
Mathematics in Industry Reports (MIIR) 1

Maturing Homomorphic Encryption (HE) to
Enable Privacy Preserving Vector Search

Debabrata Auddya 1,Lander Besabe 2,Marina Chugunova 3,

Sandra Moreno Cristobal 4,Xinyi Hu 5,Chiu-Yen Kao 6,

Maria Camila Mejia 7,Richard Moore 8,Theeraphat Ton

Pothisawang 12,Reza Rassool 9,Sulimon Sattari 10,Kriti Sehgal 11

1 auddya@udel.edu, University of Delaware
2 lybesabe@central.uh.edu, Department of Mathematics

3 marina.chugunova@cgu.edu, Claremont Graduate University
4 sandramoreno@cpp.edu, California State Polytechnic University, Pomona

5 xhu3914@sdsu.edu, San Diego State University
6 ckao@cmc.edu, Claremont McKenna College, Claremont

7 mariacamila.mejiagarcia01@utrgv.edu, University of Texas Rio Grande Valley
8 moore@siam.org, Society for Industrial and Applied Mathematics
12 theeraphat.pothisawang@cgu.edu, Claremont Graduate University

9 reza@kwaai.ai, Kwaai, nonprofit AI Lab
10 sulimon@kwaai.ai, Kwaai, nonprofit AI Lab

11 ksehgal@uchicago.edu, The University of Chicago

(Communicated to MIIR on 28 October 2025)

Study Group: Mathematical Problems in Industry Workshop, Claremont Graduate University,

June 9–13, 2025

Communicated by: Marina Chugunova, Claremont Graduate University

Industrial Partner: Kwaai, nonprofit AI Lab

Presenter: Reza Rassool

Industrial Sector: AI Research

Tools: Python

Key Words: Homomorphic Encryption;

2

Contents

1. Abstract 3

2. Introduction 3

3. Encryption Algorithms 4

3.1. Dimensional Scrambling 4

3.2. Noise Injection 4

3.3. ElGamal Cryptosystem 5

3.4. Exponential ElGamal Cryptosystem 5

3.5. CKKS Homomorphic Encryption Scheme 6

3.6. Chaotic Mapping 7

4. New Algorithms 8

4.1. Dimension-Increasing Encrypting Homomorphism Algorithm for Ran-

domized Discovery (DIEHARD) 8

4.2. Random Orthogonal Method of Encryption (ROME) 9

5. Implementation 11

6. Sacking ROME 12

7. Conclusion and Future Work 13

3

1 Abstract

As language models increasingly rely on vector embeddings stored on remote servers,

safeguarding sensitive query data has become critically important. Homomorphic en-

cryption (HE) enables computations on encrypted data, offering a search solution that

preserves privacy. This paper reviews established HE techniques—including dimensional

scrambling, noise injection, ElGamal, exponential ElGamal, CKKS, and chaotic map-

ping—and introduces two novel algorithms: DIEHARD and ROME. These methods are

evaluated for their ability to preserve inner product operations, encryption strength, and

computational efficiency. Our findings highlight ROME as a promising approach that

balances security and performance while maintaining search accuracy.

2 Introduction

As the use of embeddings for language models grows, vector databases stored and queried

on remote servers introduce new cybersecurity vulnerabilities. For example, queries

against the vector database may contain sensitive information (e.g. health records), which

could be retrieved via cyber attack. Can embeddings containing sensitive information be

encrypted before they are uploaded to an untrusted host, such that the data is still

searchable in its scrambled form? The type of encryption that allows for calculations to

be performed in the encrypted space is known as homomorphic encryption, which was

first proposed as a tool by Rivest et. al [8]. The first fully homomorphic encryption tech-

nique, which could be used to perform any calculation that could be performed on logic

gates, was proposed by Craig Gentry by using ideal lattices 30 years later [4].

Consider the ciphertexts ci decrypt to plaintext mi for 1 ≤ i ≤ n, i.e., Decrypt(ci)=

mi where mi’s and ci’s are elements of some ring (with two operations, addition and

multiplication) [9]. We say that an encryption is a fully Homomorphic Encryption if

Decrypt(c1 + c2) = m1 +m2, Decrypt(c1 · c2) = m1 ·m2.

Whenever these two operators are preserved, if f is a function composed of finitely many

additions and multiplication in the ring, e.g., inner product, then

Decrypt(f(c1, · · · , cn)) = f(m1, · · · ,mn).

Assume that Bob can connect to a large set of sensitive documents m1, · · · ,mn and

encrypts these to obtain ciphertexts c1, · · · , cn. Bob sends ciphertexts to Eve who offers

computational power to perform the calculation f(c1, · · · , cn). After the calculation, Eve

sends the results back to Bob so he decrypts them to get f(m1, · · · ,mn). As hackers

usually have knowledge about encryption algorithms and may obtain information about

some queries and computational results, it is important to design encryption algorithms

which are robust even when the aforementioned information are available.

In this report, we first review some encryption algorithms including dimensional scram-

bling, noise injection method, ElGamal cryptosystem [3], exponential ElGamal cryp-

tosystem [11], and CKKS scheme [2] in Section 3. See [1] for a survey article which

includes some other homomorphic encryption methods. We then present a known algo-

rithm: Chaotic Mapping, and two new algorithms: DIEHARD and ROME in Section 4.

4

We implement these encryption methods and compare their efficiency. The paper ends

with a brief conclusion on our findings and a discussion on potential future work in

Section 7.

3 Encryption Algorithms

In this section, we briefly review several early algorithms including fully homomorphic

encryption and partial homomorphic encryption which only preserves either addition or

multiplication.

3.1 Dimensional Scrambling

Let A = {a1, · · · ,aq} be the set of queries and B = {b1, · · · ,bd} be the set documents.

Given a vector v ∈ Rn, the dimensional scrambling [12] refers to a permutation of

elements in v. Denote ξ(v) as the permuted v. We know that the inner product of two

vectors a and b is preserved:

ξ(a) · ξ(b) = a · b.

This is equivalent to generating a random permutation matrix Q ∈ Rn×n and definition

ξ(a) = Qa. Note that this preserves the inner product since Q is orthogonal:

ξ(a) · ξ(b) = (Qa)T (Qb) = aTQTQb = aTb = a · b.

3.2 Noise Injection

Consider two noise vectors whose element-wise product is unity:

η̂ = (η1, η2, · · · , ηn) and η̌ =

(
1

η1
,
1

η2
, · · · , 1

ηn

)
.

Let the vectors a = {ai}1≤i≤n and b ={bi}1≤i≤n ∈ Rn correspond to the embedded

queries and documents, respectively. Define

ξ(a) = a ◦ η̂ = {aiηi}1≤i≤n.

We can verify that the inner product is preserved after noise injection since

ξ(a)ξ(b) = (a ◦ η̂) · (b ◦ η̌) = {aiηi}1≤i≤n ·
{
bi
ηi

}
1≤i≤n

=

n∑
i=1

aiηibi
1

ηi
= a · b.

To implement noise injection into the encryption algorithm, we generate the noise

vector as a secret key and incorporate it into our encrypted queries and documents ξ(a)

and ξ(b) by element-wise multiplying them with the noise. This approach secures the

privacy of user data while maintaining the accuracy of the search results.

5

3.3 ElGamal Cryptosystem

The ElGamal encryption system, introduced by Taher El Gamal in 1985, is an asymmetric

cryptographic algorithm based on the Diffie-Hellman key exchange between two parties

to encrypt a message. This algorithm is based on the difficulty of computing discrete

logarithms in a cyclic group.

Taher ElGamal introduced the ElGamal public-key cryptosystem in 1985 [3]. The key

generation steps include

• Choose a large prime number p and a generator g of the multiplicative group Z⊗
p .

• Select a generator g.

The ElGamal cryptosystem [3] preserves the multiplication while the exponential El-

Gamal cryptosystem preserves the addition.

3.4 Exponential ElGamal Cryptosystem

The exponential ElGamal encryption system is an enhanced variant of the original ElGa-

mal scheme, as introduced by Zhou et al. [11]. While ElGamal is recognized as one of the

earliest homomorphic encryption protocols and is known for supporting multiplicative

homomorphism, it also has notable limitations. In particular, attackers can utilize the

relationship between the quadratic residue properties of plaintexts and their ciphertexts,

exposing the scheme to vulnerabilities such as chosen plaintext attacks. Therefore, the

exponential ElGamal scheme, is proposed to resist the vulnerabilities of the existing en-

cryption protocol. The following algorithm describes the additive homomorphism which

is a characteristic of this scheme.

The input to this algorithm is similar to that of the El Gamal in which the input is

given as a small integer m, and a public key and a randomness number. Contrary to the

standard El Gamal, where the m is chosen as a group member, in the exponential one,

m can be any small integer. The procedure is outlined as follows:

Similar to the standard El Gamal method, generate a large prime number p, a generator

g and a random private key x such that x ∈ {1, 2, . . . , p−2}. The public key is computed

as h = gxmod p. For the encryption part, a random number r ∈ {1, 2, . . . , p − 2} is

chosen, followed by computing the ciphertext tuple which is represented by (c1, c2). The

components of this tuple are given by:

c1 = grmod p c2 = gmhrmod p

When encrypting the sender uses the receiver’s public key (h = gx) and a random number

r to create part of the ciphertext. Given this tuple, the shared key is given as:

s = cx1mod p = (gr)x = grxmod p

Following this step, the masking component attached to c2 is removed by

c2
s
mod p =

gmhr

gxr
mod p = gm

since h = gx. Once gm is obtained, m is recovered by computing the discrete logarithmic

base g of gm.

6

Once decryption is complete and the original message has been recovered, it is also pos-

sible to take advantage of exponential ElGamal’s homomorphic property. To demonstrate

it, a separate ciphertext of the form (d1, d2) is considered, so that

gr1gr2 = gr1+r2 and (gm1hr1)(gm2hr2) = gm1+m2hr1+r2

This generates a new ciphertext that encrypts m1 +m2 with randomness r1 + r2.

3.5 CKKS Homomorphic Encryption Scheme

The Cheon-Kim-Kim-Song (CKKS) encryption [2] is an approximate homomorphic en-

cryption scheme, based on the learning with error problem [7], which allows for arith-

metic in the complex space, and thus, the real space. This scheme exploits the struc-

ture of integer polynomial rings. The idea is to encode the message a ∈ Cn into

a polynomial m(X) ∈ C[X]/(Xn + 1) which we will use the canonical embedding

σ : C[X]/(Xn + 1) → Cn to encode and decode the messages and polynomials, re-

spectively.

Note that the embedding σ is an isomorphism, i.e., σ is a bijective homomorphism and

thus, any vector a is encoded into a unique corresponding polynomial in C[X]/(Xn +1),

and vice versa.

To decode a polynomial m(X) into a vector a ∈ Cn, we evaluate the polynomial m

on the n roots of the M -th cyclotomic polynomial ΦM (X) = XM + 1, where n = 2M ,

which are φ,φ3, . . . , φ2n−1:

z = σ(m) =
(
m(φ),m(φ3), . . . ,m(φ2n−1)

)
∈ Cn.

Now, to encode a, we need to compute the inverse σ−1. The encoding problem reads:

find a polynomial m(X) =
∑n−1

i=0 αiX
i ∈ C[X]/(Xn + 1), given a ∈ Cn such that

σ(m) = (m(φ),m(φ3), . . . ,m(φ2n−1)) = (a1, a2, · · · , an). This is equivalent to solving

the linear system Aα = a where Ai,j =
(
φ2i−1

)j
is the Vandermonde matrix.

After encoding the message through the polynomial m, we choose a large scaling factor

∆ and a large prime q to compute α̂i = round(∆αi) ∈ Z and set α̂i 7→ α̂i mod q.

To perform the encryption and decryption process, we randomly generate a secret key

s ∈ Zn
q , and uniformly sampled vectors mi ∈ Zn

q . We publish the public key p defined as

p = (−As+ e,A)

where e ∈ Zn
q is a small error vector (typically Gaussian). Due to the small error we

introduced, the secret key s will be difficult to figure out. Else, this could be solved using

Gaussian elimination.

Now, let m ∈ Zn
q to be the encoded message we want to encrypt and then decrypt.

The encryption c of m is given by

c = (m,0) + p = (m−As+ e,A) = (c0, c1) .

To decrypt c back into m, we perform the following operations:

c0 + c1s = m−As+ e+As = m+ e ≈ m

for sufficiently small e.

7

3.6 Chaotic Mapping

Including a chaotic sequence into the encryption algorithm is another alternative ap-

proach. A chaotic sequence is typically generated by using a chaotic map. This type of

map generates a pseudo-random sequence by starting with a set of initial conditions.

Many chaotic sequences are generated from nonlinear maps, so their mapping relations

are irreversible.

In this project, a chaotic sequence y = [y1, y2, . . . , yn] is generated using an improved

logistic map defined by yn = 1− 2y2n−1 given y0. This improved map is first proposed in

[5] ensures that all the values of the sequence are between 1 and -1, i.e., (−1 ≤ yn ≥ 1).

By using any initial condition that is in the basin of chaotic attractor of this map,

we generate a chaotic sequence and combine it with a random number β so that the

encryption becomes ξ(a) = a+ βy and ξ(b) = b+ βy.

The simplest implementation of this encryption scheme does not preserve neither ad-

ditive nor multiplicative homomorphism. An improvement the team has developed to

approximately preserve the scalar product is to include asymmetric chaotic encoding

such that the query is encrypted as ξ(a) = a + βy and the document is encrypted as

ξ(b) = b− βy.

It is straightforward to verify that asymmetric chaotic encoding preserves ad-

ditive homomorphism, as the transformation satisfies ξ(a) + ξ(b) = a+ b. However,

preserving the dot product under chaotic transformations is more challenging. Note that

ξ(a) · ξ(b) = AB+βy(B−A)− (βy)2). To preserve the dot product, we want to restrict

the correction term to be approximately zero.

This requires either imposing specific constraints on the chaotic mapping or integrating

modular arithmetic into the encryption scheme to control cross-terms and maintain inner

product structure.

Although chaotic mapping encryption schemes offer strong security and low computa-

tional overhead, they do not inherently preserve the dot product, which is critical for tasks

like similarity search or secure retrieval. Future research should aim to develop asym-

metric or structure-preserving transformations that maintain inner product relationships

while retaining the benefits of chaos-based encryption.

Figure 1. The first 100th iteration of the chaotic sequence is generated by the improved

chaotic map

8

4 New Algorithms

4.1 Dimension-Increasing Encrypting Homomorphism Algorithm for

Randomized Discovery (DIEHARD)

The three methods above, dimensional scrambling, noise injection, and random extended

orthogonal encryption, are all limiting cases of general linear encryption methods that

preserve the inner product of a query vector with a document vector. To see this, consider

query encryption of the form

ã = Aa, b̃ = Bb,
where A,B ∈ Rm×n, so that encryption maps n-vectors to m-vectors. Since

ã · b̃ = (Aa)TBb = aTATBb,

reservation of the inner product requires

ATB = In,

where In is the n× n identity matrix. Note that this assumes m ≥ n.

Forming the query-document encryption pair is straightforward. Create a randomm×n

matrix A (where the distribution is unimportant but Gaussian and uniform provide

convenient choices). Verify that A is full rank, e.g., by verifying that

detATA > 0.

If not, redraw. If so, set

B = A(ATA)−1.

Learning the query encryption matrix A from a set of q queries requires solving for

mn entries from mq equations. Clearly, q > n is required for this to be well-posed. Thus,

choosing the size of encrypted query vectors to be larger than the size of the plain-text

query vectors offers no significant advantage in terms of encryption strength.

A more serious drawback to this approach is the fact that neither A nor B preserves the

query and document vector norms under encryption. Adding those conditions requires

ATA = BTB = In

in addition to the requirement that ATB = In. This is only possible if B = A.

To see why this is true, note that, without loss of generality, B can be written in the

form

B = A+A1,

where A1 is in the nullspace of AT . But then

BTB = ATA+AT
1 A1 = In +AT

1 A1.

Thus AT
1 A1 = 0, which implies that all columns of A1 are vectors of norm zero, i.e.,

A1 = 0.

The queries and documents are therefore encrypted using the same norm-preserving

matrix, whose action is restricted to rotations and zero-padding. This approach is dis-

cussed in the next section.

9

4.2 Random Orthogonal Method of Encryption (ROME)

Consider a message that is embedded as a vector q ∈ Rn with ||q|| = 1. For example,

n can be 1536 which is the length of the embedding vector for text-embedding-ada-002

(most commonly used embedding model by OpenAI). In the ROME method, we perform

the encryption in two steps. As a first step, we insert a fixed number of zeros (let us say

Z) at random positions within the elements of q which generates a vector E(q) ∈ Rm

(where m = n+ Z), e.g.

E(q) = [q1, 0, 0, q2, q3, · · · , 0, 0, 0, q4, · · · , qN , 0]T

This step of adding zeros to extend the vector, we call, the zero-padding. We can think

of doing this step by partitioning the number Z into n + 1 non-negative numbers such

that the sum of those numbers is Z. The numbers in the partition will be the number of

zeros that we insert between two elements of q starting from the left of the first element

and ending at the right of the last element (n+1 spaces). It is equivalent to multiplying

q by a m× n matrix E of zeros and ones, where ones are placed such that the elements

of q appears in E(q) at the appropriate places.

Secondly, we generate a random orthonormal matrix Q (i.e., Q−1 = QT) of size m ×
m. This can be implemented by generating m random independent vectors and using

the Gram-Schmidt algorithm to orthonormalize (QR decomposition of a random full

rank matrix). Computational complexity of QR decomposition is O(m3): this signifies

that as the size of the matrix (m) doubles, the number of operations required for QR

decomposition increases by a factor of (23). Householder reflections method is a common

algorithm for calculating QR decomposition, and its complexity is typically O(m3). It

was found that using random orthogonal matrix is statistically defensible as it allows

users to make inferences about parameters in a model similar to raw dataset [10].

Assume q1 and q2 are two messages, one can easily verify that this random extended

(zero-padding) orthogonal encryption preserves the inner product.

(QEq1) · (QEq2) = q1 · q2.

Therefore, ROME is a homomorphic encryption method.

4.2.1 Minimum number of queries to know to hack ROME

To decrypt the ROME method, we need to obtain the matrix QE i.e. we have mn

unknowns.

4.2.2 Hacking ROME- 2× 2 case

In this section, we show our attempt to hacking into the ROME algorithm for a simple

case. We start with a query of size q =

[
q1
q2

]
To encrypt, we do not perform zero padding

and simply multiply q with the orthonormal matrix

Q =

[
η11 η12
η21 η22

]

10

to get the encrypted query vector E(q) = QEq =

[
q̃1
q̃2

]
.

We assume that the hacker has access to q and E(q) and our goal is to find the matrix

Q. We assume that the hacker knows that the encryption is homomorphic and therefore

QTQ = I. Therefore, the hacker has the following equations:

η211 + η221 = 1, η212 + η222 = 1, η11η12 + η21η22 = 0,

η11q1 + η12q2 = q̃1, η21q1 + η22q2 = q̃2

The solution for the above problem is obtained by solving the following quadratic equa-

tions for η11 and η22 (respectively):

(q̃1
2 + q̃2

2)η211 − 2q1q̃1η11 + (q21 − q̃2
2) = 0

(q̃1
2 + q̃2

2)η222 − 2q2q̃2η22 + (q22 − q̃1
2) = 0

which can further be simplified by thinking of q̃ as a unitary vector. Once we have the

values for η11 and η22, we find η21 and η12 by:

η21 =
q1 − η11q̃1

q̃2
, η12 =

q2 − η22q̃2
q̃2

.

The above shows that the solutions tend to be non-unique even in the simplest case. The

above also shows that only one query is not enough to know the exact matrix Q due to

non-uniqueness of solutions.

11

Encryption Methods Homomorphism Strength Computational Expense

Dimensional+Noise Yes Weak 26.24 µs ± 7.98 µs
El Gamal Multiplication only Strong 3.39 s ± 146 m

Exponential El Gamal Addition only Strong 4.66 s ± 218 ms
CKKS Approximately Strong 32.3 ms ± 640 ms

Chaos mapping Approximately Strong 17 µs ± 20 µs
ROME Yes Strong 8.51 ms ± 3.43 ms

Table 1. Summary of Encryption Techniques: Trade-offs Between Efficiency and Security

5 Implementation

In this section, we implemented all the algorithms described above in the previous section

s. To begin, we created a small sample of textual documents, each comprising a simple

sentence related to academia, programming, or artificial intelligence. These documents

were then converted into numerical representations using the pre-trained SentenceTrans-

former model ’all-MiniLM-L6-v2’. This model produces dense vector embeddings for each

sentence.

To simulate querying within an encrypted document retrieval system, we defined a

set of user queries and saved them to a text file to ensure reproducibility. These queries

were later loaded and embedded into dense vectors using the same pre-trained Sentence-

Transformer model. Both the unnormalized and normalized forms of the resulting query

embeddings were saved for further analysis.

Finally, we applied each of the previously described methods to the document embed-

dings and the query embeddings to perform encryption. Table 1 shows a comparative

analysis of all the encryption methods proposed based on the homomorphism properties,

encryption strength and computation expense.

From the implemented methods we can notice that CKKS operates on data in a row-

wise manner, which generally results in lower running time. ElGamal and Exponential

ElGamal are less efficient in our implementation, as the available packages only support

encrypting one number at a time. We did not attempt to optimize these implementations;

instead, we followed the standard procedures described in the documentation. In addition,

neither ElGamal nor Exponential ElGamal preserves the dot product property. Given

that ElGamal and Exponential ElGamal were implemented in the simplest possible way

and do not preserve the dot product, they are not directly comparable to the other

methods in terms of performance or functionality.

Chaos mapping demonstrates one of the lowest computational times among the meth-

ods evaluated. However, it only preserves addition and not the dot product. Dimension

plus noise injection and CKKS are among the methods with lower computational costs.

However, while dimensional scrambling combined with noise injection does preserve the

dot product, it is relatively weak in terms of security—meaning it is easier to decrypt.

Although CKKS is considered a strong encryption method, it does not preserve the dot

product property. In contrast, our newly proposed method, ROME, both preserves the

dot product and offers strong security, with computational expense comparable to some

of the more efficient methods.

12

6 Sacking ROME

ROME is vulnerable to an actor intercepting the unencrypted and encrypted queries and

using them to infer QE . Two intuitive methods of solution are to (1) account for the fact

that QE is formed by zero-padding followed by the action of an orthogonal matrix and

(2) simply solve for the entire m × n matrix. We assume for now that there are suffi-

ciently many encrypted-unencrypted query pairs to implicitly enforce the orthogonality

constraint on Q, so that each case can be solved using linear algebra.

The m×n entries of QE are determined by the q×m equations relating the matrix of

q known encrypted query vectors, A, to the matrix of q known unencrypted queries, i.e.,

Ã = QEA.

Assuming q ≥ n, this is solved to give

QEAAT = ÃAT .

The computational complexity of solving for QE includes:

• formation of the right-hand side: qmn

• formation of the matrix AAT : qn2

• solution by Gaussian elimination: 2
3n

3 +mn2

In total, this gives

Cq
mn = qmn+ qn2 +

2

3
n3 +mn2.

Alternatively, one could try solving for the (n × n)-dimensional permutation matrix

remaining after excluding m − n entries of the query vector, repeating that process for

each of the
(

m
m−n

)
combinations of zero-padded vector entries. This gives

Ĉq
mn =

m!

(m− n)!n!
Cq

nn =
m!

(m− n)!n!
(2qn2 +

5

3
n3).

As demonstrated in Fig. 2, the ratio of the computational cost for solving for n × n

matrices over all zero-padding combinations to that for simply solving for the m × n

matrix QE all at once is always greater than one, often considerably so. Simply solving

for the full matrix QE is therefore more efficient.

Figure 2. Ratio of computational cost, mC(m− n) solves of n2 vs single solve of m× n

(for n queries)

13

7 Conclusion and Future Work

Homomorphic encryption presents a promising direction to securely outsourcing compu-

tations on encrypted data, ensuring privacy even in the presence of third-party compu-

tation, like the distributed computing system that Kwaai offers. In this work, we review

various existing encryption algorithms: dimensional scrambling, noise injection, chaos

mapping, ElGamal cryptosystem, and CKKS on their capability to preserve the scalar

product, strength, and computational efficiency. In addition, we introduced two homo-

morphic encryption algorithms, dimension-increasing encrypting algorithm for random-

ized discovery (DIEHARD) and randomized orthogonal method of encryption (ROME).

In addition to the results achieved this week, the team would like to continue investi-

gating how to improve the VPR used to homomorphically encrypt Personal AI [6]. Some

of the encryptions that should be explored in greater depth are CKKS (to improve its

accuracy) and lattice encryption (as an alternative homomorphic encryption algorithm).

Another improvement that should be made lies in ROME. It would be ideal to create

an algorithm as strong as ROME that does not expand the data when implemented.

Finally, we recommend exploring the use of multiple encryption devices, each requiring

a different key to be accessed, thus complicating the efforts of a malicious actor to obtain

sensitive information.

References

[1]Abbas Acar et al. “A survey on homomorphic encryption schemes: Theory and

implementation”. In: ACM Computing Surveys (Csur) 51.4 (2018), pp. 1–35.

[2]Jung Hee Cheon et al. “Homomorphic encryption for arithmetic of approximate

numbers”. In: Advances in Cryptology – ASIACRYPT 2017. Lecture notes in com-

puter science. Cham: Springer International Publishing, 2017, pp. 409–437.

[3]Taher ElGamal. “A public key cryptosystem and a signature scheme based on dis-

crete logarithms”. In: IEEE transactions on information theory 31.4 (1985), pp. 469–

472.

[4]Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceedings

of the forty-first annual ACM symposium on Theory of computing. 2009, pp. 169–178.

[5]Zhenghan He and Weibin Zhang. “Research on real time network homomorphic

encryption algorithm based on chaotic sequence”. In: (Nov. 2020), pp. 463–466. doi:

10.1109/ICRIS52159.2020.00119.

[6]Kristin Lauter. “Private Artificial Intelligence: Machine Learning on Encrypted

Data”. In: Collections 55.03 (2022).

[7]Oded Regev. “On lattices, learning with errors, random linear codes, and cryptog-

raphy”. en. In: J. ACM 56.6 (Sept. 2009), pp. 1–40.

[8]Ronald L Rivest, Len Adleman, Michael L Dertouzos, et al. “On data banks and pri-

vacy homomorphisms”. In: Foundations of secure computation 4.11 (1978), pp. 169–

180.

[9]Alice Silverberg. “Fully homomorphic encryption for mathematicians”. In: Cryp-

tology ePrint Archive (2013).

https://doi.org/10.1109/ICRIS52159.2020.00119

14

[10]Daniel Ting, Stephen E Fienberg, and Mario Trottini. “Random orthogonal matrix

masking methodology for microdata release”. In: International Journal of Informa-

tion and Computer Security 2.1 (2008), pp. 86–105.

[11]Ronghao Zhou and Zijing Lin. “An improved exponential elgamal encryp-

tion scheme with additive homomorphism”. In: 2022 International Conference on

Blockchain Technology and Information Security (ICBCTIS). IEEE. 2022, pp. 25–27.

[12]Hai-Hua Zhu, Zi-Gang Chen, and Tao Leng. “Random permutation-based mixed-

double scrambling technique for encrypting MQIR image”. en. In: J. Appl. Phys.

135.1 (Jan. 2024).

	Abstract
	Introduction
	Encryption Algorithms
	Dimensional Scrambling
	Noise Injection
	ElGamal Cryptosystem
	Exponential ElGamal Cryptosystem
	CKKS Homomorphic Encryption Scheme
	Chaotic Mapping

	New Algorithms
	Dimension-Increasing Encrypting Homomorphism Algorithm for Randomized Discovery (DIEHARD)
	Random Orthogonal Method of Encryption (ROME)

	Implementation
	Sacking ROME
	Conclusion and Future Work

