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See Rational Functions on page 3

See Optimization Theory on page 4

Rational Functions and Beyond
By Lloyd N. Trefethen

Real analysis, complex analysis, and 
numerical analysis all start from poly-

nomials. Since Newton at least, polynomials 
and their limits as Taylor series have cap-
tured the local behavior of functions, and the 
approximations become global with numeri-

cal methods such as data fitting, quadrature 
formulas, spectral methods, “proxy” root-
finding, and Chebfun. For smooth functions 
on bounded domains, this is often all you 
need — with the footnote that if a function 
is periodic, it is advantageous to switch 
from polynomials to Fourier series.

A rational function is a quotient 
r z p z q z( ) ( )/ ( )=  of polynomi-
als. We say that r  is of degree 
n  if it can be written in this way, 
where p  and q  are of degree at 
most n.  Clearly r  may have n 
zeros and n  poles, real or com-
plex, and a polynomial is noth-
ing more than a rational function 
whose poles are constrained to 
all lie at z =∞.  But p q/  is 
often not the best representation 
conceptually or numerically. A 
better start for many purposes 
is to write r  in partial fractions:
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This generic representation can-
not treat poles of order high-
er than 1 exactly—or poles at 
infinity—but it can approximate 
them arbitrarily closely.

Formula (1) highlights the fact that a 
rational function can have its poles { }z

k
 

anywhere. In particular, if r  approximates 
a function f  with a singularity at z z= 0, 
it may achieve great accuracy by clustering 
its poles near z0.  This effect hit the head-
lines with Donald Newman’s 1964 paper 
about the approximation of f x x( ) | |=  on 
[ , ],-1 1  or equivalently, the approximation 
(with half the degree) of f x x( )=  on 
[ , ].0 1  Newman showed that by clustering 
their poles and zeros exponentially near the 
singularity, rational functions can achieve 
root-exponential convergence: errors of 
order O C n(exp( ))−  for some C >0. For 
six-digit accuracy in this example, a rational 
function of degree n = 26  is enough, where-
as a polynomial would need n » 280 000, .

All of this is well established and exten-
sively studied by rational approximation 
theorists. But can one apply these ideas to 
solve computational problems? Tradition 
regards rational functions as a computa-
tional minefield because of complications 
like “Froissart doublets” (pole-zero pairs), 
both theoretical and numerical. For example, 
in their work during the 1980s and 1990s, 
Richard Varga, Arden Ruttan, and Amos 
Carpenter used up to 200-digit precision. But 
in the past four years and in collaboration 
with Yuji Nakatsukasa, Abinand Gopal, and 

others, I have been part of some develop-
ments that appear to be changing this picture 
— all in ordinary floating-point arithmetic.

First came the AAA algorithm (adaptive 
Antoulas-Anderson), a method of unprec-
edented speed and robustness that finds 
near-best rational approximations [4]. The 
magic of AAA comes from its barycentric 
representation of rational functions in a third 
fashion, as a quotient of two partial fractions:
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 are not the poles of 
r,  but rather a set of arbitrary support 
points that are chosen to enable numerical 
stability, even when the poles and zeros 
are exponentially clustered. For example, 
suppose that we execute the following 
commands in Chebfun:

 Z = rand(1000,1) +    
      1i*rand(1000,1); 
 F = sqrt(Z-Z.^2)./(Z-2);
 [r,poles] = aaa(F,Z);
 plot(Z,’.k’), hold on                      
 phaseplot(r,[-0.5 2.5 -1.5         
     1.5])

Figure 1. Degree n = 20 AAA rational approximation to 
z z z− −2 2/( ) in 1,000 points in a square in the com-

plex plane (black dots) with adaptively determined poles. 
This image is a phase portrait [5], with color marking the 
complex argument.

Optimization Theory and Perspectives 
on the Field of Machine Learning
By Manuchehr Aminian

The work of Michael Jordan’s (University 
of California, Berkeley) research 

group was a highlight of the 2020 SIAM 
Conference on Mathematics of Data 
Science (MDS20), which took place virtu-
ally earlier this year. The team’s research 
focuses on the connections between opti-
mization, geometry, probability, dynami-
cal systems, and machine learning (ML). 
During his plenary talk at MDS20, Jordan 
presented an impressive array of theoreti-
cal results in optimization that were estab-
lished by his group and motivated by ML. 
He also offered a broad vision of ML’s 
past and present, and disclosed how he 
intends to orient his research towards what 
he sees as the field’s future.

Gradient Descents                     
and Saddle Points

Optimization is at the heart of model 
building in ML. One can broadly categorize 
optimization problems as either convex or 
nonconvex, depending on the type of func-
tion to be minimized and the space over 
which it will be optimized. Convex optimiza-
tion problems are generally well understood 
and mathematically friendly; researchers 
can establish provable convergence results 
for algorithms, and the algorithms that solve 
them behave well in practice.

Most optimization problems in ML and 
data science are decidedly nonconvex. 
Objective functions are often nonlinear, 
and decision variables are frequently binary 
and/or integer-valued — especially when 
one wants to make a decision or recommen-
dation. Jordan reviewed a range of prov-
en results that relate to high-dimensional 
gradient descent (GD), which iteratively 
improves an initial guess x0 and produces a 
sequence of approximations x

k
 that ideally 

converge to a global minimum of a function 
f x( ) by following the gradient “downhill.”

First, Jordan highlighted a well-estab-
lished result from Yurii Nesterov’s 1998 
lecture notes [2]. For unconstrained convex 
optimization, GD convergence rates do 
not depend on the space’s dimensionality. 
In other words, if we measure a notion of 
how close we are to the global minimum, 
convergence rates depend on the func-
tion’s properties and the number of descent 
steps; they are independent of whether a 
problem has 10 variables or 10 million. 
Readers might find this dimension-inde-
pendence surprising, though perhaps there 
is a “catch” that practical problems may 
have a correlation between dimensionality 
and their Lipschitz constant.

To extend to nonconvex optimization, 
Jordan emphasized the main results of his 
2017 study [1], which proves similar con-
vergence rates with a few key differences. 
Nonconvex functions can have local minima 
and saddle points that trap and slow descent 
methods. He and his collaborators use a 
“perturbed” GD method—
not to be confused with sto-
chastic GD—to address this 
fact, occasionally adding a 
random jitter to the current 
iteration that may have oth-
erwise trapped GD in a sad-
dle point or local minimum. 
Expecting convergence to a 
global minimum in this gen-
eral setting is too optimis-
tic. But softening the state-
ment to “strongly convex” 
minima produced a result 
that is only mildly worse 
than the convex case — with 
an extra factor of log ( )4 d  
(with d  as the dimension) 
that is conceptually a slow-
down related to the escape 
from saddle points [1]. The 
group’s proof technique is 
probabilistic and relies on 
geometry around the saddle 

points. Theoretically, aside from a narrow 
strip in a low-dimensional space around a 
saddle point, points that are initially in the 
highlighted region will escape after being 
perturbed away (see Figure 1).

All else equal, the theory thus states that a 
problem in 10 million dimensions will con-
verge slower—by a factor of 74, or 2,401—
than a problem in 10 dimensions. Jordan 
believes that the exponent 4 is an artifact of 
the proof, which ought to be a plain log( ).d  
However, he has been unable to improve 
upon it. Perhaps this is an opportunity for 
future collaboration.

Discrete and Continuous         
Time Dynamical Systems

Another aspect of Jordan’s research 
involves understanding the connections 
between GD and other optimization algo-
rithms, as well as the underlying mathematics 

Figure 1. Point u  lies in the green region, where the gradient
Ñf  (represented by the blue arrows) will trap it near the saddle 
point in the center for many iterations. The perturbed point w 
will quickly escape. Figure courtesy of Michael Jordan [1].
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6  Who Was Frank Ramsey?
 James Case reviews Frank 

Ramsey: A Sheer Excess of 
Powers by Cheryl Misak. 
Ramsey made significant contri-
butions to various fields during 
his career, and Misak chronicles 
his brief but influential life. She 
explores Ramsey’s time as a stu-
dent and describes his collegiate 
interests before enlisting several 
specialists to summarize his last-
ing achievements in mathemat-
ics, economics, and philosophy.

8  Scale-bridging with Machine 
Learning to Characterize 
Brittle Damage and Failure

 Many engineering applications 
utilize brittle materials for their 
stiffness, lightweight properties, 
and ability to maintain their 
shapes at extreme temperatures. 
However, they are also prone 
to disastrous failures. Gowri 
Srinivasan, Daniel O’Malley, 
and Maria Giselle Fernandez 
use machine learning techniques 
to model crack dynamics and 
understand the mechanisms that 
cause brittle materials to fail.

10  At Last, Our Hindsight      
is Truly 2020

 The generosity of the SIAM 
community has never been 
clearer—or more needed—than 
during the unprecedented dif-
ficulties of 2020. Ken Boyden, 
the Director of Development 
and Corporate Relations at 
SIAM, praises the society’s 
steadfastness; reflects on its 
mission; thanks members for 
their continued financial sup-
port; and looks toward the 
coming year with enthusi-
asm, gratitude, and hope.

10  Mathematics and the Social 
and Behavioral Sciences

 In 2018, SIAM published 
Mathematics Motivated by the 
Social and Behavioral Sciences 
by Donald Saari, which address-
es serious problems in the 
social and behavioral sciences 
that occur during everyday life. 
Saari details his book, explores 
several relevant aggregation 
challenges—including Adam 
Smith’s invisible hand metaphor 
and voting systems—and invites 
mathematicians to become more 
involved in this area of research.

11  Professional Opportunities 
and Announcements
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Advancing SIAM’s Mission with the 
COMAP Mathematical Contest in Modeling
By John Chrispell, Nathan    
Gibson, Kathleen Kavanagh,      
and Ben Galluzzo

The Consortium for Mathematics and 
Its Applications1 (COMAP) has 

been promoting mathematical modeling 
and creative problem-solving through its 
undergraduate contest, the Mathematical 
Contest in Modeling2 (MCM), since 1980. 
SIAM supports the MCM by awarding 
two “Outstanding” teams with the SIAM 
Award in the Mathematical Contest in 
Modeling.3 Each student member of the 
winning team receives a cash prize of 
$500 and a one-year student membership 
with SIAM. Participating MCM teams, 
comprised of up to three students each, 
work over a long weekend to propose a 
solution to a broad, open-ended, and often 
messy real-world problem. Recent contest 
questions have focused on the opioid crisis, 
disaster relief, online marketing strategies, 
and the fishing industry.

Over the years, the MCM has seen a 
dramatic increase in participation from 
China. In 2020, the nation hosted the vast 
majority of both participating and winning 
teams; only 264 of the total 13,753 teams 
were from the U.S. Although mathemati-
cal modeling is not predominantly inte-
grated into most U.S. math curriculums, it 
is arguably one of the most powerful tools 
for workforce development (see Figure 1). 
COMAP’s MCM can serve as a rewarding 
pathway for SIAM members and student 
chapters to provide undergraduate students 
with engaging math modeling opportunities.

Coaching strategies to prepare students 
vary widely across colleges and universi-
ties. At Clarkson University, where a team 
of sophomores earned a Mathematical 
Association of America prize for their 
solution in 2009, COMAP training takes 
place over roughly eight weeks. Students 
earn one course credit for completing the 
training, competing in the contest, and 
submitting a solution. The training focuses 
on the individual components of the mod-
eling process—defining a concise problem 
statement, making assumptions, identify-
ing variables, building a model, and ana-
lyzing the solution—before leading up to 
solving a full modeling challenge. Students 
also practice technical writing each week. 
Training begins in October, includes a 
longer collaborative modeling assignment 
over winter break, and continues for a 
few weeks in the spring semester until the 
MCM commences in February.

Clarkson often recruits potential partici-
pants from the Advanced Placement calcu-

1 https://www.comap.com
2 https://www.comap.com/undergraduate/

contests
3 https://www.siam.org/prizes-recognition/

student-prizes/detail/siam-award-in-the-
mathematical-contest-in-modeling

lus II course (for first-year students) and 
the introductory math modeling course, as 
these early encounters can spark students’ 
interest in applied mathematics. Some par-
ticipating students have even added math-
ematics as a double major or proceeded to 
complete undergraduate research in math-
ematics. Many teams that are recruited 
from Clarkson’s modeling class compete in 
subsequent years as well.

Students that have previously partici-
pated in the MCM generally serve as the 
most effective recruiters. At the Indiana 
University of Pennsylvania, the preced-
ing year’s competitors speak to potential 
participants each fall and describe both 
their experiences and the research topics 
from the last competition. Students often 
start to form teams during their sophomore 
year and frequently continue to partake 
until they graduate. To support students 
during the competition, the Department of 
Mathematical and Computer Sciences sup-
plies keyed-access workspaces and ensures 
that the students have 24-hour access 
to these spaces throughout the contest. 
Faculty promote the event by discussing 
it in class and commending students who 
participate. They set aside a special math-
ematical modeling library, provide books 
that students can use during the MCM, and 
contribute ample amounts of food over the 
course of the weekend.

Students at Oregon State University 
(OSU) have been participating in the MCM 
since 2006 and achieved “Meritorious 
Winner” status for their first attempt. As 
with other schools, OSU’s Department 
of Mathematics makes rooms available, 
issues after-hours passes, and offers writ-
ten preparation materials4 to supplement 
the resources on COMAP’s homepage.5 
After the event, the Math Club hosts a 
special seminar during which participants 

4 https://math.oregonstate.edu/contests
5 https://www.comap.com/undergraduate/

contests/resources/index.html

can choose to present their solutions. All 
successful participants receive their official 
certificates during the year-end departmen-
tal awards ceremony.

OSU has no background requirements 
for MCM participation; students from all 
majors and years are welcome to partake. 
Past teams have consisted of freshmen 
through seniors whose majors ranged from 
math and engineering to other facets of sci-
ence. The main requirements are a desire 
to compete and a commitment to work-
ing with teammates, often from different 
disciplines. These are of course the same 
characteristics that many employers seek, 
and the experience makes for excellent 
interview material. However, the secret to 
OSU’s success—modest as it may be—
is undoubtedly the university’s writing-
intensive mathematical modeling course. 
Repeated practice in writing about math, 
and applied math in particular, reinforces 
the notion of mathematics as a language 
into which real-world problems are trans-
lated for abstraction and efficient solution. 
Courses on the history of mathematics may 
also provide exposure to math modeling, 
as numerous fields of mathematics origi-
nated with attempts to describe and solve 
real-world phenomena.

After the competition and regardless of 
the outcome, many student teams use their 
work as the foundation for their first pre-
sented talks at regional conferences. In this 
way, the COMAP experience serves as a 
gateway into the academic research process.

We strongly encourage SIAM mem-
bers to get involved with the MCM. At 
some universities, SIAM student chapters 
organize the training efforts — students 
can even be coaches! Registration6 for the 
2021 competition—which is scheduled for 
February 4-8, 2021—is already open, and 
teams can collaborate remotely. If you 
are interested in serving as a judge, more 
information about judging opportunities is 
available online.7 
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Figure 1. Overview of the mathematical modeling process. SIAM provides several freely-
available handbooks to help eager students get started. Figure courtesy of [1].
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Rational Functions
Continued from page 1

In 1/50  seconds (s) on my laptop, AAA 
computes a degree-20 rational approxima-
tion that matches F  to 14 digits at the 
1,000 random data points. Figure 1 (on 
page 1) shows how the poles and zeros of 
r  simulate a circular branch cut that con-
nects the branch points 0 and 1. There is 
also a pole at z = 2 00000077. , whose six-
digit agreement with the pole of f  demon-
strates the power of rational functions for 
extrapolation and analytic continuation. In 
fact, most existing methods for estimation 
of poles and acceleration of convergence 
(Padé, Aitken, eta, epsilon, etc.) are based 
on rational functions.

Next came lightning approximation [2]. 
AAA has free poles that are adaptively 
determined, and there is no guarantee 
that they will not fall in a region where 
one wants analyticity. Moreover, we do 
not know how to use AAA to approxi-
mate harmonic functions, i.e., real parts 
of analytic functions, which is what one 
needs to solve Laplace problems via func-

tion approximation. The new idea is to 
leverage our understanding of exponential 
clustering at singularities by prescribing 
the poles { }zk  a priori — simply placing 
them in a configuration with exponential 
clustering at the corners, which are likely 
to be branch points of the solution. A poly-
nomial term to handle “the smooth part 
of the problem” is included as well. Now 
one has the linear problem of finding good 
coefficients c

k
 for an approximation (1) 

with known points { },zk  which is read-
ily solved by least-squares fitting. If you 
want to fit the real part to solve a Laplace 
boundary value problem, this makes no 
significant difference to the calculation. 
Figure 2 depicts the solution to a Laplace 
problem on an octagon computed by this 
method. In 0.13 s on a laptop, the code 
laplace.m1 has computed a solution 
with 138 poles that is accurate to six digits, 
all the way up to the corner singularities. 
Being just the real part of a rational func-
tion, the solution can be evaluated in 11 
us per point. For 10-digit accuracy, these 
figures change to 0.9 s, 286 poles, and 26 
us. Similar computations are possible for 

biharmonic problems, which 
are reducible to harmonic func-
tions, and Helmholtz problems, 
where the poles of a rational 
function become center points 
of shifted Hankel functions [1].

I want to finish with a third 
development that turned up 
unexpectedly just a few months 
ago [3]. What about the use of 
functions other than rationals, 
with singularities other than the 
poles of (1)? In a new devel-
opment, we have found that 
reciprocal-log or log-lightning 
approximations of the form

    
r z c

c

z z s
k

k kk

n

( )
log( )

= +
− −=

∑0
1

(3)

can speed up convergence 
from root-exponential to expo-

1 https://people.maths.ox.ac.
uk/trefethen/lightning.html

nential or exponential-minus-log, i.e., 
O Cn n(exp( / log )).-  The approximations 
take advantage of analyticity on a Riemann 
surface and can be used for analytic con-
tinuation to other Riemann sheets beyond 
the branch cuts. Figure 3 shows an approxi-
mation to the function z1 3/  of this kind with 

n =30, zk= 0, and s n it
k k
= +
1

2
1 2( ) ,

t k n
k
=− + −p p2 1

2
( )/ ,

 
1£ £k n.

It seems that a new era of numeri-
cal computation with rational functions 
and other functions with singularities is 
arriving. This short essay is confined to 
scalar problems, but there are also excit-
ing ongoing developments that involve 
rational functions in large-scale linear 
algebra. Some key names are Athanasios 
Antoulas, Christopher Beattie, Bernhard 
Beckermann, Peter Benner, Vladimir 
Druskin, Serkan Güğercin, Stefan Güttel, 
Leonid Knizhnerman, Eric Polizzi, Valeria 
Simoncini, Alex Townsend, Heather 
Wilber, and Karen Willcox.

This article is based on Nick Trefethen’s 
John von Neumann Prize Lecture at the 2020 
SIAM Annual Meeting,2 which took place 

2 https://www.siam.org/conferences/cm/
conference/an20

Figure 2. Lightning solution to a Laplace problem in an 
octagon by least-squares fitting of boundary data by the 
real part of a rational function with prescribed, exponen-
tially clustered poles (red dots). The name “lightning” 
alludes to the exploitation of the same mathematics that 
leads lightning to strike at sharp points.

virtually this July. Trefethen’s presentation 
is available on SIAM’s YouTube Channel.3 

The figures in this article were provided 
by the author.
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Figure 3. Phase portraits of a degree n =30  reciprocal-log approximation of z1 3/ ,  based on 

least-squares fitting in 1,000 exponentially clustered points on the circle | |z − =
1

2

1

2
 (black 

dots). 3a. On the first Riemann sheet, the maximum error in the region is 2 10 9× − .  3b. On the 
second sheet, the error is 2 10 6× − .

SIAM Conferences, Reinvented
By Richard Moore

Like many of you, I am writing this arti-
cle from a laptop perched on a kitchen 

island that is littered with the remains of 
my children’s breakfasts and a jar of sour-
dough starter, while mentally counting the 
number of Zoom meetings I have today. 
My kids are “in class” on their computers 
in the neighboring room and my wife is 
participating in a department meeting from 
our den. I occasionally check my phone to 
see if my COVID-19 test result has come in 
yet. And I still feel truly fortunate for all of 
these things. This is 2020.

We have all adapted to the new, inconve-
nient, and sometimes tragic circumstances 
brought on by the pandemic, which has 
also disrupted many of SIAM’s programs 
and services — none more so than its 

lineup of conferences. Meetings that took 
place in early 2020 through the end of 
February were all very successful. These 
included the ACM-SIAM Symposium on 
Discrete Algorithms (SODA20), the SIAM 
Symposium on Algorithm Engineering 
and Experiments (ALENEX20), the SIAM 
Symposium on Simplicity in Algorithms 
(SOSA20), the SIAM Symposium on 
Algorithmic Principles of Computer 
Systems (APOCS20), the SIAM Workshop 
on Combinatorial Scientific Computing 
(CSC20), and the SIAM Conference on 
Parallel Processing for Scientific Computing 
(PP20), as well as SIAM programming 
at the 2020 Joint Mathematics Meetings. 
However, COVID-19’s spread through-
out Asia, Europe, and North America led 
the World Health Organization to declare 
a global pandemic on March 11, which 

had immediate consequences for domestic 
and international travel. Since that date, 
all SIAM conferences have been can-
celled, postponed, rescheduled, or pivoted 
to a virtual platform.

Throughout this unprecedented time, we 
have prioritized communication with confer-
ence organizers and the SIAM community. 
In early March, we quickly set up a COVID-
19 response page1 that summarizes the status 
of each conference and the measures that 
SIAM is taking to keep its attendees and 
presenters safe. SIAM senior staff and lead-
ership engaged in several conversations with 
conference co-chairs and Activity Group 
officers to consider options and reassure 
them that we would work together to reach 
the right outcome for each conference while 
keeping everybody safe, addressing the com-
munity’s needs, honoring the hard work of 
the co-chairs and organizing committees, and 
respecting the wide range of challenges that 
members of the SIAM community face as a 
result of the pandemic. The 2020 conference 
calendar2 illustrates these varied outcomes.

The phrase “pivoting to virtual” is new 
for SIAM, and we used the period from 
May to August to experiment with different 
online formats. The co-chairs of the inau-
gural SIAM Conference on Mathematics of 
Data Science (MDS20),3 which was origi-

1 https://sinews.siam.org/Details-Page/
covid19

2 https://www.siam.org/conferences/
archives

3 https://www.siam.org/conferences/cm/
conference/mds20

nally planned for early May in Cincinnati, 
Ohio, decided to offer the invited plenary 
talks and minitutorial sessions via Zoom 
webinars throughout both May and June.4 
These sessions went very well, with a 
peak attendance of over 500 listeners. 
Minisymposium organizers were given the 
opportunity to schedule virtual sessions 
through their own institutional videocon-
ferencing accounts and post these events 
on a spreadsheet that viewers could access 
from the conference website. 64 sets of 
organizers did so, with reported attendance 
as high as several hundred participants. 
SIAM used a similar model for the SIAM 
Conference on the Life Sciences (LS20)5 
and the SIAM Conference on Mathematics 
of Planet Earth (MPE20),6 both of which 
were originally scheduled for early June in 
Garden Grove, Calif., but instead deployed 
in virtual form. LS20 occurred over the 
month of June and MPE20 transpired 
in mid-August. SIAM staff once again 
ran the invited plenary talks and minitu-
torials on Zoom, while minisymposium 
organizers set up their own sessions. 
However, coding changes in SIAM’s 
conference management system allowed 

4 https://sinews.siam.org/Details-Page/
2020-siam-conference-on-mathematics-of-
data-science-a-meeting-goes-virtual

5 https://www.siam.org/conferences/cm/
conference/ls20

6 https://www.siam.org/conferences/cm/
conference/mpe20

See SIAM Conferences on page 5

Figure 1. Lobby space at the Second Joint SIAM/CAIMS Annual Meeting (AN20), which took 
place virtually this July.
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The results that Jordan presented during 
this portion of his talk went well beyond 
this concept and included approaches for 
obtaining rates, backward error results, 
and explicit schemes via the power of 
numerical analysis, symplectic geometry, 
differential manifolds, Hamiltonians, and 
dissipative systems.

Machine Learning and      
Chemical Engineering

Jordan had quite a lot to say about 
his vision of ML as a budding field. His 
first observation pertained to recommenda-
tion systems, wherein a machine offers a 
user a recommendation based on two or 

more choices. However, the ideal approach 
to recommendation varies with different 
applications. Suppose the system recom-
mends the “best” option to every user. If it 
recommends the “best” driving route from 
point A to point B or the “best” restau-
rant to everyone, issues will quickly arise. 
Jordan argues that microeconomics will 
play an upcoming role in these types of 
settings. Traditional markets—while not a 
direct algorithm and not without their own 
issues—are adaptive, robust, and scalable 
in a way that already handles these difficul-
ties; therefore, he believes that researchers 
should consider them as alternatives to 
artificial intelligence (AI).

Jordan was also concerned with the 
increasingly common use of AI-driven deci-
sions in medicine. Suppose that a doctor 
feeds patient data into an AI model that is 
trained to detect a disease and receives a 
numerical score of 0.71, just above thresh-
old 0.70 for positive detection. Should the 
patient receive treatment? Jordan contends 
that one should not utilize such thresh-
olds in isolation. Instead, the doctor should 
account for factors that relate to the data that 
trains the algorithm. Frameworks must also 
be established for practitioners to quickly 
understand how and why the AI system in 
question made its decision, including error 
bars, applicability of the associated study 
data that drives the decision, and so on.

Jordan classified the past decade of ML 
as a “pattern recognition” era, with a focus 
on tasks like speech recognition, computer 
vision, and natural language processing. 
Such algorithms are significantly impact-
ing billions of people around the world. 
The applications to which Jordan alludes, 
as well as others in the area of pattern rec-
ognition, are most transparent in our daily 
lives. However, algorithms that handle loan 
and job applications, predict recidivism, 
and so forth arguably have equal—if not 
more long-term—impacts on society. As 
humanity strives towards an increasingly 
just and equitable future, holistic methods 
will likely be an ongoing research priority.

This article is based on Michael Jordan’s 
invited talk at the 2020 SIAM Conference 
on Mathematics of Data Science (MDS20),1 
which occurred virtually earlier this year. 
Jordan’s presentation is available on 
SIAM’s YouTube Channel.2
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a peculiar form [3]. The analogous rate of 
O t( / )1 2  is again kept.

Given these observations, a motivating 
question for Jordan was whether the results 
could be extended. This was the topic of 
his 2016 paper with Andre Wibisono and 
Ashia Wilson [4]. The group approached 
this query from the perspective of varia-
tional calculus and defined the so-called 
Bregman Lagrangian, from which one can 
build a family of differential equations that 
include gradient flow, accelerated gradient 
flow, and a continuum of other differen-
tial operators. Many interesting details 
are available in this work and subsequent 
studies; for instance, while one can achieve 
exponential convergence rates in continu-
ous time—compared with algebraic rates 
for GD and accelerated GD—the same 
convergence rate provably cannot retain its 
speed after discretization. To provide some 
intuition into this phenomenon, Jordan 
remarked that a bound of O k( / )1 2  for 
discrete convergence rates stems from the 
fact that GD methods will inevitably slow 
down in regions of high curvature.

Optimization Theory
Continued from page 1

that connects the algorithms’ transitions 
between discrete and continuous time. 
Jordan explored this area and compared 
observations about some of the proven 
results. For instance, while GD has an 
asymptotic convergence rate O k( / )1  for 
unconstrained convex optimization (see 
Figure 2), Nesterov demonstrated that 
“accelerated” GD—a two-term method—
has a faster convergence rate of O k( / ).1 2

To unify these and other descent meth-
ods, researchers have been studying the cor-
responding continuous-time flows that are 
associated with a discrete descent method. 
For example, one can understand GD as 
the time discretization of so-called gradi-
ent flow when taking the stepsize b® 0;  
here, one keeps the corresponding “rate” of 
O t( / ).1  Jordan then observed that previous 
work has utilized the same concept to iden-
tify a second-order differential equation that 
corresponds to accelerated GD, which has 

Figure 2. Comparisons between gradient descent (GD) and accelerated GD. The accelerated 
approach has provably faster convergence and limits to an interesting continuous-time flow. 
The differential equation for accelerated GD is courtesy of [3].
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difficult transitions feel like a time of growth 
and opportunity. Given these new modali-
ties of conference participation, SIAM will 
emerge from the era of COVID-19 with an 
expanded global reach and a greater capac-
ity to welcome new voices to the field of 
industrial and applied mathematics.

I look forward to seeing you, online for 
now, at the next SIAM conference!

Richard Moore is the Director of 
Programs and Services at SIAM.

the minisymposium links to be displayed 
through SIAM’s familiar online program.7 

SIAM partnered with a virtual confer-
ence vendor (see Figure 1, on page 3) 
to offer a more complete experience for 
the Second Joint SIAM/CAIMS Annual 
Meeting (AN20)8 and concurrent SIAM 
Conference on Imaging Science (IS20),9 
both originally scheduled for early July in 
Toronto, Canada. The platform allowed 
us to feature 30 invited plenary, prize, 
and minitutorial talks; two career-related 
panel discussions; 154 minisymposia; and 
75 posters, as well as student orientations, 
a student mixer, panel breakout sessions, 
and the Workshop Celebrating Diversity 
“luncheon.” Exhibitors occupied booths in 
the virtual exhibit hall (see Figure 2), and 
the annual SIAM Career Fair took place 
as a one-day virtual event, drawing strong 
international participation from job seekers 
and a solid list of recruiters despite an obvi-
ously difficult hiring season. In total, AN20 
and IS20 attracted over 4,000 registrants 
and nearly 3,000 attendees — a record 
for SIAM conferences. In recognition of 
the challenging circumstances that many 
members of our community are currently 
facing, including reduced access to custom-
ary sources of travel funding, SIAM and its 

7 https://meetings.siam.org/program.
cfm?CONFCODE=ls20

8 https://www.siam.org/conferences/cm/
conference/an20

9 https://www.siam.org/conferences/cm/
conference/is20

leadership decided to forgo registration fees 
for virtual conferences in 2020.

As we look towards an uncertain 2021, 
it has unfortunately become clear that 
the COVID-19 pandemic will continue 
to disrupt travel and gatherings well into 
the new year. As I write this, SODA21, 
SOSA21, ALENEX21, APOCS21, the 
SIAM Conference on Computational 
Science and Engineering (CSE21), the 
SIAM International Conference on Data 
Mining (SDM21), the rescheduled SIAM 
Conference on Mathematical Aspects of 
Materials Science (MS21), and the SIAM 
Conference on Applications of Dynamical 
Systems (DS21) have already pivoted to 
virtual formats.10 The SIAM Conference 
on Applied Linear Algebra (LA21) will be 
either virtual or hybrid. In anticipation of 
a long string of online conferences, SIAM 
has taken the lessons from its 2020 offer-
ings and applied them in a new platform 
that will promote increased interactions 
and networking opportunities, along with 
fully-featured live sessions, poster forums, 
and exhibit halls. Virtual conferences will 
no longer be free in 2021, but SIAM will 
provide as much support as possible to 

10 https://www.siam.org/conferences/calendar

allow students, early-career researchers, and 
others who are suffering hardship to apply 
for fee waivers. We encourage virtual con-
ference attendees with children in need of 
care to apply for SIAM’s child care grants.

Despite its challenges, this year has once 
again reminded me of the wonderful and 
dedicated nature of the people who comprise 
the SIAM community. To the conference 
co-chairs, SIAM leadership, and heroic staff 
with whom I have the pleasure of working: 
you have made a year of uncertainty and 

Figure 2. Exhibitors at the virtual Second Joint SIAM/CAIMS Annual Meeting (AN20), which 
took place this July, occupy space in the exhibit hall.

SIAM Conferences
Continued from page 3

Hearing directly from working pro-
fessionals about research, career oppor-
tunities, and general professional devel-
opment can help students gain a better 
understanding of the workforce. SIAM 
facilitates such interactions through 
its Visiting Lecturer Program (VLP), 
which provides the SIAM community 
with a roster of experienced applied 
mathematicians and computational sci-
entists in industry, government, and 
academia. Mathematical sciences stu-
dents and faculty—in particular, SIAM 
student chapters—can invite SIAM 
VLP speakers to talk about topics that 
are of interest to developing profes-
sional mathematicians. The VLP is a 
valuable resource now more than ever. 
The current climate has caused many 
departments to rethink their procedures, 
so why not host a SIAM visiting lec-
turer for a virtual talk?

The SIAM Education Committee 
sponsors the VLP and recognizes the 
need for all members of our increasing-
ly technological society to familiarize 
themselves with the achievements and 
potential of mathematics and compu-
tational science. We are grateful to the 
accomplished applied mathematicians 
who have graciously volunteered to 
serve as visiting lecturers. 

Things to consider in advance when 
a department decides to host a visiting 
lecturer include the choice of dates, 
speakers, topics, and any additional or 
related activities, such as a follow-up 
discussion. Organizers must make sure 
to address these points when commu-
nicating with a potential lecturer. It is 
important to familiarize speakers with 
their audience—including special inter-
ests or expectations—so that they can 
refine the scope of their talks, but just as 
crucial to accommodate speakers’ sug-
gestions so that the audience can capi-
talize on their expertise and experience.

Read more about the program and 
view the list of speakers online.1

1 https://www.siam.org/students-
education/programs-initiatives/siam-
visiting-lecturer-program

Take Advantage of SIAM’s 
Visiting Lecturer Program
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Who Was Frank Ramsey?
Frank Ramsey: A Sheer Excess of 

Powers. By Cheryl Misak. Oxford 
University Press, Oxford U.K., March 
2020. 544 pages, $32.95.

Frank Plumpton Ramsey was born in 
February 1903 and died in January 

1930, leaving behind a wife and two infant 
daughters. He is remembered as a tower-
ing genius—compared by some to Isaac 
Newton—who made significant contribu-
tions to mathematics, economics, and phi-
losophy during his short life. In Frank 
Ramsey: A Sheer Excess of Powers, Cheryl 
Misak explores his experiences and career.

Ramsey was born into the Cambridge 
branch of what is known as the British intel-
lectual aristocracy. His father Arthur was a 
recognized mathematician who served as 
master (second in command) at Cambridge 
University’s Magdalene College for many 
years. Ramsey’s mother, Agnes Wilson 
Ramsey, was a university graduate at a 
time when few women attended college. 
She was politically liberal and active in 
feminist causes, the latter putting her in 
contact with the mother of John Maynard 
Keynes. Keynes was quick to recognize 
young Ramsey’s remarkable talent and 
made every effort to advance his career.

Ramsey was a schoolroom prodigy who 
stood at the top of virtually every class, 
despite being three years younger than 
most of his classmates. He won prizes at 
Winchester College (read: prep school) 
in Latin, German, and math, the latter of 
which was taught by L.M. Milne-Thomson, 
an emerging expert on fluid mechanics and 
aerodynamics. Ramsey considered him to 
be a “bad teacher and bad explainer,” but 
a generous soul who loaned him books 
like Louis Couturat’s Die Philosophischen 

Prinzipien der Mathematik and Hermann 
Weyl’s Raum, Zeit, Materie. According to 
his diary, those were but two of almost 50 
books that Ramsey read between January 
and March during his final 
year at Winchester.

Even before his last 
year at the school, Ramsey 
was well acquainted with 
Principia Mathematica, a multi-volume 
treatise by Alfred North Whitehead and 
Bertrand Russell on the foundations of 
mathematics. Fascinating though it was, 
it seemed to raise more questions than it 
answered. However, 
it did ignite Ramsey’s 
lifelong interest in the 
foundations of math-
ematics, econom-
ics, probability, and 
knowledge itself. The 
latter topic belongs 
to philosophy, and 
it is as a philosopher 
that Ramsey is best 
remembered today.

Upon graduat-
ing from Winchester 
in 1920, Ramsey 
enrolled in Trinity 
College, Cambridge 
to study mathematics. 
At Keynes’ behest, 
he was soon invited 
to join the Apostles, 
a somewhat elite 
debating society at 
the university. He 
also explored several other undergrad-
uate debating societies that dotted the 
Cambridge landscape, including the famed 
Cambridge Union. It was their debates, 

which primarily consisted of aspiring poli-
ticians, that Ramsey found uninteresting; 
Keynes’ Political Economy Club and the 
so-called “Heretics Society” were more 

to his liking. He spoke and/
or “read papers” at a num-
ber of the meetings before 
confiding to his diary that 
he loathed his “perverted 

ambition” to excel at debating merely 
for “recognition.” The purpose of debate, 
Ramsey felt, was to generate insights that 
might lead listeners a bit closer to whatever 
truth they were seeking. He also attended 

almost every meet-
ing of a socialist 
organization known 
as CUSS during his 
first year at school.

Ramsey met 
most of his lifelong 
friends at Cambridge, 
including his even-
tual wife. She was 
the treasurer of the 
Heretics Society, and 
he thought her both 
beautiful and “nice” 
upon their first meet-
ing. They did not get 
together right away 
but remembered each 
other well when their 
paths crossed again.

When he first 
arrived at Cambridge, 
Ramsey was seri-
ously considering a 

career in economics. However, he was soon 
persuaded that there was more glory—
and more lasting glory—in the venerable 
Mathematical Tripos. While a mind like 

his might exhaust a subject like econom-
ics in just a few years, math would always 
provide appropriately daunting challenges. 
As such, Ramsey chose to pursue a degree 
in—and later teach—mathematics, all 
while dabbling in economics, probability, 
and whatever else caught his fancy. But his 
passion was always philosophy, and he had 
hoped to complete his magnum opus in this 
subject by the age of 30.

As an undergraduate, Ramsey was asked 
to translate Ludwig Wittgenstein’s all 
but incomprehensible Tractatus Logico-
Philosophicus into English. Upon seeing 
the result, Wittgenstein declared Ramsey 
to be the only person in the world who 
understood his book. After finishing 
the Tripos in 1923, Ramsey travelled to 
Vienna. There he met Wittgenstein, was 
befriended by several members of the 
wealthy Wittgenstein family, and under-
went psychoanalysis (by an associate of 
Sigmund Freud) to relieve him of his 
anxieties concerning sex. Ramsey became 
a fellow of Kings College in 1924, was 
appointed as a university lecturer in math-
ematics in 1926, and later became Director 
of Mathematical Studies.

Misak, a professor of philosophy at 
the University of Toronto, is eminently 
qualified to comment on Ramsey’s phi-
losophy, his life and times, the circum-
stances surrounding his untimely death, 
and his on-again-off-again relationship 
with Wittgenstein. She does all of this 
in welcome detail. However, she is not a 
mathematician, economist, or expert in 
probability and has therefore enlisted sev-
eral specialists in Ramsey’s fields to pro-
vide brief summaries of his more lasting 

BOOK REVIEW
By James Case

Frank Ramsey: A Sheer Excess of 
Powers. By Cheryl Misak. Courtesy of 
Oxford University Press.

See Frank Ramsey on page 9
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including decision trees, random forests, 
and neural networks. The neural networks 
provided a marginally better performance 
than the random forest approach, and deci-
sion trees performed the worst.

Moving beyond these initial models, we 
developed a workflow in which ML-based 
upscaling methods feed into a continuum-
scale Lagrangian simulator called FLAG 
[2, 4, 7]. While the upfront cost of gen-
erating the training data for this type of 
ML model can be expensive, every con-
tinuum-scale simulation that utilizes the 
ML upscaling experiences computational 
savings afterwards. This workflow has 
produced a continuum-scale simulator that 
is both accurate and faster by three to four 
orders of magnitude [2].

Scale-bridging with Machine Learning to 
Characterize Brittle Damage and Failure
By Gowri Srinivasan, Daniel 
O’Malley, and Maria Giselle 
Fernandez

Many engineering applications uti-
lize brittle materials—such as glass, 

ceramics, graphite, concrete, and some met-
als like beryllium—for their stiffness, light-
weight properties, and ability to maintain 
their shapes at extreme temperatures. For 
example, beryllium is particularly useful 
in defense and aerospace applications for 
building lightweight instruments with high 
precision and controlling fission reactions. 
Concrete, on the other hand, is widely used 
in civil applications as the primary sub-
stance for buildings and bridges. Though 
brittle materials have many desirable prop-
erties, they are also prone to catastrophic 
failures that arise because the materials 
can handle only some elastic deforma-
tion and almost no plastic deformation. 
Instead of bouncing back (elastic behavior) 
or permanently deforming (plastic behav-
ior), brittle materials fail with little warn-
ing. Understanding the mechanisms that 
cause them to fail is imperative for avoiding 
accidents that can jeopardize the safety and 
security of people and systems.

Brittle materials fail through the nucle-
ation, evolution, and coalescence of micro-
cracks. Figure 1 displays the aftermath of 
several experiments wherein one beryllium 
disc crashed into another at an extreme 
speed [1], revealing a handful of large, 
readily-visible cracks. The finite-discrete 
element method (FDEM) is ideally suited 
for modeling crack dynamics at the meso-
scale, since the finite elements describe 
intact cells in the material and the dis-

crete elements characterize the cracks (void 
space). Researchers at Los Alamos National 
Laboratory (LANL) have developed an 
FDEM solver—the Hybrid Optimization 
Software Suite (HOSS)—that models the 
evolution of many cracks and generates 
an accurate prediction of the failure path 
and failure time. Unfortunately, the cost 
associated with these simulations can be 
enormous. For example, performing just 
a single simulation may be unmanage-
able at large spatial or temporal scales, 
even with high-performance computing 
resources. And performing many simu-
lations for optimization or uncertainty 
quantification can be problematic at more 
modest scales. Continuum model simu-
lations provide a relatively inexpensive 
alternative. However, these simulations 
sacrifice the ability to track each crack for 
computational efficiency by homogenizing 
microcrack information through upscaled 
parameters. This upscaling process is sci-
entifically challenging, as it tends to lose 
crucial information that is related to the 
structure and evolution of cracks.

Machine learning (ML) is well-suited 
for modeling the dynamics of systems 
where phenomena at smaller length scales 
significantly impact the larger scales of 
interest [6]. Access to sufficient ground 
truth data for validation—in terms of 
experimental evidence and mechanistic, 
lower-length scale models—renders ML 
a powerful tool for scale-bridging appli-
cations. Here, ML offers the tantalizing 
possibility of learning about crack evolu-
tion and coalescence via time series data 
from high-fidelity FDEM simulations. 
This data can inform a variety of ML 
models that predict damage characteristics 

in brittle materials—such 
as where and when materi-
als will fail—and deliver 
additional information 
about stress, strain, and 
individual cracks.

Recent research has uti-
lized ML to model brittle 
materials that undergo low 
strain rate dynamic ten-
sile loading [3, 5]. Tensile 
loading refers to a load that 
pulls an object apart (like 
the rope in a tug-of-war 
game), and low strain rate 
conditions result from the 
slow application of tensile 
loading. We simulated a 
concrete plate ( )2 3m m´  
whose upper edge moves 
upward at a speed of 
0.3 m/s, resulting in a low 
strain rate of 0 1 1. .s-  The simulation, 
which we performed in two dimensions 
using the FDEM code, has 20 initial 
cracks with identical length (30 cm),  ran-
dom uniform location, and three different 
possible orientations. We then explored 
multiple conceptual approaches to predict 
the path of failure when compared with the 
expensive FDEM code (HOSS). The best 
of these approaches, called Microcrack 
Pair Informed Coalescence (McPIC), 
treats each crack as a node in a dynamic 
graph where the presence of edges indi-
cates the coalescence of two cracks. The 
model predicts two things: (i) whether two 
cracks will coalesce, and (ii) the timing of 
the coalescence if they do. The develop-
ment of McPIC involved an investiga-
tion of several supervised ML algorithms, 

Figure 1. Beryllium disc fragments that result from high-
velocity impact. Figure courtesy of [1].

See Scale-bridging on page 11
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achievements. Perhaps the most interesting 
of these, at least for SIAM members, was 
written by the late Ron Graham1 about 
“Ramsey theory,” which builds on a theo-
rem that Ramsey proved in a paper pub-
lished posthumously in 1931. One of the 
theory’s consequences concerns a complete 
graph on n-vertices, each edge of which 
is colored either red or blue. If n ³6,  one 
of the triangles in the graph must be either 
all red or all blue. Thus, 6 is the “Ramsey 
number” for the monochromatic triangle 
property; n ³18 for the monochromat-
ic quadrilateral and 43 48£ £n  for the 
monochromatic pentagon. Graham asserts 
that there seems to be little hope of any-
one ever finding the Ramsey number for 
monochromatic hexagons. Other Ramsey 
numbers, associated with additional graph-
theoretic properties, have been found. The 
subject lay largely dormant until 1947, 
when Paul Erdős introduced his power-
ful “probabilistic method” for establishing 
bounds for Ramsey numbers on graphs.

Another summary concerns Ramsey’s 
paper on “Truth and Probability,” also 
published posthumously in 1931. Ramsey 
argued that one need not infer probabili-
ties from a record of past events when 
placing bets on the occurrence of one or 
more inherently unpredictable eventuali-
ties, such as the potential orders of finish 
in a horse race. Subjective probabilities are 
simply numbers that are meant to reflect 
a person’s degree of confidence that a 
certain event or combination of events 
will occur. A carelessly formulated (i.e., 
internally inconsistent) list of probabilities 
is all but certain to include the ingredi-
ents of a Dutch book — a combination 
of wagers that guarantee the bettor a sure 
profit. There will be no such book only if 
the assigned probabilities obey Bayes’ rule 
P A B P A B P B( & ) ( | ) ( )=  for each pair 
( , )A B  of potential outcomes. Although 
Bruno de Finetti is usually credited for this 
observation, careful scholarship reveals 
that Ramsey got there first!

Ramsey’s two contributions to econom-
ic theory were just as pathbreaking and 
are equally well described by guest com-
mentators. The first concerned an optimal 
tax code—one that raises a target amount 
of revenue with minimal damage to public 
utility (also known as satisfaction)—while 
the second identified an optimal alloca-
tion of current national income between 
present consumption and future invest-
ment. Both ideas were too mathematical 

1 https://sinews.siam.org/Details-Page/
obituary-ronald-lewis-graham

to be understood by economists of the 
day (the first utilized a Lagrange multi-
plier and the second employed the calculus 
of variations). However, thanks to later 
economists who rediscovered them in the 
aftermath of World War II, the concepts 
are now recognized precursors of pres-
ently active subdisciplines.

To address Ramsey’s findings in the 
field of philosophy, Misak quotes several 
living philosophers, all of whom arrived 
at some illuminating new insight — only 
to find that Ramsey had beaten them to it. 
She has crafted the sort of in-depth intel-
lectual biography that, regrettably, will 
likely never be written about John von 
Neumann. Having been born in the same 
year, the two were almost exact contempo-
raries and were launched on parallel career 
tracks by the time of Ramsey’s death in 
1930. Ramsey was a don at age 21 and 
von Neumann was the youngest privat-
docent in German history. It was possible 
for Misak to write such a book because 
interviews that were recorded more than 40 
years ago for a never-written biography of 
Ramsey remain intact, and because many 
of the notes he exchanged with friends and 
colleagues are preserved. It seems implau-
sible that one could assemble a similar 
trove of material on von Neumann.

It is interesting to speculate about the 
path that history might have taken if 
von Neumann had died in 1930 while 
Ramsey lived on. They shared an interest 
in the foundations of mathematics, and 
Ramsey likely would have been just as 
quick as von Neumann to appreciate the 
significance of Kurt Gödel’s theorems. He 
would also have known of Alan Turing’s 
solution to the Entscheidungsproblem, on 
which he himself had already begun to 
work. Ramsey would almost certainly 
have been assigned to the code-breaking 
unit at Bletchley Park—along with Turing, 
his teacher Max Newman, and several 
Cambridge colleagues—after the outbreak 
of World War II. While there, he would 
surely have been cognizant of Colossus, 
the world’s first fully programmable com-
puter. But unlike von Neumann, he would 
not have been at Los Alamos to work on 
the atom bomb, and his interest in com-
puter development might or might not 
have survived the war.

All that aside, Misak has written a 
splendid biography of a rare genius who 
might have accomplished far more had 
he been granted his biblical three score 
years and ten.

James Case writes from Baltimore, 
Maryland.

Heron’s formula gives the area A  of a 
triangle with sides a b c, , :

(1)A s s a s b s c= − − −( )( )( ),

where s a b c= + +
1

2
( )  is the semiper-

imeter. Most proofs hide the 
simple reason for this result.  
This reason is twofold:

1. An observation that A2 
is a polynomial of degree 4 
in a b c, , .

2. A2 0=  if the triangle 
degenerates into a point or a segment, i.e., 
if a b c+ + = 0 or if a b c+ −  or any of 
its cyclic permutations vanish.

Taking (1) for granted for the moment, 
(2) implies that

A k a b c a b c2= + + + −( )( )
(2)

( )( ),b c a c a b+ − + −

where the unknown constant k  is inde-
pendent of a b c, , .  To find k,  we apply 
(2) to a right triangle with sides 1, 1, 2, 
thus obtaining

         
 

1

2

2

2 2 2 2 2 2







 = + −k( )( ) ,

or k =1 24/ . With this value, (2) 
becomes Heron’s formula (1).

To justify (1), we write

   A a b2 2 2 2= =sin q
   a b a b2 2 2 2 2- cos ,q

where by the theorem of cosines 
4 2 2 2 2 2 2 2a b c a bcos ( ) .q= − −  Observation 
(2) allowed us to avoid the algebra of 
factoring A2.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

A Simple Derivation 
of Heron’s Formula

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Frank Ramsey
Continued from page 6
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By Donald G. Saari

T he following is a short reflection 
from the author of Mathematics 

Motivated by the Social and Behavioral 
Sciences, which was published by SIAM in 
2018 as part of the CBMS-NSF Regional 
Conference Series in Applied Mathematics.

The title of my 2018 book, Mathematics 
Motivated by the Social and Behavioral 
Sciences, may seem like an oxymoron 
to many readers. But given that serious 
problems in the social and behavioral 
sciences confront us on a daily basis, 
the title actually reflects an important 
invitation for more mathematicians to 
get involved with this area of research. 
My book, which captures portions of my 
Conference Board of the Mathematical 
Sciences (CBMS) lectures on this general 
topic, identifies several relevant challeng-
es. As I state in the preface:

“The mathematics needed to advance the 
social and behavioral sciences most surely dif-
fers from what has proved to be successful 
for the physical sciences. Remember, a strong 
portion of contemporary mathematics reflects a 
fruitful symbiotic relationship enjoyed by math-
ematics and the physical sciences over a couple 
of millennia: Advances in one area motivated 
advances in the other. As it must be expected, 
this intellectual relationship shaped some of our 
mathematics and influenced the way in which 
certain physical sciences are viewed. Centuries 
of experimentation in the physical sciences, 
for instance, led to precise measurements and 
predictions, which motivated the creation of 
mathematical approaches, such as differential 
equations, that allow precision predictions.

As fully recognized, it is unrealistic to 
expect “precise” predictions for many issues 
in the social and behavioral sciences. But 
researchers have access only to limited number 
of mathematical approaches, where favorite 
choices for theoretical models tend to involve 
methods designed for precision predictions 
— not much else is available. This comment 
underscores the need to develop appropriate 
mathematical tools that, rather than designed 
for exactness, reflect the current status for 
much of the social and behavioral sciences, 
which requires qualitative predictors.”

These sentiments lead to chapter one: 
“Evolutionary Game Theory.” The social 
and behavioral sciences are dominated 
by change. Everything changes: opin-

standard mathematical way of identifying 
a system’s characteristics involves the use 
of linear approximations of derivatives, 
tangent spaces, and so forth.

An examination of voting systems might 
seem mathematically trivial. After all, com-
monly used voting rules just sum ballots; 
what can go wrong? This question reflects 
my seriously mistaken initial attitude. A 
clue should have come from actual events 
with pundits wondering, “How did so-
and-so win the election?” In fact, a telling 
measure of the intricacies of paradoxical 
outcomes is that one can use the com-
plexity of chaotic dynamics to identify 
the characteristics, number, and types of 

these mysteries! The dif-
ficulties are mind boggling 
(a more detailed description 
is available in section 2.3 
of my book); using a thou-
sand of the fastest comput-
ers, it would be impossible 

to count (not even list) the plurality vote 
paradoxical outcomes that arise with only 
eight candidates — even if the counting had 
started at the Big Bang.

These troubling, unanticipated behaviors 
help identify unexpected properties of other 
aggregation tactics. Understanding para-
doxical behavior in voting provides guide-
lines for the discovery of similar actions 
in aggregation methods, ranging from 
bizarre features of the aggregate excess 
demand function in Adam Smith’s supply-
and-demand story to puzzling behavior in 
nonparametric statistics. Chapters three and 
four address a selection of these topics.

Now I’ll move to a different subject. When 
introducing vectors or eigenvectors to my 
students, I always confess that there are far 
too many vectors—even in just two dimen-
sions—for one to intimately know them 
all. A convenient approach is to become 
acquainted with carefully selected choices, 
such as i, j or the eigenvectors, and then 
describe all other vectors in terms of their 
relationship to our newly acquired friends.

This commentary reflects the common 
mathematical methodology of dividing a 
construct into component parts to clarify 
the analysis. Although researchers apply 
aspects of this useful approach to differ-
entiate features of observations in areas 
like psychology, it has not been generally 
adopted to address mathematical concerns 
in the social and behavioral sciences. The 

strong advantages of doing so are themes 
of chapters four and five. To ensure con-
sistency in the described topics, my illus-
trating choices come from the first two 
chapters; I demonstrate how one can use 
symmetries to decompose voting rules and 
games (many of the game theory results 
involve joint work with Dan Jessie). Both 
decompositions significantly simplify the 
discovery of new conclusions.

The final chapter of my book address-
es the customary reductionist approach; 
all readers are likely familiar with this 
whole-parts system analysis. This realis-
tic approach handles a complex problem 
by dividing it into tractable parts, solving 
the questions that each part poses, and 
assembling the answers into a solution 
for the whole. Although it is widely used, 
the reductionist approach can suffer seri-
ous, unexpected problems. As outlined at 
the end of the concluding chapter, many 
of the complexities that I describe in my 
book reflect unanticipated consequences 
of this method. The positive angle is that 
understanding the source of the difficul-
ties helps us identify the causes of many 
complexities that the social and behav-
ioral sciences face. This description of 
“what can go wrong” extends to shed 
light even on problems from engineer-
ing and the physical sciences, such as 
the compelling dark matter mystery of 
astronomy. Comprehending the causes 
of problems focuses our attention in a 
search for resolutions.

My hope is that readers of this book will 
join me in exploring the mysteries of the 
social and behavioral sciences.

Enjoy this article? Visit the SIAM book-
store1 to learn more about Mathematics 
Motivated by the Social and Behavioral 
Sciences2 and browse other SIAM titles.

Donald G. Saari is a distinguished 
research professor and director emeritus of 
the Institute for Mathematical Behavioral 
Sciences at the University of California, 
Irvine. His research interests range from 
the Newtonian N-body problem to voting 
theory and evolutionary properties of the 
social and behavioral sciences.

1 https://my.siam.org/Store
2 https://my.siam.org/Store/Product/

viewproduct/?ProductId=29437132

ions, economics, politics, and preferenc-
es. Because the best way to model this 
phenomenon is unclear, researchers rarely 
examined “change” — until recently. Much 
like the story of a drunk who is searching 
around a streetlight for the keys he lost else-
where because “the light is better here,” we 
tend to emphasize things that can be ana-
lyzed with currently available techniques. 
We seek results where there is sufficient 
“light,” such as attempting to find equilibria 
without any knowledge or exploration of 
the associated dynamics.

Multiple factors—including a lack of 
reliable information—hinder our under-
standing of how to model change. In many 
cases, that which is best 
known reflects behavior in 
specialized, local settings. 
The qualitative approach that 
I develop in the first chapter 
thus emphasizes the way in 
which one can connect local 
information with a global dynamic. Because 
we know so little about the dynamics, 
we should keep the emphasis on qualita-
tive modeling — wherein refinements must 
come from the host area data.

Adam Smith’s invisible hand metaphor, 
which is a supply-and-demand aggrega-
tion process that combines the economic 
agents’ preferences and resources, serves 
as another example. The key word of 
“aggregation” is central across the social 
and behavioral sciences. Statistical meth-
ods, probabilistic predictions, migration, 
social movements, political processes, and 
so on all involve aggregations for which 
even reasonably correct assertions require 
sound methods. But to the best of my 
knowledge, there is no complete and gen-
eral mathematical analysis that describes 
the potential pitfalls of aggregation rules 
and explores what can go right or wrong.

An obvious obstacle is the overwhelming 
number of dissimilar aggregation approach-
es that cloud the issue. One can handle 
this problem by embracing Occam’s razor, 
which in contemporary terms is the KISS 
philosophy (“Keep it simple, stupid”). My 
initial emphasis in chapter two was there-
fore to examine a particular aggregation 
class: voting methods. These methodologies 
are often linear aggregations, meaning that 
we can reasonably expect the successful 
transfer of any resulting lessons to more 
complicated settings. This is because a 

Mathematics and the Social and Behavioral Sciences

FROM THE SIAM 
BOOKSHELF

By Ken Boyden

The generosity of the SIAM community 
has never been clearer—or more need-

ed—than during the challenges that we have 
faced together in 2020. Since its incorpora-
tion in 1952, SIAM members have led with 
the vision that applied mathematics and com-
putational science are vital to the advance-
ment of humankind, both through research 
and solving problems in our society and in 
business, industry, and government. As we 
continue to navigate our way through dif-
ficult times in the present day, your work has 
never been more important — and your sup-
port of SIAM has never been more crucial. 

Charitable donations in 2020 have been 
impressive, impactful, and inspiring. The  
dedication of SIAM’s members and friends 
remains at the very foundation of our com-
munity, as evidenced by the numerous mem-
bers who reliably make annual contributions 
to support SIAM’s greatest needs. We are 
also exceedingly grateful for the outpouring 
of support after the Board’s recent estab-
lishment of the James Crowley Endowed 
Fund for Student Support,1 which honors 

1 https://sinews.siam.org/Details-Page/
new-james-crowley-endowed-fund-for-
student-support

and challenge, a profound truth gives us 
hope: the collective SIAM community has 
an extraordinary impact on society. SIAM 
remains a valuable resource to our mem-
bers through its achievements in education, 
publications, collegiality, the promotion of 
research, and more. 2020 has proven that 
SIAM also provides our members with cer-
tainty in uncertain times.

As we look forward to 2021 with enthu-
siasm, gratitude, hope, and the conviction 
that SIAM will continue to fulfill our mis-
sion, we express thanks to our community. 
Our conferences, publications, geographic 
sections, activity groups, networking and 
collaboration opportunities, prizes and award 
programs, and student support—including 
travel, scholarship, and mentorship opportu-
nities—distinguish SIAM from other organi-
zations. While anticipating 2021 and reflect-
ing upon SIAM’s value to your own career, 
please consider supporting SIAM by making 
a charitable gift to your society. Gifts can 
be made at www.SIAM.org/donate. If you 
prefer, you can of course also mail a check 
addressed to SIAM at 3600 Market Street, 
6th Floor, Philadelphia, PA 19104 U.S.

However, if you decide that you would 
like to speak confidentially about making an 
impact on the future wellbeing of SIAM and 

our numerous programs through an estate 
gift, please email me directly at boyden@
SIAM.org. Gifts that are made through 
bequests, charitable trusts or annuities, 
and transfers of real estate or appreciated 
securities are impactful and important to 
SIAM and our community. 2020 demanded 
that we all make countless sacrifices in 
many different ways; SIAM itself adjusted 
throughout the course of the year to best 
ensure that our values, service, and member 
support remained resilient.

If you appreciate the impact that SIAM’s 
strategic international initiatives have 
made to strengthen both your career and 
the global landscape of applied mathemat-
ics and computational science, please make 
a gift before the close of 2020 to support 
our work in 2021.

At long last, our hindsight is finally 
2020. Yet because of our members and 
our unyielding commitment to lead, 2021 
promises to be a year of renewed success 
and leadership. On behalf of the SIAM 
Board, Council, staff, members, and student 
beneficiaries, thank you for your considered 
financial support and association.

Ken Boyden, Esquire is the Director 
of Development and Corporate Relations 
at SIAM.

the extraordinary career of recently-retired 
SIAM executive director Jim Crowley.2

As we approach the new year prepared 
to face new realities and challenges, your 
support remains just as essential to our mis-
sion, members, students, and society. SIAM 
is an organization that is built to tackle both 
important issues and the complex condi-
tions that encompass them. 2021 also cele-
brates the beginning of the exciting tenure of 
Suzanne Weekes as SIAM’s third executive 
director.3 It is remarkable to note that despite 
SIAM’s nearly 70-year history, Dr. Weekes 
now joins the staff as only the third leader of 
our organization. Clearly the future is bright.

Mark Twain is frequently credited with 
the succinct observation that “History 
doesn’t repeat itself, but it often rhymes.” 
This past year has reminded us that the 
world suffered through a 1918 influenza 
pandemic that was in many ways similar 
to COVID-19. However, the ongoing pan-
demic threat yet again reiterates the fact 
that humankind is resilient, robust, and 
resurgent. In these times of great change 

2 https://sinews.siam.org/Details-Page/
executive-director-jim-crowley-retires-after-
25-years-of-siam-leadership

3 https://sinews.siam.org/Details-Page/
dr-suzanne-l-weekes-named-siam-executive-
director

At Last, Our Hindsight is Truly 2020
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Dartmouth College
Department of Mathematics

The Department of Mathematics at Dartmouth 
College is delighted to announce a senior opening 
in applied mathematics at the rank of professor or 
associate professor, with initial appointment as 
early as 2021-2022, as the Jack Byrne Professor 
or Associate Professor of Applied Mathematics. 
In exceptional circumstances, we may consider 
an appointment at the associate professor level. 
A Ph.D. in mathematics, statistics, or a related 
field is required. We seek an acknowledged inter-
national leader in applied mathematics with an 
exemplary track record in creating mathematical 
and statistical methodological advances and their 
applications. Current applied and computational 
interests in the department include complex sys-
tems, computational social sciences, image and 
signal processing, mathematical biology, network 
analysis, statistical learning, stochastic processes, 
and uncertainty quantification. Our strength in 
applied mathematics is complemented by strength 
in several areas of theoretical mathematics.

This position is part of the larger “Byrne 
Cluster,” which comprises two positions in the 
Department of Mathematics and a recent senior 
hire in decision sciences in Dartmouth’s top-
ranked Tuck School of Business. The Byrne 
Cluster represents a new investment in the depart-
ment’s continued efforts to expand its research 
endeavors and related pedagogy in applied math-
ematics. We seek a candidate with a demon-
strated ability to work across fields and bridge 
multiple research areas both inside and outside 
the Department of Mathematics, specifically 
including the Byrne Cluster member of the Tuck 
School. The Byrne Cluster comes with program-
matic funds to support these interdisciplinary 
goals. In addition to research qualifications, 
candidates should have a keen interest and dem-
onstrated excellence in teaching and mentorship 
of both undergraduates and graduate students.

Applicants should apply online at www.
mathjobs.org, Position ID: APAM #16253. 
Applications received by December 15, 2020 
will receive first consideration. For more infor-
mation about this position, please visit our 
website: https://www.math.dartmouth.edu/
activities/recruiting. 

Dartmouth is highly committed to fostering 
a diverse and inclusive population of students, 
faculty, and staff. We are especially interested 
in applicants who are able to work effectively 
with students, faculty, and staff from all back-
grounds—including but not limited to racial 
and ethnic minorities, women, individuals who 
identify with LGBTQ+ communities, individuals 
with disabilities, individuals from lower-income 
backgrounds, and/or first generation college 
graduates—and who have a demonstrated abil-
ity to contribute to Dartmouth’s undergraduate 
diversity initiatives in STEM research, such 
as the Women in Science Project, E.E. Just 
STEM Scholars Program, and Academic Summer 

Undergraduate Research Experience (ASURE). 
Applicants should state in their cover letter how 
their teaching, research, service, and/or life expe-
riences prepare them to advance Dartmouth’s 
commitments to diversity, equity, and inclusion.

New Jersey Institute of Technology
Department of Mathematical Sciences

The Department of Mathematical Sciences at 
the New Jersey Institute of Technology (NJIT) 
invites candidates to apply for one of our doctoral 
program tracks: (1) applied mathematics or (2) 
applied probability and statistics. The depart-
ment’s research focus spans scientific computing, 
fluid dynamics, materials science, wave propa-
gation, applied analysis, mathematical biology 
and computational neuroscience, and applied 
probability and statistics, including biostatistics 
and data science. We offer teaching and research 
assistantships, which include a tuition waiver, 
a competitive stipend starting at $24,500 per 
academic year, and—pending funding availabil-
ity—at least $3,000 in summer support. The 
application target date is December 25, 2020, 
but review will be ongoing until all available 
positions are filled.

To apply, go to https://www.njit.edu/gradu
atestudies/department-mathematical-sciences.

For more information, please email us at math@
njit.edu and cc shahriar.afkhami@njit.edu.

A Simple Proof of                 
Fermat’s Last Theorem?

Some time ago, while working on a very dif-
ficult math problem, it occurred to me that one 
could also apply the strategy that I was using to 
find a possible simple proof of Fermat’s Last 
Theorem (FLT). In brief, the strategy is as follows:

Assume that a counterexample x y zp p p+ =  
to FLT exists, where x, y, z,  and p  are positive 
integers and p  is a prime — the smallest such 
prime, in fact.

Write this equation as x y zp p p+ − = 0.
One can then express this equation as 

the inner product < − − −( , , ),( ) ( ) ( )x y zp k p k p k

(( , , ( )) ,x y zk k k− >= 0  where 1 1<= <= −k p( ). 
Exploit some of the facts that follow. 

I welcome comments on “First Approach” 
in the “…Inner Products” section referenced in 
“Important Note” on the first page of the first part 
of “Is There a ‘Simple’ Proof of Fermat’s Last 
Theorem” on occampress.com. Each approach 
uses only freshman-math-major mathemat-
ics. I guarantee complete confidentiality in all 
communications.

My degree is in computer science, and for most 
of my career I have been a researcher in the com-
puter industry. Wiles’ proof in the early 1990s of 
the part of the Shimura-Taniyama Conjecture that 
implies FLT was well over 100 pages of some of 
the most sophisticated mathematics of its time. I 
hence believe that it is natural to wonder if there 
might not be a simpler proof.

— Peter Schorer, peteschorer@gmail.com

Send copy for classified advertisements and announcements to marketing@siam.org. 
For rates, deadlines, and ad specifications, visit www.siam.org/advertising.

Students (and others) in search of information about careers in the mathematical 
sciences can click on “Careers” at the SIAM website (www.siam.org) or proceed 

directly to www.siam.org/careers.

Professional Opportunities 
and Announcements

At LANL, our workflow is of particular 
interest for high strain rate scenarios that 
occur during explosions. High-impact veloc-
ities (sometimes on the order of 1 km/s) 
produce a high strain rate. Figure 2a depicts 
the setup for a flyer plate experiment wherein 
the flyer plate crashes into the target plate 
with an impact velocity of 721 m/s.

A critical insight during the development 
of the upscaling ML model was the obser-
vation that a small set of features could 
accurately inform the continuum-scale 
model. In our case, the two key features 
were the maximum stress and length of the 
longest crack. We took this into account 
while also acknowledging that the full crack 
length distribution, crack orientations, and 
stress fields at the microscale do not seem 
to play a substantial role in this setting. 
The combination of ML upscaling and the 
continuum scale model FLAG, referred to 
as FLAG-ML, was able to make predictions 
as accurately as HOSS. FLAG-ML also 
showed good agreement with experiments 

that utilized an impact velocity that was 
approximately 73 percent faster than the 
HOSS simulations that we used for train-
ing. Figure 2b shows the ML prediction for 
the shock wave velocity at the bottom of 
the target plate as a function of time. The 
ML emulator was trained with the HOSS 
simulation data of a 0 721. km/s  flyer 
plate impact, and FLAG-ML was validated 
against experiments for which the flyer 
plate impact velocity was 1 2. .km/s  This 
powerful result could enable transfer learn-
ing — the application of an ML model that 
is trained for a particular problem to a simi-
lar but somewhat different problem.

The relentless growth of computational 
power over the past several decades has 
enabled the use of detailed, high-fidelity 
simulations. Now it employs a large amount 
of data to drive the training of fast ML mod-
els. Scientists often exploit data from high-
fidelity simulations to train these ML mod-
els; this dynamic can influence the study of 
material behavior under extreme loading 
conditions, as the fast ML models are able 
to bridge scales. While significant progress 
has occurred in this field, the work is repre-

sentative of a new beginning in upscaling 
and scale-bridging. Researchers tradition-
ally had to perform years of in-depth studies 
to upscale complex phenomena, sacrificing 
accuracy for efficiency through approxi-
mations that neglect known physics. ML 
provides an alternative that can exchange 
people-years for central-processing-unit-
years. Although this assertion does not 
downplay the importance of the traditional 
tactics, there are grounds for optimism that 
a data-centric ML approach will offer solu-
tions to challenging problems.

References
[1] Cady, C., Adams, C., Prime, M., 

Hull, L., Addessio, F., Bronkhorst, C., …, 
Brown, D. (2011). Characterization of 
S200-F beryllium using shock loading and 
quasi-static experiments. (Technical Report 
LA-UR-11-06976). Los Alamos, NM: Los 
Alamos National Laboratory.

[2] Fernández-Godino, M.G., Panda, 
N., O’Malley, D., Larkin, K., Hunter, A., 
Haftka, R.T., & Srinivasan, G., (2021). 
Accelerating high-strain continuum-scale 
brittle fracture simulations with machine 
learning. Comput. Mater. Sci., 186, 109959.

[3] Hunter, A., Moore, B.A., Mudunuru, 
M., Chau, V., Tchoua, R., …, Srinivasan, 
G. (2019). Reduced-order modeling through 
machine learning and graph-theoretic 
approaches for brittle fracture applications. 
Comput. Mater. Sci., 157, 87-98.

[4] Larkin, K., Rougier, E., Chau, V., 
Srinivasan, G., Abdelkefi, A., & Hunter, 
A. (2020). Scale bridging damage model 
for quasi-brittle metals informed with 
crack evolution statistics. J. Mechan. Phys. 
Solids, 138, 03921.

[5] Moore, B.A., Rougier, E., O’Malley, 
D., Srinivasan, G., Hunter, A., & 
Viswanathan, H. (2018). Predictive model-
ing of dynamic fracture growth in brittle 
materials with machine learning. Comput. 
Mater. Sci., 148, 46-53.

[6] Srinivasan, G., Hyman, J.D., Osthus, 
D.A., Moore, B.A., O’Malley, D., Karra, S., 
…, Viswanathan, H.S. (2018). Quantifying 
topological uncertainty in fractured systems 
using graph theory and machine learning. 
Sci. Rep., 8, 11665.

[7] Vaughn, N., Kononov, A., Moore, B., 
Rougier, E., Viswanathan, H., & Hunter, A. 
(2019). Statistically informed upscaling of 
damage evolution in brittle materials. Theor. 
Appl. Fracture Mechan., 102, 210-221.

Gowri Srinivasan is the Verification 
and Analysis group leader in the X 
Computational Physics Division at Los 
Alamos National Laboratory (LANL). 
Her research interests include uncertain-
ty quantification and machine learning. 
Daniel O’Malley is a staff scientist in the 
Earth and Environmental Sciences divi-
sion at LANL. Maria Giselle Fernandez 
is a staff scientist at Lawrence Livermore 
National Laboratory.

Figure 2. High strain rate simulations. 2a. Setup for the flyer plate test simulations. The flyer 
plate has a starting velocity of 0 721. km/s  and initially has contact with the target plate. 2b. 
Evolution of the shock wave velocity at the middle rear of the target plate for a second experi-
ment with an impact velocity of 1 246. .km/s  FLAG-ML improves the predictions obtained by 
FLAG without an imposed damage model. Figure courtesy of [2].
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When Data Meets Diversity
By Brianna C. Heggeseth           
and Chad M. Topaz

In 2017, social media discussions about the 
opening of a new wing at the Massachusetts 

Museum of Contemporary Art first alerted 
us to the dearth of works by women and 
people of color in major museum collec-
tions. When we asked Steven Nelson—now 
Dean of the Center for Advanced Study in 
the Visual Arts at the National Gallery of 
Art in Washington, D.C.—about the mag-
nitude of underrepresentation, he noted that 
no researchers had ever gathered a data set 
with the size and completeness required to 
address this issue in a systematic way.

Together, we built the first collaborative 
research effort to quantify certain axes of 
demographic diversity among artists with 
works in the permanent collections of major 
art museums [3]. The lack of publicly avail-
able museum collections data, as well as 
the lack of data and consistency standards 
across museum curatorial databases, com-
plicated our research efforts. Though we 
were eventually able to locate and standard-
ize our data, the process was cumbersome 
and time-consuming.

The response of major museums to the 
COVID-19 pandemic has since shifted the 
terrain. Museums are increasingly putting 
their collections online,1,2 thereby present-
ing a golden opportunity for data scientists 
to ask and answer questions that were previ-
ously inaccessible. To this end—and noting 
that many areas of applied mathematics are 
now inextricably dependent on data—we 
present some opportunities and complexi-
ties of museum collections data.

Accessing Museum Data
Museum collections data and metadata are 

curated predominantly in an industry stan-
dard software package called The Museum 
System (TMS). TMS allows museums to 
record acquisitions; the movement of art 
objects and their separable or non-separable 
components; and object metadata such as 
titles, artists, dates, and dimensions. The 
data formats’ internal consistency depends 
on the historical implementation of data con-
tent standards, which were established by 
museum registrars and database managers. 
In 2006, the Cataloguing Cultural Objects 
[1] standards were published to “move 
toward shared cataloging and contribute 
to improved documentation and access to 
cultural heritage information.” While these 
data standards are gaining traction in the 
U.S., vocabularies (e.g., object classifica-
tions and artist nationality) and data entry 
formats (e.g., date formats and artist name) 

1 https://www.nytimes.com/2015/01/30/
arts/design/art-museums-are-increasingly-
adding-their-collections-online.html

2 http://www.getty.edu/foundation/
initiatives/current/osci

are still inconsistent. Missing data is also an 
issue, as some information has been lost in 
the transition to digital cataloguing systems; 
this is especially true of early acquisitions.

Until the last decade, only museum staff 
could access this data. The rise of social 
media and digital communication inspired 
major art museums to engage their audienc-
es with online collections on their websites. 
While this move increases data accessibil-
ity, the collections’ HTML formatting is 
often inconsistent. Data scraping is pos-
sible, but it is cumbersome since it must be 
customized for each museum.

Analyzing Museum Data
Coding artist data for gender, ethnicity, 

and other demographics can be difficult, 
as these metadata are not often stored in 
TMS. This leaves any data scientist who is 
interested in anti-racism and other forms of 
social justice with three primary options for 
coding the relevant data.

First, one could manually code artist 
profiles. For example, living artists can 
self-identify or art historians can infer demo-
graphic characteristics based on primary 
sources. Second, researchers might decide to 
consult data sets such as the Getty Research 
Institute’s Union List of Artist Names 
Online (ULAN),3 a large database of artists 
that includes some information about gen-
der and other identities. However, linking 
ULAN to art museum website data requires 
that one manually add the static URL from 
Wikipedia or the ULAN ID to each piece 
on a museum’s website. As an additional 
challenge, the available race and ethnicity 
information appears within a variable called 
“nationality,” which, perhaps surprisingly, 
“contains reference to the nationality, cul-
ture, ethnic group, religion, or sexual orien-
tation associated with the person.”

Finally, large-scale coding through Human 
Intelligence Tasks on web-based crowd-
sourcing platforms like Amazon Mechanical 
Turk provides a mechanism that handles 
sizable data sets at scale, especially when the 
aforementioned two options are infeasible or 
impractical. This crowdsourcing approach 
requires that laypersons read secondary 

3 https://www.getty.edu/research/tools/
vocabularies/ulan

sources online and make informed guesses 
about ethnicity and gender on a random 
sample of artists. We expect more erroneous 
inferences from non-experts, so statistical 
techniques ensure inter-rater reliability and 
provide confidence intervals on aggregate 
museum-level statistics.

It is important to remember that all demo-
graphic data, with the exception of informa-
tion that the artists provide themselves, are 
inferred data. An individual’s characteristics, 
such as gender and ethnicity, can be reliably 
stated only by the individual themself.

Our Projects
Our first deep dive into museum data 

sought to measure the (under)representation 
of female artists and artists of color in 18 
major American art museums [3]. Within 
this group of museums, we estimate that 85 
percent of artists are White and 87 percent are 
men (see Figure 1). Some people believe that 
the large proportion of White people and men 
“makes sense” because museum collections 
sometimes focus on time periods and geo-
graphic regions in which those two groups 
dominated artistic production. However, even 
putting aside issues pertaining to whose work 
is considered art and valued by society, our 
results support a different conclusion.

To reach our conclusion, we clustered the 
18 museums in two different ways. First we 
clustered them by their “collection habits” 
— the time periods and geographic regions 
in which their art was created. Next we clus-
tered them by their estimated demographic 
percentages for gender and ethnicity. Quite 
simply, these two clustering schemes are 
uncorrelated. For instance, the Museum of 
Fine Arts in Boston and the Detroit Institute 
of Arts both have catalogs in which the 
average artist birth year is around 1800 and 
roughly 30 percent of artists are of North 
American origin. However, we estimate 
that 95 percent of identifiable artists in the 
Detroit catalog are White, in contrast to 
only 80 percent of the artists in Boston. Of 
course, our study represents one snapshot in 
time. Collections are subject to change as 
museums make acquisitions and loan, sell, 
or gift various pieces.

In response to our work, the National 
Gallery of Art invited us to participate in 
a two-day datathon,4 during which they 
allowed us full access to their internal data 
stores. Our major focal point for this event 
was the representation of women and artists 
of color on public view in the gallery spaces 
and exhibitions curated by the National 
Gallery, as differentiated merely from their 
representation within the catalog. More 
specifically, we sought to answer the ques-
tion, “Whose art is being seen by the public 
as they visit the museum?” Using metadata 
from TMS and location history data for the 
individual pieces, we found that over 75 
percent of the art objects in public view at 
the National Gallery are attributable to an 
identifiable male and/or White artist.

However, the last five years have seen an 
increase in female and Black representation, 
primarily in the renovated East Gallery. 
Contemporary photographs, prints, and 
drawings by female and Black artists have 
driven this shift. The gallery staff informed 
us that while these media are more finan-

4 https://www.nga.gov/audio-video/audio/
datathon.html

cially accessible to new artists, they are also 
more physically sensitive and can only be 
on public view for short periods of time. 
We created an online interactive visualiza-
tion tool5 for gallery staff, the public, and 
other researchers that explores representa-
tion across the gallery space and over time.

Next Steps
Based on the results of our study, we 

recommend that museums immediately 
focus on standardizing data and metadata 
practices to allow for greater transparency. 
These improvements would enable easier 
and more rigorous data collection and anal-
ysis, thus helping researchers identify the 
extent of the underrepresentation of minori-
tized artists. The time is long past for major 
art museums to become activist collectors, 
emphasizing the work of women and art-
ists of color in their collection practices to 
address historical underrepresentation and 
bias. Some museums have already begun to 
engage in this practice.6 

This area of study presents numerous 
opportunities for the applied mathematics, 
statistics, and data science communities. 
When subject to the right disciplinary and 
data cleaning expertise, museum databases 
can serve as looking glasses into muse-
ums’ degrees of success in living up to 
their missions, including their attention to 
diversity. Local art museums may have lim-
ited in-house resources and could be open 
to collaboration with data scientists and 
applied mathematicians. For example, we 
are currently working with the Minneapolis 
Institute of Art to analyze their collection’s 
accession and deaccession history, apply 
natural language processing to facilitate tag 
creation, and plan for data improvements 
and consistency. Greater communication 
between and within art and the mathemati-
cal and computational sciences could help 
improve museum data management systems, 
ultimately enabling greater progress towards 
diversification within the collections.
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Figure 1. Based on the results of [3], data journalist and artist Mona Chalabi created images to represent the demographics of the data set, 
scaled down from over 10,000 artists to 100 for the purpose of visualization. In this case, 88 of the artists would be men (75 White, eight Asian, 
three Latinx, one Black, and one man of another race/ethnicity). Figure courtesy of Mona Chalabi [2].


