

[
3
2 : 1

2 , 1 ; 1
2, 2 : 3

2 ; 1

∣∣∣∣∣ − x2

4
,−x

2

4

]
, (30)

where I0 stands for the modified Bessel function of the first kind. As in the case of the general
result (28), we were unable to find identity (29) in integral tables. Now, in order to verify
correctness of this result through numerical integration, let us now evaluate (29) for the specific
value x = 1. Upon substitution into the right side of (29) we get

exp
(
1
8

)
4 I0

(
1
8

) 1:2;1

F
2:1;1

[
3
2 : 1

2 , 1 ; 1
2, 2 : 3

2 ; 1

∣∣∣∣∣ − 1

4
,−1

4

]
= 0.249567.

This coincides with the value that we obtain if we integrate the left side of (29) numerically.

Example: error function. We apply the parameter setting λ = 1/2, b = 3/2 and x0 = 0 in
our formula (28). After simplifying we obtain the integral identity

x∫
0

x1∫
0

exp

(
−x

2
1

4
+
x22
4

)
erf

(
x2
2

)2
erf

(
x1
2

)2 dx2 dx1 = x3

6
√
π erf

(
x
2

) 1:2;1

F
2:1;1

[
3
2 : 1

2 , 1 ; 1
5
2 , 2 : 3

2 ; 1

∣∣∣∣∣ − x2

4
,−x

2

4

]
.

Evaluation of this expression for x = 1 gives

1

6
√
π erf

(
1
2

) 1:2;1

F
2:1;1

[
3
2 : 1

2 , 1 ; 1
5
2 , 2 : 3

2 ; 1

∣∣∣∣∣ − 1

4
,−1

4

]
= 0.163764.

A direct numerical integration confirms this result.

5 Hypergeometric integrals

The purpose of this section is the construction of integrals that involve hypergeometric functions.
Therefore, our starting point is the hypergeometric equation [1]

z (1− z) ψ′′(z) + [c− (a+ b+ 1) z] ψ′(z)− a b ψ(z) = 0, (31)

where the constants a, b and c are real-valued. Equation (30) has the following general solution

ψ(z) = c1 2F1(a, b, c, z) + c2 z
1−c

2F1(a− c+ 1, b− c+ 1, 2− c, z). (32)

Here, 2F1 denotes the hypergeometric function [1], imposing the restriction that c is not a
nonpositive integer. Furthermore, the constants c1 and c2 are arbitrary. Our integral formulas
(7) and (10) become applicable once equation (30) is brought to the form (6). This can be
achieved by means of the function

y(x) =

√
1

z′(x)
z(x)

c
2 [z(x)− 1]

1
2
(a+b−c+1) ψ[z(x)], (33)
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introducing a smooth coordinate change z and a solution ψ of the hypergeometric equation (30).
Similar to the case of (14), our function (32) is a solution to the equation

y′′(x) +W (x) y(x) = 0, (34)

where W stands for the following expression

W (x) =
z′(x)2

{
c (2− c) + z(x)

[
−4 a b+ 2 c (a+ b− 1) + z(x)− (a− b)2 z(x)

]}
4 z(x) [z(x)− 1]2

− 1

z′(x)2

[
3

4
z′′(x)2 − z′′′(x) z′(x)

2 [z(x)− 1]

]
. (35)

The general solution of the transformed equation (33) is given by (32) after substitution of (31).
We obtain the following result

y(x) =

√
1

z′(x)
z(x)

c
2 [z(x)− 1]

1
2
(a+b−c+1)

{
c1 2F1

[
a, b, c, z(x)

]

+ c2 z(x)
1−c

2F1

[
a− c+ 1, b− c+ 1, 2− c, z(x)

]}
(36)

The remaining task consists in matching the general equation (33) with the required form (14).
To this end, our function W in (34) has to be rewritten as W = λ − V for a constant λ and a
function V . The latter form of W is only attained if the coordinate change z is chosen in an
appropriate way, as the following examples show.

5.1 Single integration

In order to apply our formula (7) for single integration, we will now introduce parameter settings
that convert our equation (33) into a special case of (14). To this end, let us now implement
the following definitions.

z(x) = cosh2(x) a = −
√
−λ
2

b =

√
−λ
2

. (37)

Let us point out that λ must be negative or zero in order for a and b to attain real values, as
requested for (30). We will comment on this below when processing examples. Upon substitution
into (34), our function W reads

W (x) = λ+

(
1

4
− c2

)
1

sinh2(x)
+

[
3

4
+ c (c− 2)

]
1

cosh2(x)
.

This expression matches the form W = λ− V if the function V is chosen as

V (x) = −
(
1

4
− c2

)
1

sinh2(x)
−
[
3

4
+ c (c− 2)

]
1

cosh2(x)
.

Since we have shown that (36) renders (33) as a particular case of (14), the function (35) can
now be used in our integral formula (7). The latter function has the following explicit form

y(x) = sinh
1
2
−c(x) cosh−

1
2
+c(x)

{
c1 2F1

[
−
√
−λ
2

,

√
−λ
2

, c, cosh2(x)

]

+ c2 cosh2−2c(x) 2F1

[
−
√
−λ
2

− c+ 1,

√
−λ
2

− c+ 1, 2− c, cosh2(x)

]}
. (38)
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In order to keep subsequent calculations manageable, we introduce further settings c1 = 1, c2 =
0. After renaming y(x) = u(x, λ), we obtain from (37)

u(x, λ) = sinh
1
2
−c(x) cosh−

1
2
+c(x) 2F1

[
−
√
−λ
2

,

√
−λ
2

, c, cosh2(x)

]
. (39)

We will apply our integral formula (7) to this function. In order to obtain a closed-form repre-
sentation of the integral, we evaluate the right side of the latter formula. For the sake of brevity
we will resort to the abbreviations in (36) for the parameters a and b. We obtain the Wronskian
in the form

Wu, ∂u
∂λ
(x, λ) =

=
1

4 c
sinh2−2c(x) cosh2c(x) 2F1

[
a+ 1, b+ 1, c+ 1, cosh2(x)

]{
2 2F1

[
a, b, c, cosh2(x)

]
− 2 λ

∂

∂λ
2F1

[
a, b, c, cosh2(x)

]
+ 2 λ

2F1

[
a, b, c, cosh2(x)

]
2F1

[
a+ 1, b+ 1, c+ 1, cosh2(x)

]
× ∂

∂λ
2F1

[
a+ 1, b+ 1, c+ 1, cosh2(x)

]}
.

(40)

We observe that the expression on the right side contains partial derivatives of the hypergeo-
metric function that can be written in terms of KdF functions. To this end, we apply the chain
rule and afterwards implement identities (4) and (5). This gives

∂

∂λ
2F1

[
a, b, c, cosh2(x)

]
=

1

4
√
−λ

∂

∂a
2F1

[
a, b, c, cosh2(x)

]
− 1

4
√
−λ

∂

∂b
2F1

[
a, b, c, cosh2(x)

]
=

1

8 c
cosh2(x)

2:1;2

F
2:1;1

[
a+ 1, b+ 1 : 1 ; a, 1
c+ 1, 2 : a+ 1 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]

−
√
−λ

16 c2
cosh2(x)

2:1;2

F
2:1;1

[
a+ 1, b+ 1 : 1 ; b, 1
c+ 1, 2 : b+ 1 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]
. (41)

We observe that the two derivatives in (39) are applied to slightly different hypergeometric
functions. Since the difference between these functions lies only in shifted indices, we can adjust
expression (40) in a straightforward manner. Upon substituting the expanded derivatives into
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the Wronskian (39), we arrive at its final form

Wu, ∂u
∂λ
(x, λ)

=
1

4 c

{
sinh2−2c(x) cosh2c(x) 2F1

[
a+ 1, b+ 1, c+ 1, cosh2(x)

]
2F1

[
a, b, c, cosh2(x)

]}

+
1

4 c

{
sinh2−2c(x) cosh2c(x) 2F1

[
a+ 1, b+ 1, c+ 1, cosh2(x)

]
2F1

[
a, b, c, cosh2(x)

]}

− λ

2 c

{
sinh2−2c(x) cosh2c(x) 2F1

[
a+ 1, b+ 1, c+ 1, cosh2(x)

]
×

×

{
1

8 c
cosh2(x)

2:1;2

F
2:1;1

[
a+ 1, b+ 1 : 1 ; a, 1
c+ 1, 2 : a+ 1 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]

−
√
−λ

16 c2
cosh2(x)

2:1;2

F
2:1;1

[
a+ 1, b+ 1 : 1 ; b, 1
c+ 1, 2 : b+ 1 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]}}

+
λ

2 c

{
sinh2−2c(x) cosh2c(x) 2F1

[
a, b, c, cosh2(x)

]
×

{
1

8 c
cosh2(x)

2:1;2

F
2:1;1

[
a+ 2, b+ 2 : 1 ; a+ 1, 1
c+ 2, 2 : a+ 2 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]

−
√
−λ

16 c2
cosh2(x)

2:1;2

F
2:1;1

[
a+ 2, b+ 2 : 1 ; b+ 1, 1
c+ 2, 2 : b+ 2 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]}}
. (42)

Now that we have computed the Wronskian, we can set up our integral formula (7) for the
present case. Upon substitution of (38) into its left side, we obtain

x∫
x0

sinh1−2c(t) cosh−1+2c(t) 2F1

[
−
√
−λ
2

,

√
−λ
2

, c, cosh2(t)

]2
dt = Wu, ∂u

∂λ
(t, λ)

∣∣∣x0

x
, (43)

where the Wronskians must be replaced by the expression obtained in (41).

Example: elliptic integral. Let us now consider the parameter setting λ = −1 and c = 1.
Recall that a negative value of λ guarantees the constants a and b in (36). Substitution into the
left side of (28) gives

x∫
x0

sinh−1(t) cosh(t) 2F1

[
−
√
−1

2
,

√
−1

2
, 1, cosh2(t)

]2
dt =

x∫
x0

4 cosh(t)

π2 sinh(t)
E
[
cosh2(t)

]2
dt.

We see that the hypergeometric function degenerates to a complete elliptic integral [1], denoted
by E. Upon evaluation of our formula (42) for the integration limits x0 = 1, x = 2 we obtain
by substitution into (41)

2∫
1

4 cosh(t)

π2 sinh(t)
E
[
cosh2(t)

]2
dt = Wu, ∂u

∂λ
(t,−1)

∣∣∣1
2

= − 1.68269 + 0.532137 i. (44)

It is straightforward to verify that this result can be recovered by direct numerical integration.
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Example: hyperbolic tangent. We will now see that our formula (42) can yield a repre-
sentation for an integral of elementary hyperbolic functions. To this end, let us consider the
following identity [9]

x∫
x0

tanhp(t) dt = −tanhp−1(t)

p− 1

∣∣∣∣∣
x

x0

+

x∫
x0

tanhp−2(t) dt, p ̸= 1. (45)

If p is a positive integer, then iteration of this identity allows to resolve the integral in terms of
a finite sum. Let us now focus on the case where p is an arbitrary real number, but not integer.
We employ the parameter settings λ = 0 and c = (1− p)/2 on the left side of (42). This gives

x∫
x0

sinhp(t) cosh−p(t) 2F1

[
0, 0,

1− p

2
, cosh2(t)

]2
dt =

x∫
x0

tanhp(t) dt.

As in the previous example, let us mention that our setting λ = 0 implies a = b = 0 in (36). We
observe that the integral on the left side of (44) is a particular case of its counterpart in (42). As
such, our formula (42) becomes applicable. Upon substitution of the current parameter settings
into (41) and (42), the latter formula simplifies as follows

x∫
x0

tanhp(t) dt =
sinhp+1(t) cosh1−p(t)

1− p
2F1

[
1, 1,

3− p

2
, cosh2(t)

] ∣∣∣∣∣
x0

x

. (46)

Hence, we obtain a closed-form representation for the integral on the left side of (45) that is
valid for any value of the exponent p. This includes the case p = 1 if the evaluation in (45) is
understood in the sense of a limit. Note that due to our choice of parameters, no KdF function
from (41) is present anymore. Let us now verify our identity (45) for the exponent p =

√
2 and

the integration limits x0 = 1, x = 2.

2∫
1

tanh
√
2(t) dt =

sinh
√
2+1(t) cosh1−

√
2(t)

1−
√
2

2F1

[
1, 1,

3−
√
2

2
, cosh2(t)

] ∣∣∣∣∣
1

2

= 0.850747.

This value coincides with the result of numerical integration.

5.2 Double integration

We will now present an example of double integration involving hypergeometric functions. To
this end, we use identity (10) and the function u defined in (38). Before we can start our
construction, we need a solution v of (33), such that u and v are linearly independent. This
function v can be obtained from the general form (35) by applying the settings c1 = 0 and c2 = 1

v(x, λ) = sinh
1
2
−c(x) cosh

3
2
−c(x) 2F1

[
1− c−

√
−λ
2

, 1− c+

√
−λ
2

, 2− c, cosh2(x)
]
. (47)

We are now ready to evaluate the right side of (10) by substituting (38) and (46). Since the
resulting expressions will become very large, we will perform the evaluation termwise. Since the
first two terms are identical up to the value of x, it is sufficient to compute one of them. We
find

1

u(x, λ)

∂

∂λ
u(x, λ) =

=
1

4
√
−λ 2F1

[
a, b, c, cosh2(x)

] {
∂

∂a
2F1

[
a, b, c, cosh2(x)

]
− ∂

∂b
2F1

[
a, b, c, cosh2(x)

]}
,
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where the abbreviations a and b from (36) are used to shorten the notation. We can now replace
the partial derivatives of the hypergeometric function by means of our relations (4) and (5).
After some simplification we arrive at

1

u(x, λ)

∂

∂λ
u(x, λ)

=
1

4
√
−λ 2F1

[
a, b, c, cosh2(x)

]
×

{√
−λ
2 c

cosh2(x)
2:1;2

F
2:1;1

[
a+ 1, b+ 1 : 1 ; a, 1
c+ 1, 2 : a+ 1 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]

+
λ

4 c2
cosh2(x)

2:1;2

F
2:1;1

[
a+ 1, b+ 1 : 1 ; b, 1
c+ 1, 2 : b+ 1 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]}
. (48)

Next, we evaluate the Wronskian of u and its partial derivative with respect to λ. This gives

Wu, ∂u
∂λ
(x, λ) = − 1√

−λ
sinh2−2c(x) cosh−2+2c(x) 2F1

[
a, b, c, cosh2(x)

]
×

{
2F1

[
a, b, c, cosh2(x)

]
− 2F1

[
a+ 1, b, c, cosh2(x)

]}

+
λ

2 c
sinh2−2c(x) cosh2c(x) 2F1

[
a, b, c, cosh2(x)

]
×

{
1

4
√
−λ

∂

∂a
2F1

[
a+ 1, b+ 1, c+ 1, cosh2(x)

]
− 1

4
√
−λ

∂

∂b
2F1

[
a+ 1, b+ 1, c+ 1, cosh2(x)

]}

−
√
−λ sinh2−2c(x) cosh−2+2c(x) 2F1

[
a, b, c, cosh2(x)

]
×

{
1

4
√
−λ

∂

∂a
2F1

[
a, b, c, cosh2(x)

]
− 1

4
√
−λ

∂

∂b
2F1

[
a, b, c, cosh2(x)

]}

−
√
−λ sinh2−2c(x) cosh−2+2c(x) 2F1

[
a+ 1, b, c, cosh2(x)

]
×

{
1

4
√
−λ

∂

∂a
2F1

[
a, b, c, cosh2(x)

]
− 1

4
√
−λ

∂

∂b
2F1

[
a, b, c, cosh2(x)

]}
.

We can express the partial derivatives of the hypergeometric functions by means of KdF func-
tions. Upon using our identities (4) and (5), we obtain

Wu, ∂u
∂λ
(x, λ) = − 1√

−λ
sinh2−2c(x) cosh−2+2c(x) 2F1

[
a, b, c, cosh2(x)

]
×

{
2F1

[
a, b, c, cosh2(x)

]
− 2F1

[
a+ 1, b, c, cosh2(x)

]}

+
λ

2 c
sinh2−2c(x) cosh2c(x) 2F1

[
a, b, c, cosh2(x)

]
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×

{
1

8 c
cosh2(x)

2:1;2

F
2:1;1

[
a+ 2, b+ 2 : 1 ; a+ 1, 1
c+ 2, 2 : a+ 2 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]

−
√
−λ

16 c2
cosh2(x)

2:1;2

F
2:1;1

[
a+ 2, b+ 2 : 1 ; b+ 1, 1
c+ 2, 2 : b+ 2 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]}

−
√
−λ sinh2−2c(x) cosh−2+2c(x) 2F1

[
a, b, c, cosh2(x)

]
×

{
1

8 c
cosh2(x)

2:1;2

F
2:1;1

[
a+ 1, b+ 1 : 1 ; a, 1
c+ 1, 2 : a+ 1 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]

−
√
−λ

16 c2
cosh2(x)

2:1;2

F
2:1;1

[
a+ 1, b+ 1 : 1 ; b, 1
c+ 1, 2 : b+ 1 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]}

−
√
−λ sinh2−2c(x) cosh−2+2c(x) 2F1

[
a+ 1, b, c, cosh2(x)

]
×

{
1

8 c
cosh2(x)

2:1;2

F
2:1;1

[
a+ 1, b+ 1 : 1 ; a, 1
c+ 1, 2 : a+ 1 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]

−
√
−λ

16 c2
cosh2(x)

2:1;2

F
2:1;1

[
a+ 1, b+ 1 : 1 ; b, 1
c+ 1, 2 : b+ 1 ; 1

∣∣∣∣∣ cosh2(x), cosh2(x)

]}
. (49)

It remains to find an expression for the Wronskian of the functions (38) and (46). A straight-
forward calculation yields

Wu,v(λ) = 2 sinh2−2c(x)

×

{
(1− c+ a) 2F1[a, b, c, cosh

2(x)] 2F1

[
2− c+ a, 1− c+ b, 2− c, cosh2(x)

]
− a 2F1[a+ 1, b, c, cosh2(x)] 2F1[1− c+ a, 1− c+ b, 2− c, cosh2(x)]

}
. (50)

Note that the values of this Wronskian do not depend on x, even though x appears in the above
representation. If we inspect the right side of our integral formula (10), we observe that in
the present case all quantities have now been determined. After substitution of (38), the latter
formula reads

x∫
x0

x1∫
x0

cosh−1+2c(x2) sinh1−2c(x2) 2F1

[
−

√
−λ
2 ,

√
−λ
2 , c, cosh2(x2)

]2
cosh−1+2c(x1) sinh1−2c(x1) 2F1

[
−

√
−λ
2 ,

√
−λ
2 , c, cosh2(x1)

]2 dx2 dx1
=

1

u(x0, λ)

∂

∂λ
u(x0, λ)−

1

u(x, λ)

∂

∂λ
u(x, λ) +

Wu, ∂u
∂λ
(x0, λ)

Wu,v(λ)

[
v(x, λ)

u(x, λ)
− v(x0, λ)

u(x0, λ)

]
, (51)

where the right side has to be calculated by inserting (38), (46), (47), (48) and (49). Due to the
length of the involved expressions we omit to show the full form of (50), but state a few special
cases.

Example: elliptic integral. We will now generalize our example (43) to the case of double
integration. To this end, let us substitute the parameter values λ = −1 and c = 1 into the left
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side of (50). This gives

x∫
x0

x1∫
x0

cosh(x2) sinh−1(x2) 2F1

[
−

√
1
2 ,

√
1
2 , 1, cosh

2(x2)
]2

cosh(x1) sinh−1(x1) 2F1

[
−

√
1
2 ,

√
1
2 , 1, cosh

2(x1)
]2 dx2 dx1

=

x∫
x0

x1∫
x0

tanh(x1) E
[
cosh2(x2)

]2
tanh(x2) E

[
cosh2(x1)

]2 dx2 dx1, (52)

recall that E stands for the complete elliptic integral. After plugging our parameter values into
(50), we obtain a closed-form representation for the integral on the right side of (51). Since the
resulting expression is very long, we omit to show it here. Instead, we use (51) to evaluate our
formula (50) for the integration limits x0 = 1 and x = 2. We obtain

2∫
1

x1∫
1

tanh(x1) E
[
cosh2(x2)

]2
tanh(x2) E

[
cosh2(x1)

]2 dx2 dx1
=

1

u(1,−1)

[
∂

∂λ
u(1, λ)

]
|λ=−1

− 1

u(2,−1)

[
∂

∂λ
u(2, λ)

]
|λ=−1

+
Wu, ∂u

∂λ
(1,−1)

Wu,v(λ)

[
v(2,−1)

u(2,−1)
− v(1,−1)

u(1,−1)

]

= 0.248226− 0.0574144 i.

As in the previous examples it is straightforward to check this result through numerical integra-
tion.

Example: Gegenbauer polynomials. Hypergeometric functions can degenerate to different
kinds of polynomials, a particular case of which are the Gegenbauer polynomials [1]. In order
to obtain such a case, we set c = 1/2 and reparametrize λ = −4n2 for a nonnegative integer n.
Substitution into the left side of (50) gives

x∫
x0

x1∫
x0

2F1

[
−n, n, 12 , cosh

2(x2)
]2

2F1

[
−n, n, 12 , cosh

2(x1)
]2 dx2 dx1 =

x∫
x0

x1∫
x0

Cn

[
− cosh2(2x2)

]2
Cn

[
− cosh2(2x1)

]2 dx2 dx1,
(53)

where C stands for a Gegenbauer polynomial. We can now use our formula (50) to provide a
representation of the integral on the right side of (52). Insertion of explicit values x0 = 1, x = 2
and n = 3 yields

2∫
1

x1∫
1

C3

[
− cosh2(2x2)

]2
C3

[
− cosh2(2x1)

]2 dx2 dx1
=

1

u(1,−9)

[
∂

∂λ
u(1, λ)

]
|λ=−9

− 1

u(2,−9)

[
∂

∂λ
u(2, λ)

]
|λ=−9

+
Wu, ∂u

∂λ
(1,−9)

Wu,v(λ)

[
v(2,−9)

u(2,−9)
− v(1,−9)

u(1,−9)

]

= − 8.48897. (54)
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Observe that n = 3 corresponds to λ = −9. Correctness of the result (53) is verified by numerical
integration.

6 Concluding remarks

We have shown that our identities (7), (10) can be used to generate closed-form representations of
confluent hypergeometric and hypergeometric integrals in terms of KdF functions. The examples
presented in this work are far from being exhaustive. First of all, we observe that equations (11)
and (30) can be taken into the required form (6) not only by means of the coordinate changes
provided in (17) and (36), respectively. Instead, there are infinitely many possibilities of such
coordinate changes, each of which yields new integrands in (7) and (10). Furthermore, the latter
formulas are applicable to equations that are not of hypergeometric type, such as Mathieu-type
or spheroidal equations. As a final generalization of our work let us mention the existence of
counterparts to (10) that involve multiple integrals of even order. Exploration of these topics is
subject to future research.
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