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Abstract.
We investigate the novel application of two sequential convolutional neural networks (CNNs) for the char-

acterisation of dark matter substructure in lensing galaxies from galaxy-galaxy strong gravitational lensing
images. In our configuration, an initial CNN predicts the number of substructures from a gravitationally
lensed image and then this number, along with the same image, is input to a second CNN which predicts
the power-law slope of the substructure mass distribution function. We have trained and tested the CNNs on
simulated images created by lensing a galaxy-like light distribution with a foreground galaxy mass. We find
that training and testing the CNNs on images created with a fixed lens geometry allows the number of sub-
structures and the mass function power-law slope to be retrieved well. We then explore the effect of reducing
the resolution of images such that the image pixel scale is halved finding that the accuracy of the number of
predicted substructures decreases by only 7% while the accuracy of the predicted mass function slope decreases
by 25%. When we allow variation in lens geometry between images in the test set, to mimic more physically
motivated lens samples, we observe a decrease in accuracy of the number of predicted substructures and the
mass function slope of 57% and 81% respectively. We attribute this significant degradation in predicting the
mass function power-law slope to the degradation in the performance of the number-predicting CNN by com-
paring with predictions of the slope that are made when the CNN is given the true number of substructures.
We discuss future possible improvements and the impact of the computing hardware available for this work.

1. Introduction. Strong gravitational lensing is an astronomical phenomenon by which
several highly distorted images of the same distant source are observed. Lensing occurs as a
result of the curvature of space-time caused by the gravitating mass of a foreground lensing
object that lies between the source and observer. Multiple distorted images of the source are
created as light is deflected about the lensing object along multiple trajectories that converge
at a focal point at the observer.

In addition to gaining information about the lensed source, analysis of the images created
by gravitational lensing can provide insight into the composition and distribution of the mass
of the lensing object [19]. Strong lensing has contributed to progress in the fields of galaxy
formation and galaxy evolution through extensive mass distribution analysis [29, 32] and
detailed imaging and spectroscopy [26]. Due to its magnification effect, strong lensing has
also been used in the discovery of galaxies at much higher redshifts than can be observed with
current telescopes [1].

Since dark matter is thought to account for 85% of matter in the universe and constitutes
the primary reason why galaxies remain gravitationally bound rather than being thrown apart
[31], construction of a theory of dark matter has been of paramount scientific interest for almost
fifty years. However, its apparent lack of interaction with the electromagnetic force [11] makes
direct observations of dark matter challenging, if not impossible, and conjectures about its
properties differ and are thus far inconclusive. One particular challenge is that computer
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simulations of the large-scale structure of the Universe suggest that a Milky Way-sized galaxy 
should have of the order of 500 satellite galaxies (or ‘subhaloes’), whereas only 11 have been 
actually observed [21]. This so-called ‘Missing Satellite Problem’ has led to the understanding 
that while the current cold dark matter model (so-called Λ-CDM) very accurately describes 
the distribution of matter over large scales in the Universe (i.e., galaxy clusters and larger), 
it does not offer the same accuracy at small scales.

Although dark matter can not be detected from its electromagnetic radiation, indirect 
observation is possible through the analysis of gravitational lensing effects. The magnification 
power of a strong gravitational lens, and a study of its light deflection, c an p rovide crucial 
information on the distribution of visible and dark matter, offering a  unique opportunity to 
probe the small-scale nature of dark matter.

A limiting factor at present is that strong lensing occurrences are rare due to the precise 
alignment required to produce lensed arcs or rings, and whilst discoveries have been made 
with several large telescope surveys, such as the Sloan Lens ACS (SLACS) survey [4] and 
the Dark Energy Survey (DES) [27], the number of lensing systems is still limited to just a 
few hundred low-redshift galaxies, too small a sample to make strong conclusions about the 
missing satellite problem. The small sample size has also meant that there hasn’t yet been a 
strong requirement for highly efficient analysis and modelling of  data.

Recently, excitement has begun to grow in the field of gravitational lensing as the sample 
of known strong lenses is expected to grow by several orders of magnitude [33, 6] in the near 
future due to the introduction of the next generation of telescopes. The two main facilities 
responsible for this surge in data volume are the ground-based Vera Rubin Observatory and 
the European Space Agency’s Euclid Satellite, both becoming operational imminently [12, 30]. 
These large anticipated datasets will challenge the current method of analysis with a new 
problem of scalability. Previously, quantifying the light distortions produced by galaxy lenses 
has used maximum likelihood modelling of the observations (for recent examples of maximum 
likelihood techniques, see Maresca et al. [20], Dye et al. [9], Berta et al. [2], and references 
contained therein). Many of these studies use a single deflector f or t heir mass model which 
typically involves the optimisation of anywhere from five to nine non-linear p arameters. Some 
studies use multiple deflectors w hich f urther i ncreases t he c omplexity o f p arameter space, 
to the point that finding t he g lobal b est-fit be comes hi ghly un reliable an d re quires manual 
intervention to release optimisers from becoming stuck in local minima. This is generally a 
time-expensive procedure, requiring expert knowledge and typically several weeks of manual 
effort. With anticipated l ens samples comprising tens o f thousands o f l enses, c learly such an 
approach is unviable.

Conveniently, this large increase in data is paralleled by increasingly sophisticated com-
putational methods, enabling a new age of automated data processing. The application of 
convolutional neural networks (CNNs) has already proven more than sufficient to  me et the 
demand for rapid analysis of the petabyte-scale datasets produced by the new telescopes [18]. 
Specifically i n t he fi eld of  gr avitational le nsing, th e eff ectiveness of CNNs has  bee n demon-
strated by their use in successfully finding previously missed strong gravitational lens images 
from existing surveys [13, 17]. Building on this success, attention has shifted to preparing 
CNN-based image analysis methods for use on the forthcoming datasets from next-generation 
surveys. In preparation for the analysis of the new data, multiple thousand-strong datasets
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of simulated lens images are created using physical parameters (chosen to match those from 
the anticipated surveys) and used to train CNNs.

Hezaveh et al. [10] were the first to use CNNs to estimate the mass model parameters of 
a galaxy lens. They used four different CNNs t o predict the mass p rofile, showing that lens 
modelling can be increased in speed by six to seven orders of magnitude and removing the 
requirement for expert knowledge. This was later extended by Rivero et al. [7] and Pearson 
et al. [28] who showed that the CNN methodology continues to work when applied to images 
without first subtracting the light from the lensing g alaxy. In addition, Morningstar et a l. [22] 
showed how neural networks allow reconstruction of an unlensed image of the source. Only 
recently have CNNs been used to infer the properties of subhaloes in lensing galaxies [7].

This study aims to investigate the capability of CNN-based machine learning architectures 
to infer the properties of the distribution of subhalo masses in strong gravitational lenses. 
Whereas previous attempts have used the indirect process of simulation-based inference (see,
[5], for example), here, an alternative, simpler strategy is investigated, using two regression-
based CNNs applied in series to directly detect the number of subhaloes present in any given 
lens galaxy and measure their distribution in mass.

This report is arranged as follows. Section 2 details the CNN architecture and the method-
ology used for simulating the gravitational lens images. Section 3 presents the results obtained 
from training and testing the CNN with different image r esolutions and l ens parameter dis-
tributions. In Section 4 we consider the implications of these results along with the strengths 
and weaknesses of the investigation and some suggestions for related investigations in the 
future.

2. Methodology. To train the CNNs, a simulator was produced to create realistic syn-
thetic strongly lensed images labelled by the parameters of the mass distribution of each lens. 
For background information regarding the theory of gravitational lensing, we refer the reader 
to [25]. Both the CNN architectures and simulator are described in this section.

2.1. Image Generation. The simulator assumes a Singular Isothermal Ellipsoid (SIE) 
lens mass distribution for the main lens with Singular Isothermal Sphere (SIS) substructure 
masses distributed within it. The deflection angles o f t he S IE and S IS p rofiles, re quired for 
creation of the lensed images by mapping from the source to the image, are given in [15]. 
We used an identical light source for all images created, defined by a  circularly-symmetric 2D 
Gaussian distribution of standard deviation σ = 0.9 arcsec centred at the origin of the source 
plane (i.e. directly on the line of sight).

The parameters of the SIE model are the axis ratio, q, the orientation of the semi-major 
axis, ϕ, the Einstein radius, θE and the lens centroid co-ordinates (x, y). The Einstein radius 
is effectively a  measure o f t he mass o f t he main l ens which r elates t o i ts velocity dispersion 
(see equation 2.2 below). For the training images, we randomised the lens mass parameters. 
ϕ and (x, y) were drawn from the following uniform distributions: 0 ≤ ϕ < π, −0.1 arcsec 
≤ x ≤ 0.1 arcsec and −0.1 arcsec ≤ y ≤ 0.1 arcsec. θE and q were drawn from realistic normal 
distributions of mean 1.5 arcsec, width 0.4 arcsec and mean 0.78, width 0.12 respectively, as 
presented by Pearson et al. [28]. These distributions are shown in Figure 1. In addition, we 
randomised the redshift of the source according to the distribution of Collett et al.[6] (see 
Figure 1). Changing source redshift also changes the Einstein radius. We refer the reader to
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Figure 1. Number density distributions of lens geometry parameters for a typical training set of 100,000
images. Lens centre position and lens orientation are sampled from the uniform distributions discussed.

[25] for more details.
The majority of our investigation assumes that lensed images have a pixel scale of 0.1 arcsec

to match the resolution of the near infra-red camera on the Euclid Space Observatory. In
Section 3.2, we also investigate the impact of changing this resolution to 0.2 arcsec.

Once the source plane redshift and the geometry of the simulated lens has been determined,
we generate dark matter substructures to populate the lens plane. The mass of each of these,
M , is randomised according to the substructure mass distribution function given by

(2.1)
dN

dM
∝ M−α ,

where N is the number of substructures and α is the power-law slope of the function [34]. We
randomise α when generating CNN training images by drawing from a uniform distribution
over −2.5 ≤ α ≤ −1.5. For a given simulated lens (and thus a specific value of α), we continue
drawing substructures until their total mass accounts for 10% of the total lens mass [34]. This
requires calculation of the main lens mass which we obtain in the following way. First, we
calculate the lens velocity dispersion, σlens, using

(2.2) σlens =
c
√
θE

4π

Ds

Dds
,

where c is the speed of light and Ds and Dds are the angular diameter distances to the source
and between the lens and source respectively. The mass of the main lens (in solar units), Ml,
is then calculated using

(2.3) Ml = (
A1D

σlens
)β1015 ,

where A1D is the one-dimensional velocity scaling parameter dependent on halo concentration, 
taken here to be 1200km s−1 and we take β = 1/3 [23]. Some example distributions of subhalo 
masses for varying values of α are shown in Figure 2.

Substructures are spatially distributed with a uniform surface density across the lens 
within a radius of 2θE from the lens centre [5]. With the lens mass characteristics and source
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Figure 2. Populations of substructure masses for lenses with different power law α. From left to right:
α = −2.4, α = −2.0, α = −1.6.

Figure 3. Example simulated lens image. From left to right: Gaussian source, simulated lens surface mass
density and resulting lensed image with substructures plotted. Image resolution is 0.1 arcsec. Lens parameter
values are θE = 1.5 arcsec, q = 0.78, (x, y) = (0, 0), ϕ = 0, z = 1.77.

intensity profile fully defined, we created the lensed image using the publicly-available python
package Lenstronomy [3].

To increase the realism of the image, we blurred the images with a point spread function
(PSF) and added noise. The PSF was set as a 2D Gaussian with standard deviation, σPSF ,
varied according to the image resolution: σPSF = 0.14 arcsec for the 0.2 arcsec resolution
images and σPSF = 0.07 arcsec for the 0.1 arcsec images. We also added normally-distributed
noise, obeying a fixed signal-to-noise ratio of 300. An example of a simulated lensed image is
shown in Figure 3.

2.2. CNN Architecture. For training our CNNs, we used the mean squared error (MSE)
as our loss function, given by

(2.4) MSE =
1

b

b∑
i=1

(yi − ypredictedi)
2 ,
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where y and ypredicted are the true and predicted subhalo properties (either α or N ; see below) 
respectively, and the sum acts over a batch of b training images.

During preliminary testing, we logged the progression of the MSE as a function of training 
epoch and altered the CNN structure and parameters accordingly. For example, no decrease 
in validation loss indicates underfitting, remedied by increasing CNN complexity with added 
layers. Conversely, sudden increases in validation loss indicate overfitting -  fixed by  reducing 
CNN complexity, or decreasing the number of training epochs. This process was repeated for 
multiple permutations of both single and sequential CNNs with different o ptimisers (Adam 
[16], Nadam [8]), learning rates (10−4, 10−3, 10−2), batch sizes (8, 16, 32), number of convo-
lutional layers (1-6), kernel sizes ((3 × 3), (5 × 5), (7 × 7), (9 × 9), (11 × 11)), convolution filters 
(8, 16, 32, 64, 128), and epochs (10-100). Preliminary testing used image sets with fixed lens 
parameters of resolution 0.1 arcsec, with both true N and true α unknown to the CNNs prior 
to prediction (as presented in section 3.1.1).

Preliminary testing readily showed that the best performance for fixed l ens parameter 
images was obtained with two sequential CNNs. The first, which we will r efer to as the ‘N -
CNN’ hereafter, predicts N from an input image. The second, which we will refer to as the 
‘α-CNN’ hereafter, predicts α from an input image and its estimate of N predicted by the 
N -CNN. The two CNNs have different architectures and so needed to b e t rained separately. 
We trained the N -CNN by labelling images with the true N contained in the lens and the 
α-CNN by labelling images with both the true α and true N .

In terms of their architecture, for the N -CNN, we used three convolutional layers with a 
kernel size of (5 × 5) and 16, 32 and 64 filters r espectively f rom i nput to o utput. For the α-
CNN, we found that only one convolutional layer was required with 8 filters and a kernel size of 
(3 × 3). Following each convolutional layer in both networks, we applied batch normalisation, 
max-pooling, and dropout. After all convolutions, both networks contained a flatten layer 
and two fully connected dense layers. Before the final d ense l ayer i n t he α -CNN, N  values 
were introduced via a concatenate layer. Details of layer order and dimensions are shown in 
Figure 4.

Each layer except for the flatten l ayer i n b oth n etworks u sed a n a ctivation f unction for 
forward propagation, and we found the Rectified Linear Unit (ReLU) [24] was most effective 
in all cases. However, the final fully connected dense layer requires a linear activation function 
for the CNN to perform regression analysis with output dimensionality of 1. Across all con-
volutional layers, we chose to use unity stride width and ‘same’ padding to pad image arrays 
with zeros until the dimensionality of the input was met. Following each convolution, the ex-
tracted feature map was then fed into a max-pooling layer with kernel of dimensions 2×2 and 
step width of 2, halving its resolution and drastically reducing sample size and computational 
load while maintaining prediction success. Image pixel values were normalised to a minimum 
of 0 and a maximum of 1 during image pre-processing to speed training and increase loss 
stability (although after convolution and pooling, outputs from the first layer extend beyond 
this range). Batch normalisation following each convolution ensured that feature map pixel 
values remained normalised throughout training to maintain loss profile stability.

Dropout in a network acts to randomly disable a set fraction of layer outputs before 
information is passed to the next layer. This promotes exploratory learning by making the 
network try to pass feature maps along pathways with lower weights that may have been
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Figure 4. Architecture of the CNNs used, with N-CNN (top, 1,671,393 trainable parameters) prediction
results fed into α-CNN (bottom, 3,687,522 trainable parameters) via concatenate layer during testing.

previously neglected due to being randomly assigned a low weight during an earlier epoch.
We determined that a uniform dropout rate of 0.25 worked well to allow the network to escape
local minima in the loss function and reduce over-fitting.

The final dense layers were preceded by a flatten layer to reduce the two-dimensional
output of the final convolutional layer into the one-dimensional array format accepted by
fully connected layers, before a prediction is output from the final dense layer.

The Adam optimiser with an initial learning rate of 10−4 was not only found to be com-
putationally efficient, but also utilised local gradient based learning rate tuning to alter the
learning rate during training to reduce cases of local minima trapping in the loss function.
Running training on a machine with a Graphics Processing Unit (GPU) reduced training time
massively and allowed us more choice in the batch size of input images and the number of
training epochs. For all training runs, we found a batch size of 16 to be most time-efficient
while retaining learning stability. The optimal number of training epochs was determined by
first training a network for 100 epochs, reducing if over-fitting had occurred (signified by a
steep increase in validation loss). Using the hyperparameters above, our networks could carry
out 100 training epochs with a training set of 100, 000 60× 60 images in under two hours.

We tested CNN performance using test sets of newly generated images, unseen in training,
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to avoid false prediction success due to over-fitting and from memorising correct predictions of
already seen images. We used a train-to-test set ratio of 5 : 1 to allow faster learning without
over-fitting.

3. Results. Here we present the prediction performance of the N -CNN and the α-CNN.
Both were trained on training sets of 100, 000 images before being tested on test sets of 20, 000
images, in two different scenarios. In the first scenario, we trained and tested the CNNs on
image sets generated with a fixed set of lens model parameters and an identical source. In these
training and test sets, only the substructure was varied by randomising subhalo positions and
masses and the value of α from which subhaloes were drawn. We also tested both 0.1 arcsec
and 0.2 arcsec image resolutions. In the second scenario, we trained and tested the CNNs
with images generated with the additional variation that the lens model parameters, θE , q, ϕ
and (x, y) and the source redshift were randomly drawn from the distributions discussed in
section 2.1.

In all cases, we ran two separate diagnostics. The CNNs were first tested with sets of
20, 000 images with continuously varied power law. Performance was tested by measuring the
slope of the scatter plot of true versus predicted α and N and the root mean square (RMS)
of the differences between true and predicted α and N . For the second diagnostic, we tested
the CNNs on multiple test sets of 5, 000 images, holding α fixed in each set. For each set,
we have plotted the distribution of differences between true and predicted subhalo properties
and we have quoted the 68% confidence interval as equal to one standard deviation.

3.1. Fixed Lens Parameters. In this section, we show the performance of both the N -
CNN and the α-CNN for images generated with a fixed lens geometry and an identical Gauss-
ian source. The lens model parameters were fixed at the mean values of the physical dis-
tributions chosen, namely, θE = 1.5 arcsec, q = 0.78, (x, y) = (0, 0), ϕ = 0, z = 1.77. The
only variation in images tested in this section arises from the variation in subhalo masses
drawn from the distribution function of slope α, which is itself drawn uniformly between
−2.5 < α < −1.5, and the randomised positions of substructures within twice the Einstein
radius of the lens.

3.1.1. Image resolution: 0.1 arcsec. The top two panels of Figure 5 show the perfor-
mance of the N -CNN for the case of fixed l ens model parameters for 60 × 60 pixel images of 
resolution 0.1 arcsec. Fitting a straight line to the scatter plot on the left reveals a gradient 
of 0.993, indicating that bias in prediction of N is very low over the whole 20, 000 image set. 
The RMS of the differences b etween t rue and p redicted values o f N  ( i.e. t he s catter about 
the line y = x, labelled ’ideal gradient’ in the plot) is 49.0.

The panel in the top right of Figure 5 shows the distribution of differences b etween true 
and predicted values of N when tested on five training sets each containing 5, 000 images and 
each with a fixed value o f α  as i ndicated. The brown l ine in this plot shows the distribution 
calculated from the 20, 000 images plotted in the top-left panel with randomised values of 
α for comparison. There are two notable trends present here. First, the error in predicted 
values of N , as measured by the standard deviation of the distributions, becomes larger with 
decreasing (i.e. more negative) α. Quantifying this, the range of standard deviations between 
the lowest and highest values of α tested is 37.9 ≤ σ ≤ 50.4. Secondly, the number of predicted
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substructures monotonically moves from being over-predicted at α = −1.6 to under-predicted
at α = −2.4. We can approximately tie a given value of α to a value of N by noting that,
because of the power-law substructure mass function and the fact that we draw subhaloes
from it until a fixed fraction of 10% of the total lens mass is reached, a value of α = −1.7
results in an average of N ≃ 200 subhaloes being drawn whereas at α = −2.5, the average is
N ≃ 700.

The bottom-left and bottom-right panels of Figure 5 are the equivalent of the top two
panels but instead show the performance of the α-CNN. For each image tested, its number of
subhaloes as predicted by the N -CNN is input to the α-CNN. The best-fitting straight line to
the scatter plot in the lower-left panel has a gradient of 0.658, showing significant bias. The
scatter of predicted α about the true value is quantified with a root mean square error (RMSE)
of 0.294. The bottom-right panel shows the same trend of increasing standard deviation with
decreasing α as the N -CNN, with a range in standard deviation of 0.212 ≤ σ ≤ 0.310.
Conversely, the trend in bias is reversed compared to that of the N -CNN, such that the
predicted α is over-predicted at more negative values of α. Quantitative results for both
N -CNN and α-CNN across varied and fixed α test sets are presented in Table 1.

Table 1
Prediction scatter gradient with σ and RMS of the differences between true and predicted values for N-

CNN (left) and α-CNN (right) trained and tested on 60× 60 images, fixed lens geometry parameters. Fixed α
test sets contained 5, 000 images, the varied α test set contained 20, 000 images.

N -CNN α-CNN

α Gradient σ RMSE Gradient σ RMSE

-1.6 - 37.9 44.9 - 0.212 0.276
-1.8 - 43.2 46.5 - 0.248 0.261
-2.0 - 49.1 49.6 - 0.284 0.284
-2.2 - 50.4 50.5 - 0.309 0.315
-2.4 - 48.3 52.6 - 0.310 0.331
Varied 0.993 48.8 49.0 0.658 0.441 0.294
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Figure 5. Prediction results for 60 × 60 images, fixed l ens g eometry p arameters. T op: P rediction scatter 
(left) and prediction error distributions (right) for N prediction. Bottom: Prediction scatter (left) and prediction 
error distributions (right) for α prediction.

3.1.2. Image resolution: 0.2 arcsec. Here we investigate the effects o f image resolution 
on CNN performance by repeating the analysis of section 3.1.1 but training and testing with 
30 × 30 pixel images with a coarser resolution of 0.2 arcsec.

Figure 6 and Table 2 show our results. Considering the N -CNN first and the top-left panel 
of the figure, the decrease in image resolution gives rise to slightly more bias in the predicted 
number of subhaloes overall, as measured by a decrease in the scatter gradient of 7% to 0.923. 
We also find t hat t he RMSE i ncreases by 2 6% t o 6 1.9. The n etwork p erforms s imilarly to 
the 0.1 arcsec resolution images for N < 400 (≈ α > −2.2), however, at values of N above 
this threshold, the network begins to significantly over-predict N . This i s r eadily apparent 
in the plot in the top-right of Figure 6 where the trend of increasing bias with decreasing 
α is much stronger. Despite this, the range of standard deviation of these distributions is 
37.8 ≤ σ ≤ 50.6 which is comparable with the case of 0.1 arcsec images

The lower two panels of Figure 6 show the performance of the α-CNN on the 0.2 arcsec 
resolution images when fed images with N predicted by the N -CNN. The scatter plot in the 
lower-left panel has a straight line fit with gradient 0 .495, a  25% decrease from the 0.1 arcsec 
resolution case. At a value of 0.294, the global RMSE of this scatter plot has barely changed in
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testing with the lower resolution images, however, at the lower range of α values tested, there
is a growing number of predictions of α that are very discrepant with their true values, by up
to 70%. The tail of the distribution of differences in true and predicted values of α has become
extended compared to the higher resolution case, yet, the spread of these distributions has
become slightly smaller, with a range of standard deviation that now spans 0.181 ≤ σ ≤ 0.213.
This is a surprising result but the net effect is that, because the bias is larger, the significance
of the bias is higher.

Table 2
Prediction scatter gradient with σ and RMS of the differences between true and predicted values for N-

CNN (left) and α-CNN (right) trained and tested on 30× 30 images, fixed lens geometry parameters. Fixed α
test sets contained 5, 000 images, the varied α test set contained 20, 000 images.

N -CNN α-CNN

α Gradient σ RMSE Gradient σ RMSE

-1.6 - 37.8 52.1 - 0.181 0.259
-1.8 - 40.9 45.6 - 0.191 0.197
-2.0 - 44.9 44.9 - 0.206 0.221
-2.2 - 48.0 52.5 - 0.215 0.290
-2.4 - 50.6 70.7 - 0.213 0.367
Varied 0.923 61.0 61.9 0.495 0.407 0.290
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Figure 6. Prediction results for 30 × 30 images, fixed l ens g eometry p arameters. T op: P rediction scatter 
(left) and prediction error distributions (right) for N prediction. Bottom: Prediction scatter (left) and prediction 
error distributions (right) for α prediction.

3.2. Varied Lens Parameters. In this section, we investigate the performance of the N -

CNN and α-CNN on 0.1 arcsec images measuring 60 × 60 pixels as in section 3.1.1, but now 
where the lens model parameters are randomised. Specifically, i n a ddition t o randomising 
subhalo positions and masses, the slope of the mass distribution function and the source 
redshift, we now draw the lens model parameters, θE , q, ϕ and (x, y) randomly according to 
the distribution functions presented in section 2.1 in both the training and test data sets.

Following the same format as in the previous sections, our results are presented in Figure 
7 and Table 3. Considering the top row of the figure w hich s hows t he p erformance o f the 
N -CNN, it is immediately clear that given more varied lens model parameters and therefore 
more varied lensed image characteristics, the N -CNN struggles to make a reliable prediction 
of N . The line of best fit now has a  gradient of 0.383 as the network more frequently defaults 
to the mean number of subhaloes encountered during training. Similarly, the global RMSE 
in this plot has now risen by 216% to 155. This reduction in performance is also seen in the 
panel in the top-right where the distributions of differences b etween t he t rue and predicted 
values of N for various fixed values of α now have standard deviations that are at least double 
those of the case where lens model parameters were fixed. The previous trend observed that
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the predicted N is biased towards higher values at higher α is still present but now much
stronger; at α = −1.6, the N -CNN over-predicts the true number by an average of 115, an
over-estimate of approximately 70%.

Performance of the α-CNN is shown in the bottom two panels of Figure 7. The ability
of the network to predict α has also degraded significantly. The gradient of the straight line
of best fit has fallen by 81% to 0.123, indicating that the network is almost yielding random
values of α. The global RMSE has risen from the fixed lens model 0.1 arcsec case by 29% to
0.380. The bottom-right plot again shows much stronger bias in α, over-predicting towards
lower values of α and vice versa. The range of standard deviations of these plots has also
increased significantly, with a range of 0.215 < σ < 0.259.

Table 3
Prediction scatter gradient with σ and RMS of the differences between true and predicted values for N-

CNN (left) and α-CNN (right) trained and tested on 60 × 60 images, varied lens geometry parameters. Fixed
α test sets contained 5, 000 images, the varied α test set contained 20, 000 images.

N -CNN α-CNN

α Gradient σ RMSE Gradient σ RMSE

-1.6 - 86.6 202 - 0.215 0.563
-1.8 - 92.0 177 - 0.223 0.405
-2.0 - 97.0 147 - 0.236 0.283
-2.2 - 107 123 - 0.247 0.248
-2.4 - 114 114 - 0.259 0.324
Varied 0.383 121 155 0.123 0.375 0.380
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Figure 7. Prediction results for 60 × 60 images, varied lens geometry parameters. Top: Prediction scatter 
(left) and prediction error distributions (right) for N prediction. Bottom: Prediction scatter (left) and prediction 
error distributions (right) for α prediction.

3.2.1. Predicting α with the true N . To test the degree to which the performance of the 
α-CNN is degraded by the much reduced ability of the N -CNN to reliably predict N , we ran 
the exact same analysis as in section 3.2, but instead of providing the α-CNN the predicted 
N during testing, we gave it the true N .

The results of this test are shown in Figure 8 and Table 4. When using the true N 
instead of the predicted N , the gradient of the scatter in the panel on the left has increased to 
0.669. The global RMSE has also dramatically decreased to 0.223 which is an improvement 
even on the results obtained in the case of 0.1 arcsec resolution images with fixed l ens model 
parameters. Considering the plot on the right of Figure 8, we find t hat a gain, performance 
is greatly improved, even beyond the 0.1 arcsec resolution fixed lens model case, with smaller 
bias and a smaller range of standard deviations of 0.141 ≤ σ ≤ 0.239.
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Table 4
Prediction scatter gradient with σ and RMS of the differences between true and predicted values for the

α-CNN with true N supplied during testing, 60×60 images, varied lens geometry parameters. Fixed α test sets
contained 5, 000 images, the varied α test set contained 20, 000 images.

α Gradient σ RMSE

-1.6 - 0.141 0.172
-1.8 - 0.151 0.152
-2.0 - 0.173 0.199
-2.2 - 0.206 0.261
-2.4 - 0.239 0.296
Varied 0.669 0.396 0.223

Figure 8. Prediction scatter (left) and prediction error distributions (right) for the α-CNN with true N 
supplied during testing, 60 × 60 images, varied lens geometry parameters.

4. Discussion and Conclusions. We have assessed the effectiveness of using deep learning 
to determine the properties of substructure in gravitational lensing galaxies using the back-
ground source images they produce. We trained and tested two different CNN architectures; 
the first predicts the number of subhaloes, N , in the lens, and the other predicts the slope, α, 
of the mass distribution power-law function from which they were randomly drawn.

We quantified the performance of both CNNs in two different wa ys. First, we  tested each 
CNN with a set of images where each image was produced using a value of α drawn from a 
uniform distribution. We measured the gradient and RMSE of the plot of true values of N 
and α against their CNN-predicted values; we refer to this as the ‘prediction scatter gradient’ 
hereafter. Second, we tested the CNNs’ performance by holding α fixed at one of five different 
values and determining the width of the distribution of differences between true and predicted 
values of N and α. The former test gives a measure of the global performance of the CNNs, 
while the second offers measurement of precision as a  function of α.

In general, we conclude that prediction scatter gradient offers the most useful single statis-
tic for prediction success. For example, the distribution of the error in predicted α when the 
CNN is fed Npredicted (see section 3.2) is comparable to that obtained when the CNN is fed

429



O. SCUTT

the true N , but when comparing the prediction scatter gradients it is clear that the latter 
outperforms the former. This is also reflected in the probability distributions in Figures 7 and 
8, considering the means of the distributions rather than simply their widths.

The results for fixed l ens m odel p arameters p resented i n s ection 3 .1.1 p rovide a  solid 
benchmark for comparison with other results. The N -CNN results show the best example 
of ideal network performance with a prediction gradient of 0.993. In comparison the α-CNN 
prediction scatter gradient of 0.658 fares less well, although it still shows promise; despite not 
being as close to the ideal unity gradient as the N -CNN, it is clear that significant learning 
has occurred during training and the CNN is still able to produce reasonable estimations of 
α. The distributions of errors in this case show a bias such that α is under-predicted and N 
is over-predicted at low values of α, but the widths of the distributions indicate that these 
biases are not very significant.

Section 3.1.2 considered CNN prediction success with images of resolution 0.2 arcsec. De-
spite a 75% reduction in the total number of pixels in training and testing images, the N -CNN 
only suffers a  7% decrease in predictor accuracy and a  25% increase in predictor uncertainty. 
However, the N -CNN begins to over-predict significantly for N  > 400, in some cases by more 
than 400 substructures. This is propagated through to the α-CNN, where predictions drop to 
αpredicted = −4.0, below the minimum value of α = −2.5 seen during training. This results in 
a scatter gradient of 0.495 for predicted α, a decrease of 25% in comparison with the 0.1 arcsec 
images.

The most likely explanation for this observed degradation in performance is due to sub-
structure over-crowding, i.e. the number of subhaloes that lie within an image pixel. The 
CNN is only sensitive to pixels containing significant l ensed i mage fl ux, an d th erefore per-
formance is better for larger Einstein radii. With a resolution of 0.1 arcsec and an Einstein 
radius of 1.5 arcsec, ∼ 2800 pixels contain significant lens image flux.

Our images rarely have N > 900, but even at this maximum limit, due to their random 
positioning only one in ten pixels will contain multiple subhaloes. At an image resolution of 
0.2 arcsec, however, only ∼ 700 pixels contain significant i mage fl ux, wh ich fa lls be low the 
maximum N of our images. Given that CNNs can only operate on a pixel-by-pixel basis, 
this overcrowding of subhaloes causes difficulties at  hi gh N .  Th is is  fu rther exacerbated for 
smaller Einstein radii. It would be desirable to repeat the tests presented here with greater 
resolution than 0.1 arcsec using more powerful hardware (see below).

Section 3.2 reports CNN prediction results when the lens model parameters were varied. 
For the N -CNN the scatter gradient drops by 81% compared to the tests without lens model 
variation. Similarly, the standard deviation of the error distributions increases by 150% on 
average, and predictions cluster heavily within 200 < Npredicted < 700. The resulting α-CNN 
scatter gradient is 0.123. We found that the performance of the α-CNN was actually better 
than this without being provided any estimate of N . Our conclusion is therefore that the 
poor performance of the N -CNN had catastrophic effects on the performance of the α-CNN. 
Nevertheless, the scatter gradient was not zero, which indicates that the CNN has still learned 
to a degree.

This degradation in performance of the α-CNN due to poor estimates of N is further 
evidenced by training and testing the CNN with the true N . In this scenario, the α-CNN 
achieved the highest accuracy of any of our α-CNN tests; with the same test set as that
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discussed immediately above, accuracy increased by 444%.
The variation in our results highlights the potential of using CNN inputs beyond image 

data alone. We have demonstrated that α prediction can improve substantially if the input 
Npredicted is accurate. This could be improved further with predictions of other lens model 
parameters. For example, combining predicted θE and N values in a simple multi-layer 
perceptron could weight the ‘trustworthiness’ of Npredicted before it is input to the α-CNN. In 
principle the inclusion of other lens model parameters could improve performance even further; 
indeed, the prediction of lens model parameters has already been successfully demonstrated 
by Pearson et al. [28].

In this study we have considered simplistic lensed images. A logical next step would be to 
enhance image realism – for example, by introducing variation in the simulated source as well 
as the lens. For instance, the source could be replaced with galaxy images taken from existing 
surveys and then lensed when making simulated images. Furthermore, our simulations assume 
that lens plane redshift is fixed, and l ens l ight has b een r emoved e ntirely. This neglects the 
detrimental effects that remaining traces of lens l ight might have on image clarity.

Also worthy of further investigation is the potential for including images of the same sys-
tem taken in different w avebands. S uch a dditional i nformation would b e l ikely t o increase 
CNN prediction success, but would also increase computational load and training time. To 
compensate, more computing power would be required. To put this into context, the com-

puting hardware used in this study took upwards of 4 hours to generate 100,000 60 × 60 pixel 
images for training. This was largely due to hard disk access; solid state drive (SSD) support 
would reduce this time significantly. S torage a vailability a lso l imited t he m aximum train-
ing set size, as well as the potential to use CNN optimisation packages like Auto-Keras [14]. 
Limits on training set data footprint were further compounded by available random access 
memory (RAM). Increased resolution or dataset size requires a decrease in batch size to avoid 
exceeding RAM limits and crashing during training, which increases training time. RAM 
limitations also restricted maximum network complexity; with each CNN layer comes more 
weights, biases and hyperparameters, in turn requiring more RAM during training. While not 
affecting t he c redibility o f t he r esults p resented h ere, t hese l imitations s hould b e recognised 
as areas for improvement in any future investigations.
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