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Abstract. It is common for a mapping platform to relay information to the user about the traffic in 
the area. Traffic conditions have different degrees of traffic intensity that are represented by colors. 
We have studied Google Maps traffic data through a simulation to model these conditions. Our 
methodology explores the prospect of how different traffic condition colors will imply different travel times. 
This modeling was a means to develop an user interface to determine the fastest path between two points 
in a particular area of Knoxville, Tennessee. We accomplished this by using Dijkstra’s Algorithm. The 
final product is a program that accepts and corrects user input for day of week, time, and two points, and 
the output is the path the user should take, along with the travel time according to the Google Maps 
traffic conditions at that day and time. This model can be applied to different cities to study their 
traffic patterns or in city planning.
Keywords. Dijkstra’s Algorithm, mapping platform, graph theory, data fitting, travel time

1 Introduction

In recent years, web mapping platforms such as Google Maps have become popular for 
users to determine travel routes, due to the platforms’ convenience and reliability. These 
platforms use a variety of resources to determine the shortest travel route, such as using 
tools to identify traffic patterns in the area. This service allows the platform to offer the 
most time-efficient or gas-efficient route to the user by measuring and weighing the 
traffic in the area.

Other studies have set the foundation for using a GPS as a data source. Rito, Lopez, 
and Biona collected data from a GPS to model the amount of emissions produced in a 
certain area [7]. They used traffic conditions to measure the amount of traffic a road in the 
Philippines experienced and street view to see what kind of vehicles were driving on the 
road to estimate the emissions produced per day. Friaswanto, Lisangan, and Sumarta used 
GPS and Dijkstra’s algorithm in collaboration to help firemen find the quickest path to a 
fire [6]. They optimized the time it takes firemen to extinguish a fire. Khatri modeled route 
preferences for bikers on a University of Arizona campus [5]. He used a GPS to track the 
riders around campus and then modeled their route patterns. Building onto this foundation, 
we can study data collection from a GPS and algorithms to analyze traffic data.

Google Maps has a color-coded system to classify the level of the traffic. The color coded 
traffic legend is seen in Figure 1 [3]. The legend features green, orange, red, and brown keys,
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Figure 1: Google Maps’ Traffic Legend

in order of increasing traffic intensity. That is, green implies quick traffic and brown implies
very slow traffic.

Google has a traffic simulation that predicts the traffic conditions for an area at a specific
time for a typical day of the week. For example, this simulation could answer a question
such as “How long will it take me to get home from work at 5:00pm on a typical Friday?”
An example of the simulation controls is shown in Figure 2 [4]. The user is able to choose
a day of the week and a time to analyze. The color-coded legend demonstrates the volume
of traffic on a particular street. This simulation does not represent the traffic on a specific
day – such as June 2, 2022 – but the typical traffic on an average Thursday.

We study the area outlined by the map in Figure 3. Our goal is to create a model
that can accurately predict travel times in this map. We hypothesized that travel time
changes depending on the traffic condition (green, orange, red, brown traffic) in the map.
We collected data for green, orange, red, and brown traffic conditions, developed models
based on this data, and used these models to predict travels times in the map. We precisely
define the term travel time, along with other terms used, in Table 1.

1.1 Outline

Table 1 provides terms and definitions used throughout the paper. Section 2 provides a
description of the methods we used to collect data. Section 2.1 details the data collection
from Google, section 2.2 details the model selection for each traffic condition (i.e., green,
orange, red, and brown), and section 2.3 supplies pseudo code for algorithms we use in the
project. Section 3 provides documentation of how well our models and algorithms perform.

2 Method

We make use of three main techniques in our project: data collection using Jupyter Note-
book and Google Maps, model derivation in Microsoft Excel, and C++ programming to

Figure 2: Example of Google Maps Traffic Simulation
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Figure 3: Labeled map of area of study with lookup table

Label Street Name Intersections Nodes
A Melrose Ave Melrose Pl to Volunteer Blvd 1, 2
B Volunteer Blvd Melrose Ave to Cumberland Ave 2, 4
C Volunteer Blvd Melrose Ave to Peyton Manning Pass 2, 5
D Melrose Pl Melrose Ave to Melrose Pl 1, 3
E Cumberland Ave 16th St to James Agee St 4, 13
F Melrose Pl Melrose Pl to Cumberland Ave 3, 6
G 17th St Cumberland Ave to White Ave 6, 7
H 17th St White Ave to Clinch Ave 7, 8
I Clinch Ave 17th St to 16th St 8, 9
J Clinch Ave 16th St to James Agee St 9, 10
K 16th St Clinch Ave to White Ave 9, 11
L James Agee St Clinch Ave to White Ave 10, 12
M 16th St Cumberland Ave to White Ave 4, 11
N White Ave 16th St to James Agee St 11, 12
O James Agee St White Ave to Cumberland Ave 12, 13
P Phillip Fulmer Way Cumberland Ave to Peyton Manning Pass 13, 14
Q Peyton Manning Pass Volunteer Blvd to Phillip Fulmer Way 5, 14
R Phillip Fulmer Way Peyton Manning Pass to Neyland Stadium 14, 15
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Table 1: Terminology

Symbol Term Definition Units
S Speed Limit The speed limit on a particular street; ft/s,

used to calculate ideal time mph
D Distance The distance between two nodes ft
I Ideal (Travel) Time The travel time between two nodes, s

assuming no traffic
A Actual (Travel) Time The measured travel time between two nodes, s

including traffic
F Difference Time A− I s

compute the shortest path using Dijkstra’s algorithm.

2.1 Data Collection

We make use of Google Maps’ traffic simulation to collect our data. Google has four key
colors for identifying traffic conditions: green, orange, red, and brown. If there is no
color, we call this condition N/A.

First, we analyzed the simulation of a typical week from Sunday to Saturday from 6:00
am to 10:00 pm, moving in 15 minute increments. The simulation analyzes the typical
behavior of a typical day of the week, not a specific date. Thus we collected data for
an average Sunday, an average Monday, continuing for every day of the week for Sunday
through Saturday. Using the labels from our map (Figure 3), we identified the changes for
each edge during each day for each time increment (Tables 2, 3, 4, and 5). We reference
this data when computing the shortest path at a particular time.

Next, we collected travel times for each condition (green, orange, red, brown) in real
time, not using the simulation. We collected actual travel time (A), distance traveled (D),
and speed limit (S) of the area. We also calculated the ideal travel time by I = S ×D . We
compared A and I to study how the traffic condition has affected the actual travel time.

We collected about 30 travel times for each color key: 32 for green, 30 for orange, 30 for
red, and 30 for brown. We identified 3-5 outliers per color. Copies of this data are found at
Tables 2, 3, 4, and 5 respectively. Outliers are in italics.

The map we chose to study (Figure 3) has limited red traffic and no brown traffic, so
we used various locations and roads to collect the data for red and brown. For the red
traffic condition, points 1-4, 12, and 14-16 derived from the map in Figure 3. We analyzed
interstates I-40, I-640, TN-170, TN-62, I-24, I-65, I-440, and TN-254, and streets Kingston
Pike, Henley St, and Locust St to collect additional data for the red traffic condition. We
collected actual travel time, distance, speed limit, and ideal travel time for these locations.
We measured various distances on the same roads. For example, data points 5 and 8 are
the same road but different distances, since we collected data at different mile markers on
this road.

For the brown traffic condition, we analyzed interstates I-5, US-101, CA-110, I-405, I-
10, CA-91, I-24, I-65, I-40, I-69, I-710, I-45, TX-288, I-5, I-278, I-H-1, I-275, I-610, and
MacArthur Cwy, and streets Sutherland Ave, Kingston Pike, and Battery Park to collect
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data. We collected actual travel time, distance, speed limit, and ideal travel time for these
locations. We measured various distances on the same roads. For example, data points 25
and 27 are both on I-610, but they record different distances.

Note: * implies the speed limit varied on the route, so we use the average speed limit as
I.

Table 2: Data Collected for Green Traffic Condition
Area S (mph) D I (Ideal Time) A (Actual Time)
1. Cumberland Ave 35 3168 ft 1.0 min 4 min
2. Volunteer Blvd 25 5808 ft 2.6 min 5 min
3. Clinch Ave 35 2640 ft .86 3 min
4. Neyland Dr 45 11088 ft 2.8 4 min
5. 17th St 30 3696 ft 1.5 3 min
6. Highland Ave 35 2640 ft .9 2 min
7. 22nd St 25 2112 ft .9 2 min
8. Lake Ave 20 2112 ft 1.2 2 min
9. Phillip Fulmer Way 20 3168 ft 1.8 3 min
10. Sutherland Ave 35 5808 ft 1.9 min 3 min
11. I-140 E 65 70752 ft 12.4 min 15 min
12. I-140 E 65 28512 ft 4.98 6 min
13. I-140 E 65 17424 ft 3.05 4 min
14. US-129 N 55 26928 ft 6.55 7 min
15. US-129 N 55 12144 ft 2.51 min 3 min
16. Cumberland Ave 35 5280 ft 1.714 min 3 min
17. US-441 S * 7392 ft 2.057 min 3 min
18. Neyland Dr * 23760 ft 5.785 min 6 min
19. TN-62 E 35 14256 ft 4.63 min 5 min
20. James White Pwky/I-40E 55 27984 ft 5.78 min 6 min
21. Cumberland Ave 35 5280 ft 1.71 min 3 min
22. Volunteer Blvd 25 5280 ft 2.4 min 3 min
23. 17th St 30 3168 ft 1.2 min 2 min
24. US-129 S 55 57024 ft 11.78 min 12 min
25. 22nd St 25 2112 ft .96 min 2 min
26. 17th St 30 4752 ft 1.8 min 4 min
27. Cumberland Ave 35 7920 ft 2.57 min 5 min
28. Clinch Ave 35 4752 ft 1.54 min 4 min
29. Phillip Fulmer Way 20 3168 ft 1.8 min 2 min
30. Cumberland Ave 35 7920 ft 2.57 min 5 min
31. Cumberland Ave 35 11616 ft 3.77 min 8 min
32. 17th St 30 3696 ft 1.4 min 3 min
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Table 3: Data Collected for Orange Traffic Condition
Area S (mph) D I (Ideal) A (Actual)
1. Cumberland Ave 35 3686 ft 1.2 min 5 min
2. 17th St 30 1584 ft 0.6 min 3 min
3. White Ave 25 4752 ft 2.6 min 7 min
4. Volunteer Blvd 25 5280 ft 2.4 min 5 min
5. Lake Ave 20 2640 ft 1.5 min 3 min
6. Clinch Ave 35 3168 ft 1.0 min 3 min
7. 16th St 35 2112 ft 0.7 min 3 min
8. Joe Johnson Dr 20 2640 ft 1.5 min 3 min
9. James Agee St 20 2112 ft 1.5 min 3 min
10. 21st Steet 25 2112 ft .96 min 3 min
11. Henley Street 35 4224 ft 1.371 min 3 min
12. Cumberland Ave 35 4752 ft 1.54 min 6 min
13. Pellissippi Pwky 65 18480 ft 3.231 min 6 min
14. Kingston Pike 40 7392 ft 2.1 min 7 min
15. Sutherland Ave 35 5280 ft 1.71 min 4 min
16. I-40 E 65 24288 ft 4.246 min 8 min
17. I-40 N 65 79100 ft 13.829 min 24 min
18. Kingston Pike 40 7392 ft 2.1 min 6 min
19. University Commons Way 25 2112 ft .96 min 3 min
20. 16th St 35 2112 ft .686 min 2 min
21. White Ave 25 3168 ft 0.9 min 4 min
22. Cumberland Ave 35 4224 ft 1.37 min 6 min
23. Lake Ave 20 2640 ft 1.2 min 3 min
24. Joe Johnson Dr 20 2112 ft .96 min 2 min
25. Cumberland Ave 35 5808 ft 1.886 min 8 min
26. 17th St 30 2640 ft 1 min 5 min
27. 22nd St 25 2640 ft 1.2 min 5 min
28. White Ave 25 2112 ft .96 min 3 min
29. Phillip Fulmer Way 20 1584 ft .9 min 2 min
30. Grand Ave 25 2112 ft .96 min 2 min
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Table 4: Data Collected for Red Traffic Condition
Area S (mph) D I (Ideal) A (Actual)
1. 18th St 35 528 ft .17 min 2 min
2. Laurel Ave E 20 1056 ft .6 min 2 min
3. Laurel Ave W 20 1056 ft .17 min 2 min
4. White Ave 25 1056 ft .48 min 2 min
5. I-40 W 65 13728 ft 2.4 min 9 min
6. I-40 E 65 3168 ft .55 min 2 min
7. I-640 W 65 2640 ft .46 min 2 min
8. I-40W 65 6864 ft 1.2 min 4 min
9. Kingston Pike 35 3696 ft 1.2 min 3 min
10. I-40E 65 23760 ft 4.15 min 12 min
11. I-40W 65 17424 ft 3.05 min 13 min
12. Grand Ave 25 2112 ft .96 min 2 min
13. I-40E 65 1584 ft .2769 min 1 min
14. 21st St 25 528 ft .24 min 1 min
15. College St 25 328 ft .1491 min 1 min
16. 22nd St 25 528 ft .24 min 2 min
17. 1-40 W 65 6864 ft 1.2 min 5 min
18. Henley St 35 2112 ft .686 min 3 min
19. Locust St 25 528 ft .24 min 2 min
20. I-40W 65 3168 ft .5538 min 2 min
21. I-40E 65 36960 ft 6.4615 min 18 min
22. I-40W 65 8448 ft 1.4769 min 6 min
23. TN-170 55 5280 ft 1.0909 min 4 min
24. TN-62 45 8448 ft 2.133 min 6 min
25. I-24E 70 28512 ft 4.629 min 19 min
26. I-65N 55 7392 ft 1.5273 min 6 min
27. I-440 * 6336 ft 1.433 min 7 min
28. I-24E 55 31152 ft 6.436 min 21 min
29. I-24W 55 5280 ft 1.0909 min 3 min
30. TN-254 45 1584 ft .4 min 2 min
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Table 5: Data Collected for Brown Traffic Condition
Area S (mph) D I (Ideal) A (Actual)
1. I-5 S in L.A. 55 30624 ft 6.33 min 45 min
2. US-101 S 55 8448 ft 1.75 min 12 min
3. CA-110 55 2640 ft .545 min 4 min
4. I-405S 55 16368 ft 3.38 min 27 min
5. I-10 E 55 7392 ft 1.53 min 11 min
6. CA-91 E 65 13728 ft 2.4 min 25 min
7. Sutherland Ave 35 377 ft .1224 min 1 min
8. Kingston Pike 45 384 ft .09697 min 1 min
9. Kingston Pike 45 367 ft .0927 min 1 min
10. I-24W 55 3696 ft .7636 min 5 min
11. I-65N 55 1056 ft .2182 min 2 min
12. I-40E 55 2112 ft .4364 min 3 min
13. I-69 75 4224 ft .64 min 6 min
14. I-69 75 6864 ft 1.04 min 11 min
15. I-710 N 65 6864 ft 1.2 min 5 min
16. I-45N 75 3168 ft .48 min 5 min
17. TX-288 N 55 3696 ft .7636 min 6 min
18. I-5 S 55 26928 ft 5.5636 min 30 min
19. I-278W 50 6336 ft 1.44 min 11 min
20. Battery Park 25 3168 ft 1.44 min 8 min
21. I-45N 75 3168 ft .48 min 5 min
22. I-69N 75 213 ft .0323 min 1 min
23. I-10E 45 2640 ft .6667 min 4 min
24. I-H-1E 55 9504 ft 1.9636 min 23 min
25. I-275N 55 11088 ft 2.2909 min 15 min
26. I-610E 60 3696 ft .7 min 5 min
27. I-610N 60 2640 ft .5 min 4 min
28. I-610E 60 528 ft .1 min 1 min
29. I-610W 60 528 ft .1 min 1 min
30. MacArthur Cwy 45 7920 ft 2 min 13 min
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2.2 Model Process and Selection

For each of the four traffic conditions (green, orange, red, brown) we considered three
different models: a quadratic model, a linear model, and an exponential model. Each model
was fit to the data for green, orange, red, and brown traffic conditions in order to estimate
their parameters.
In our process we made the following assumptions:

1. The N/A condition will have no effect on the actual travel time.

2. Ideal travel time = speed limit * distance. This is the minimum travel time possible.

3. The data from the Google simulation is accurate.

4. Traffic conditions in the Knoxville area change around every 15 minutes (thus we
collected data from the Google simulation in 15 minute intervals)

We estimated parameters for the following equations.
AA = a2I

2 + a1I + a0
AB = b1I + b0
AC = c0e

c1I

We estimated parameters considering and not considering the outliers of each of the four
traffic conditions’ data sets. Our estimations for considering outliers and not considering
outliers are found in Figures 4 and 5 respectively.
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Figure 4: Estimated parameters for each model, with outliers included

Quadratic Linear Exponential

Green

a0 = 1.877
a1 = .7259
a2 = .0191

b0 = 1.492
b1 = .9577

c0 = 2.3648
c1 = .1582

Orange

a0 = 1.626
a1 = 1.7786
a2 = −.012

b0 = 1.8366
b1 = 1.6104

c0 = 2.9632
c1 = .173

Red

a0 = .2412
a1 = 3.8488
a2 = −.1199

b0 = .7191
b1 = 3.1197

c0 = 1.8277
c1 = .4525

Brown

a0 = .0873
a1 = 8.4883
a2 = −.3241

b0 = 1.0232
b1 = 6.6632

c0 = 2.5026
c1 = .6131

Figure 5: Estimated parameters for each model, with outliers removed

Quadratic Linear Exponential

Green

a0 = 2.0385
a1 = .5133
a2 = .0363

b0 = 1.3312
b1 = .9541

c0 = 2.2626
c1 = .1579

Orange

a0 = 1.4881
a1 = 1.5105
a2 = .0085

b0 = 1.3444
b1 = 1.6301

c0 = 2.618
c1 = .1775

Red

a0 = .459
a1 = 3.6857
a2 = −.1159

b0 = .9105
b1 = 2.9636

c0 = 1.8561
c1 = .4382

Brown

a0 = .6252
a1 = 6.8238
a2 = −.0706

b0 = .8515
b1 = 6.4177

c0 = 2.418
c1 = .5868
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Graphs of data with the models with and without outliers are shown in figures 6 and 7
respectively.

Model Selection.

We evaluated how well each of the three models fit the traffic data using the Akaike informa-
tion criterion (AIC). The AIC is an equation that is calculated from the number of parame-
ters from the model, the number of data points that the model fits, and the residual sum of
squares (RSS) of the fitted data [1] [8] [2]. The equation we used is AIC = 2k+n lnRSS, for
k is the number of parameters of the model and n is the number of data points modelled [1].
The RSS is calculated by summing the square of the difference of each projected result from
the model and the actual value. AIC is a helpful tool to evaluate the models we considered,
as a lower AIC implies a better fit of the data [1]. The calculations are as follows in Figure
8.
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Figure 6: Graph of Collected Data with Each Models’ Fit



Modeling Traffic to Determine Shortest Path 13

Figure 7: Graph of Collected Data (Removing Outliers) with Each Models’ Fit
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Figure 8: Calculations of RSS and AIC for each model

Green RSS AIC
Quadratic 26.7341 0.2465
Linear 27.8466 -.4488

Exponential 43.0648 13.5030
Green- Removing outliers

Quadratic 8.7252 -24.4998
Linear 12.0470 -17.7895

Exponential 15.5798 -10.8462

Orange RSS AIC
Quadratic 42.6591 16.5613
Linear 42.9438 14.7608

Exponential 134.7919 49.0760
Orange- Removing outliers

Quadratic 15.1792 -4.9951
Linear 15.3095 -6.7899

Exponential 71.3681 30.1551

Red RSS AIC
Quadratic 45.7485 18.6589
Linear 49.8393 19.2282

Exponential 514.0603 89.2343
Red- Removing Outliers

Quadratic 25.0076 3.9302
Linear 28.3898 5.3552

Exponential 367.7838 74.5148

Brown RSS AIC
Quadratic 245.7527 69.0939
Linear 271.1134 70.0402

Exponential 8239.4403 172.4647
Brown- Removing Outliers

Quadratic 101.5087 41.7563
Linear 102.3210 39.9715

Exponential 4181.9920 140.1531
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2.3 Algorithms

In our project, we use Dijkstra’s Algorithm to determine the shortest path from one location
to all other locations. We also use a Jupyter Notebook that contains the user interface for
our project. Figure 9 is a flowchart that illustrates how the algorithms are connected.

Algorithm. Dijkstra’s Algorithm (G, s)

Given a graph G and a starting node s, Dijkstra’s Algorithm finds the shortest path from
the starting node s to every possible node in the graph.

In the Graph G, for each node n, set distance(n,s) = −1 and previous node b to NULL.

If n = s, set distance(n,s) = 0, and place n into the priority queue M ascending by
distance.

While M is not empty, let the first node be m. Assign m into a temporary variable
f . Then, remove the node from M .

Loop through f ’s list of edges E, and calculate the new potential distance p of
the new node m by applying this formula for each edge e: p = distance(f, s) +
weight[e].

Let d = distance(m, s). If d = −1 or p < d, check if m is already in M .
If it is, remove it, and set distance(m, s) = p and its previous node b to f .
Add m back to M .

Algorithm. Depth First Search (G, s)

Given a graph G and a starting node s, Depth First Search determines if there is a possible
path from the starting node s to the ending node e.

In the Graph G, for each node n, set its visited field to false.

If node s’s visited field is true, return.

If not, set s’s visited field to true.

Loop through s’s edge list E. For each edge e, call Depth First Search on the node
m it leads to: Depth First Search (G, m).

After the algorithm ends, check e’s visited field.

If it is true, return true
If not, return false
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Figure 9: Flowchart of Program
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3 Results

We have concluded that the quadratic model has the lowest AIC overall, so it has the best
fit of the models evaluated. We developed a jupyter notebook program that uses this model
to determine the shortest path between 2 points on our map from figure 3.

The program asks if the user wants to use the current date and time or use a different
date and time.

If the user selects yes, the user will be prompted to enter the time and day they would
like to analyze.

If the user selects no, then the current time and day will be rounded to the nearest 15
minute interval.

Then, the user will be prompted to enter the starting and ending locations. The program
accepts landmarks or intersections as valid input.
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Then, the shortest path and the travel time will be printed.

To test the accuracy of our program, we randomly selected 2 nodes on our map and used
our program to determine the shortest path. We compared this travel time to Google Maps’
result for the same 2 nodes. We performed 60 comparisons, and graphed them in Figure
10. We note there are slight differences between our program’s results and Google Maps’
results. This could be due to error in the model. However, these differences are slight. The
orange line in the figure denotes the 1:1 ratio between the GPS results and our program
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Figure 10: Comparison of Our Data and GPS Data

results. The comparison between GPS and program results stay close to the orange line, so
we conclude that our results coincide with the GPS travel time results.

4 Conclusion

Our data and technique can be reused to further and extend the analysis of cities. In terms
of further analysis, more data can be collected on our current map to verify or adapt our
current equations for the traffic conditions. While the modeling done in this project was
specific to Knoxville, Tennessee, the modeling techniques and shortest path algorithm can
be applied to many different scenarios. Some examples of using the same technique we used
in our project include using a GPS to model emissions or using Dijkstra’s algorithm to find
the best route for firemen.

Our project could be used in places where Google Maps might not have data yet. Town-
planners and trip-planners could adapt the modeling function we developed to create their
own GPS-like system. Our work can be adapted in town planning, specifically to optimize
routes and paths in towns. Our code is open source and can be customized for other
applications. Additionally, Google Maps can occasionally have wrong information. There is
not much a user can do to correct this. In our program, the user has full control of the data
that is given. Traffic analysts, town-planners, and the casual trip-planner can make use of
and build on our work.
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6 Supplementary Materials

All supplementary files are located in the repository at
https://github.com/noahd15/ModelingShortestPath. This includes our collected traffic data,
calculations, jupyter notebook with user interface, pathfinder program used in the notebook,
and other relevant images and screenshots.
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