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Abstract. Clustering is the problem of separating a set of objects into groups (called clusters) so
that objects within the same cluster are more similar to each other than to those in different clus-
ters. Spectral clustering is a now well-known method for clustering which utilizes the spectrum of
the data similarity matrix to perform this separation. Since the method relies on solving an eigen-
vector problem, it is computationally expensive for large datasets. To overcome this constraint,
approximation methods have been developed which aim to reduce running time while maintaining
accurate classification. In this article, we summarize and experimentally evaluate several approx-
imation methods for spectral clustering. From an applications standpoint, we employ spectral
clustering to solve the so-called attrition problem, where one aims to identify from a set of employ-
ees those who are likely to voluntarily leave the company from those who are not. Our study sheds
light on the empirical performance of existing approximate spectral clustering methods and shows
the applicability of these methods in an important business optimization related problem.

1. Introduction

Clustering or cluster analysis addresses the problem of separating a set of objects into clusters
so that objects within each cluster are more similar to each other than to objects in different
clusters. The clustering problem has become ubiquitous in data mining and machine learning with
applications ranging from image processing to bioinformatics. What one means by clustering, and
the type of clustering desired is application dependent. For example, one may wish to segment
an image such as that in Figure 1 (a)-(b). In medical imaging, segmentation may aid in the
identification of tumors, assist physicians in surgery and separate anatomical structures. Computer
vision applications utilize clustering methods to identify foreign objects in surveillance images or
detect road signs for computer piloted vehicles. In statistical analysis, the objects to be clustered
may represent individuals in a population viewed as a vector of personal attributes. For example,
we will consider the attrition problem: from a dataset of employees one wishes to identify which
cluster of employees are likely to voluntarily leave the company and which are not. With this
problem as our overarching focus, we will consider here and throughout the case in which we wish
to identify two clusters in the data. One can visualize this type of clustering in low dimensions, for
example as seen in Figure 1 (c), where the “correct” cluster identification is obvious.

1.1. Contributions. As we discuss later in this section, there are different clustering algorithms
such as k-means or spectral clustering. The focus of this article is on spectral clustering, a method
which utilizes an eigenvector from the so-called data similarity matrix. Computing eigenvectors
of such matrices could be potentially a very expensive operation. Thus, faster approximation
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(a) (b) (c)

Figure 1 Examples of clustering: (a) original peppers image, (b) segmentation of peppers image, (c)
two clusters in two dimensions.

algorithms for spectral clustering have appeared in the literature. The first contribution of this
article is to summarize and experimentally evaluate such approximation algorithms. Our second
contribution is to apply spectral clustering to a modern business optimization related problem
which we call the attrition problem: given a set of employees, we would like to separate those who
are likely to voluntarily resign from the company from those who are not. Such information could
be of tremendous value to the company because of the high costs to replace the workforce. We
present the empirical study of approximation algorithms for spectral clustering in Section 2 and
the case study to the attrition problem in Section 4.

1.2. Clustering via k-means. The goal of clustering methods is to identify clusters automatically
from the data input. The k-means clustering method is an approach that separates objects into
k clusters so that each object is assigned to the cluster whose mean is nearest in the Euclidean
sense [8, 19]. That is, given n vectors x1,x2, . . . ,xn in d-dimensional space, xj ∈ Rd, the k-means
method aims to minimize the sum of the squared intra-cluster distances:

k∑
i=1

∑
xj∈Si

‖xj − µi‖22,

where, for i = 1, . . . , k, Si contains the indices of vectors in the ith cluster, and µi ∈ Rd denotes
the mean (center) of vectors in that cluster.

Although this problem is in general NP-Hard [10], efficient iterative algorithms have been de-
veloped that often converge to a locally optimal solution (see e.g. Chapter 20 of [9]). Although
variations in the method exist, the standard approach due to Lloyd (for k = 2 clusters) consists of
repeating the two steps described in Algorithm 1. We denote by Sc the complement of the set S.

To separate the points into more than 2 clusters, one extends the method for k-means in the
natural way. The runtime of the method is O(knT ). When the mean of each cluster converges
toward the true cluster center, the k-means method performs well. This is the case, for example,
when the clusters are each of similar size and have a spherical shape as seen in Figure 2 (a). However,
when the clusters are not linearly separable, as in Figure 2 (b), k-means may often incorrectly assign
points to clusters. Although k-means performs well in many settings, there are also applications
where these limitations are apparent, and this leads us to search for other methods that will work
for more general purposes.

1.3. Spectral Clustering. An alternative way to approach the clustering problem is to view the
data points as a graph. Each vertex of the graph will represent a data point, and each edge will
represent the similarity between the two corresponding vertices. To that end, for n data points
x1,x2, . . . ,xn in d-dimensional space, denote by X the n × d data matrix whose rows contain
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Algorithm 1 k-means Clustering Method (for k = 2)

1: procedure (xj ’s, µ1, µ2, T ) . data points xj ∈ Rd, initial means µ1, µ2, number of
iterations T

2: for t = 1, 2, . . . , T do
3: Cluster by assigning each object to its closest mean:

S1 = {xj : ‖xj − µ1‖2 ≤ ‖xj − µ2‖2}, S2 = Sc
1

4: Update the mean vectors:

µ1 =
1

|S1|
∑

xj∈S1

xj , µ2 =
1

|S2|
∑

xj∈S2

xj

5: end for
6: end procedure

(a) (b)

Figure 2 The k-means clustering method: (a) two clusters in two dimensions with cluster means
converged to cluster centers (marked with stars); (b) non-spherical clusters are difficult to identify via
k-means clustering.

the data vectors xT
j . We construct a similarity matrix W ∈ Rn×n whose (i, j)th entry gives the

similarity between the two corresponding data points:

Wij = exp

(
−
‖xi − xj‖2

σ2ij

)
, (1)

where σij is a tuning parameter to be chosen later. The similarity matrix W induces a complete
graph (V,E,W ) where V is the set of vertices (objects) to be clustered, E is the set of edges,
and W represents the weights of the edges. The clustering problem can then be viewed as the
partitioning of the graph into sets of vertices such that the edges within the sets have large weights,
and the edges across sets have small weights. Formally, in the 2-clustering setting, we wish to
identify sets A and B which minimize the so-called normalized cut objective,

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
,

where the cut and association functions are defined by

cut(A,B) =
∑
xi∈A
xj∈B

Wij , assoc(A, V ) =
∑
xi∈A
xj∈V

Wij , and assoc(B, V ) =
∑
xi∈B
xj∈V

Wij .

The numerators of Ncut defined in this way guarantee that the weights between the clusters A
and B are small. On the other hand, if we simply minimized the cut function, one might obtain
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cuts for which A is a very small set of vertices (perhaps even just one vertex) and B is the remaining
vertices, as shown in Figure 3 (a). To avoid these trivial cuts, we divide by the association function,
which sums the weights between a set of vertices and all nodes. If a set of vertices in the partition
is too small, its association will be small, leading to a large Ncut. With this normalization, one
hopes to avoid this type of bias and obtain cuts as in Figure 3 (b).

(a) (b)

Figure 3 Two examples of graph partitioning (one set is shown shaded and the other unshaded): (a)
Minimizing the cut of the graph, (b) minimizing the normalized cut of the graph.

Minimizing the normalized cut is NP-Complete in general (see [15] for the proof; originally due
to Papadimitriou). However, recently a relaxation of the optimization problem has been reduced
to an eigenvector problem [15]. Given the n × n similarity matrix W , one defines the normalized
Laplacian1 matrix L ∈ Rn×n by

L = D−1/2(D −W )D−1/2, (2)

where D ∈ Rn×n is the diagonal matrix of degree nodes,

Dii =
∑
j

Wij . (3)

Shi and Malik argued that the eigenvector corresponding to the second smallest eigenvalue of L
corresponds to a linear transformation of the relaxed solution to the Ncut problem [15]. Indeed,
the clustering is then performed by selecting an appropriate threshold, and assigning indices of
the eigenvector with large values to one cluster, and indices with small values to the other. For
example, with the eigenvector plotted in Figure 4, the first 400 data points would be assigned to
one cluster and the second 400 to the other. This gives rise to the following formal definition of
the spectral clustering algorithm.

Figure 4 An example of an eigenvector obtained from the spectral clustering method (horizontal axis
represents the index, vertical the value of the eigenvector at that index). Here we assign the first 400
objects to one cluster and the second 400 to the other.

1Note that one may also consider the Laplacian L = D −W .
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Algorithm 2 Spectral Clustering Method (for two clusters)

1: procedure (X, σ) . n× d data matrix X, tuning parameter σ
2: Construct the similarity matrix W in (1), degree matrix D in (3) and Laplacian L in (2)
3: Compute the eigenvector corresponding to the second smallest eigenvalue of L
4: Assign the indices in the eigenvector with large values to one cluster, the rest to the other
5: end procedure

The step which is most computationally burdensome is the eigenvector computation. In general
this step yields an O(n3) running time. This cost is often detrimental for large applications and is
one of the biggest drawbacks to spectral clustering methods.

Experimental results using the spectral clustering method are shown in Figure 5. Here we use the
self-tuning approach by Zelnik-Manor and Perona [13] for obtaining the similarity matrix. Consider
the vector in Rn defined entrywise by

νi = ‖xi − xiK‖2, (4)

where xiK denotes the Kth closest neighbor to xi. We then set the scaling parameter σij as

σij = νiνj . (5)

As in the article, we set K = 7 for all our experiments with the spectral clustering algorithm. The
experiment performed on the interlocked rings, interlocked half rings, and Gaussian strips were run
on Intel Core 2 Duo E8500 3.16 GHz machines with 6 MB cache and 16 GB memory. The concentric
spheres and concentric rings experiments were run on Intel Core i7 870 2.93 GHz machines with
4 cores, 8 MB cache and 16 GB memory. The tangent spheres experiments were run on an Intel
Xeon W3520 2.67 GHz machine with 4 cores, 8 MB cache and 16 GB memory.

(a) (b) (c)

(d) (e) (f)

Figure 5 Accurate clustering results for data sets of many shapes and sizes using spectral clustering:
(a) Gaussian strips, (b) Interlocked half rings, (c) Concentric rings, (d) Concentric spheres, (e) Tangent
spheres, and (f) Interlocked rings.

The running times and dataset sizes are summarized in Table 1.
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Dataset Size n Running time (s)
Gaussian strips 200 0.17
Interlocked half rings 373 0.73
Concentric rings 800 8.02
Concentric spheres 5000 855.12
Tangent spheres 10000 6365.4
Interlocked rings 10000 6870.7

Table 1 Running times and dataset sizes for problems of Figure 5.

Although the spectral clustering method performs accurate cluster identification even for datasets
challenging to the k-means method, its cubic runtime is a practical obstacle in many applications.
For this reason, approximation methods have been developed which efficiently approximate the
spectrum of the Laplacian matrix L. In this article, we consider four popular approximation
methods. The Fast spectral clustering method [20] and Extensible spectral clustering method [18]
both identify a small set of representative points from the dataset, perform spectral clustering on
this much smaller set of points, and extend the identification to the remaining data points. An
alternative way to reduce the dimension of the similarity matrix is to randomly sample values
from the matrix to obtain a smaller submatrix, which is the basis of the Spectral clustering on a
budget [14] and Nyström methods [5].

1.4. Organization. The remainder of the article is organized as follows. The four approximation
methods are described and discussed in Section 2. Section 3 displays numerical results used for a
comparison between the methods. In Section 4 we focus on the attrition problem and analyze how
each method performs at that task. We conclude in Section 5 with a discussion of the findings.

2. Approximation Methods

The fundamental idea behind efficiently approximating the spectral clustering method is to
reduce the problem size to be clustered. To maintain accurate cluster identification, one hopes that
the reduced problem preserves the same cluster structure as the original problem. The two main
approaches to this goal that we discuss here rely either on randomness to reduce the dimension,
or some preprocessing algorithmic step to ensure that the smaller set is a good representation of
the original. To evaluate accuracy of the method one uses the results of spectral clustering as the
ground truth, and compares the output of the other methods to that. To evaluate in a general
sense, rather than example to example, one may wish to compare the eigenvector computed by the
approximation method to that of the spectral clustering method. We discuss these notions and
describe the methods in the remainder of this section.

The common theme between approximate spectral clustering methods is that the n×n similarity
matrix W is downsampled so that clustering can be performed efficiently. Such downsampling will
of course lead to errors in the computed eigenvectors, and one wishes to quantify the magnitude
of such perturbations to validate the accuracy of the approximate method. In a general context,

we can view this process as the perturbation of the Laplacian) matrix L̃ = L + E where E is

some error matrix and L̃ is the perturbed Laplacian matrix. Standard results from linear algebra
guarantee the following bound on the perturbation of eigenvectors.

Theorem 2.1 (Eigenvector Perturbations [20, 6, 16]). Suppose L̃ = L+E and denote by ṽi and

vi the ith eigenvectors of L̃ and L, respectively, corresponding to the ith smallest eigenvalue. Then

‖ṽ2 − v2‖2 ≤
1

λ2 − λ3
‖E‖+ O(‖E‖2),

where λi denotes the ith smallest eigenvalue of W .
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This result shows that the perturbation in the eigenvectors is controlled by the (spectral) norm
of the perturbation in the matrix, and the eigengap λ2−λ3. This theory can be extended to bound
the angles between eigenspaces of the original and perturbed matrices as well as the norm of their
projections [7].

In analyzing approximation methods, one wishes to determine the tradeoff between accuracy and
efficiency. To quantify theoretically and empirically the performance of an approximation method,
we define the mis-clustering rate by

ρ =
1

n

n∑
i=1

1i, (6)

where 1i is the indicator function which is equal to 1 if object xi is clustered incorrectly and zero
otherwise. We assume here that the correct clustering is given by the spectral clustering method,
and compare the results of the approximation methods against that standard. One can then bound
the mis-clustering rate by the difference in the eigenvectors under certain assumptions.

Theorem 2.2 (Misclustering rate [6, 20]). Suppose L̃ = L + E and denote by ṽ2 and v2 the

2nd (smallest) eigenvectors of L̃ and L, respectively. Then when both sets of eigenvectors parti-
tion the data into two clusters and the perturbations in the eigenvectors satisfy the componentwise
assumptions of [6],

ρ ≤ ‖ṽ2 − v2‖22.

This result motivates the development of approximation methods which yield small perturbations
in the eigenvectors of the downsampled matrix.

2.1. Fast Spectral Clustering. The fast spectral clustering algorithm by Yan et al. [20] consists
of two major parts: data preprocessing and spectral clustering. The goal of the data preprocessing
is to construct a smaller, but representative set of points to undergo spectral clustering rather
than the original large dataset. Since the k-means method itself identifies k representative points
(usually the cluster means), it seems a natural way to identify a representative set of points even
if k is larger than the number of clusters. One can then perform spectral clustering efficiently on
the representative points, and assign clusters to the entire original dataset by simply choosing the
cluster containing the closest representative point. Indeed, the algorithm for fast spectral clustering
is described in Algorithm 3 below.

Algorithm 3 Fast Spectral Clustering Method

1: procedure (X, k, T ) . n× d data matrix X, number of representative points k, number of
iterations T

2: Find k representative points (centroids y1, ...,yk) via k-means
3: Create a correspondence table that associates each xi with the nearest cluster centroid yj ;
4: Run spectral clustering on the data matrix Y of centroids to obtain a clustering assignment
5: Use the correspondence table to recover cluster membership for each point xi

6: end procedure

The complexity for the k-means step is O(knT ), and since spectral clustering is only run on the k
representative points, that step yields a cost of just O(k3). The remaining assignment steps cost at
most O(n), yielding an overall runtime of O(knT +k3). This is of course a significant improvement
over the cubic O(n3) of spectral clustering when k and T are chosen small enough. To quantify
precisely this tradeoff between efficiency and accuracy, the perturbation theory of Theorem 2.2
can be utilized. Indeed, results on fast spectral clustering guarantee the following bound on the
mis-clustering rate.
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Theorem 2.3 (Spectral misclustering rate [20]). Assume that the assumptions of Theorem 2.2
hold. Then the mis-clusterting rate ρ (6) for fast spectral clustering satisfies

ρ .
2

(λ2 − λ3)2
‖L− L̃‖2F ,

where ‖ · ‖2F denotes the Frobenius norm, L and L̃ denote the Laplacian and perturbed Laplacian,
and the symbol . implies that higher order terms are ignored in the relation.

This result demonstrates that the mis-clustering rate is again controlled by the eigengap and
the perturbations in the Laplacian incurred via fast spectral clustering. The latter term can be
bounded in special cases, see [20] for details.

2.2. Extensible Spectral Clustering. The notion of identifying a small representative sample
of the data on which to initially perform spectral clustering can also be generalized. This class of
methods are given the name extensible spectral clustering (eSPEC) [12, 2, 18]. Here, one performs
spectral clustering on the representative sample of the data, and assign each object in the original
dataset to cluster based on its m closest neighbors within the representative sample. We again use
the similarity matrix (1) to measure ”closeness.” The general model is described in Algorithm 4.

Algorithm 4 Extensible Spectral Clustering Method

1: procedure (X, m, S) . n× d data matrix X, neighboring parameter m, representative
sample S

2: Run spectral clustering on the representative sample S to obtain a clustering assignment
3: For each object i in Sc, find its m closest neighbors in S
4: Assign each object i to the cluster containing the majority of its m closest neighbors
5: end procedure

There are of course many ways one can initially obtain the representative sample. As in the fast
spectral clustering method, one can utilize the k-means method to identify a good representative
sample S. Indeed, if the centroids found by the k-means method coincide with data points in the
set, the extensible spectral clustering method with m = 1 is the same as the fast spectral clustering
method. Alternatively, the representative sample can be chosen randomly. For example, one can
simply sample uniformly at random from the dataset (see e.g. [12, 17, 18] and references therein) or
according to some other probability distribution such as one that assigns probabilities proportional
to the norms of each column [4]. In the experiments section below, we see that using uniform
sampling with just m = 1 provides accurate results even for reasonably small sample sizes. In this
case the running time of the method is dominated by the size of the sample, O(|S|3).

2.3. Nyström Method. Both the fast spectral clusterting method and extensible spectral clus-
tering reduce the dimension of the clustering problem by subsampling the objects in the data. An
alternative approach is to subsample the similarity matrix W (1) itself. In this case, one uses a
submatrix of W and asks that the submatrix approximates the entire matrix W well. This is the
motivation behind the Nyström method [11, 1, 5].

To that end, we decompose the n× n similarity matrix W so that

W =

(
W11 W T

21

W21 W22

)
, (7)

where W11 ∈ Rm×m,W21 ∈ R(n−m)×m, and W22 ∈ R(n−m)×(n−m). Choosing m� n, W22 is very
large, and this is thus the part we wish to approximate.

To do so, one computes the similarity matrix for only the m sampled data points, represented
by W11. The relationship between the sampled data points and the rest of the points is given by

290Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



Cung, Jin, Ramirez, and Thompson Approximation Algorithms for Spectral Clustering

W21. Then only W11 and the first m columns of W , denoted Wm = (W11W
T
21)T , are needed to

compute the Nyström approximation:

Ŵ = WmW
−1
11 W

T
m.

The eigenvectors of Ŵ are then used as an approximation to the eigenvectors of W . Unfortu-
nately, these approximate eigenvectors are not necessarily orthogonal, a property that is necessary
for the spectral clustering problem. However, when W is positive semidefinite, these eigenvectors
can be orthogonalized efficiently. First, we construct

Q = W11 +W
− 1

2
m W T

21W21W
− 1

2
m .

Then we compute the eigendecomposition of Q to obtain a matrix U whose columns are equal
to the eigenvectors of Q and a diagonal matrix Λ with diagonal entries equal to its eigenvalues.
The orthogonalized approximate eigenvectors of Ŵ are then computed as the columns of

V = WmW
− 1

2
11 UΛ−

1
2 ,

which can be used for clustering. The Nyström method is thus described as follows in Algo-
rithm 5.

Algorithm 5 Nyström Method

1: procedure (W , m) . n× n similarity matrix W , sample size m
2: Decompose the similarity matrix W as in (7)

3: Compute the approximation Ŵ = WmW
−1
11 W

T
m

4: Set Q = W11 +W
− 1

2
m W T

21W21W
− 1

2
m

5: Compute the eigendecomposition of Q to obtain eigenvectors U and eigenvalues Λ

6: Compute orthogonalization V = WmW
− 1

2
11 UΛ−

1
2

7: Use the columns of V as approximate eigenvectors for spectral clustering
8: end procedure

For this process to work, however, one requires that the similarity matrix W be positive semi-
definite. Therefore, the self-tuning approach given in (5) can no longer be utilized since it will not
necessarily guarantee positive semidefiniteness. However, using the fact that choosing σ equal to a
constant yields a similarity matrix which is positive semidefinite [3], the matrix for this algorithm
can be self-tuned by setting

Wij = exp

(
−‖xi/νi − xj/νj ||2

c

)
,

where νi is defined in (4), and c is some fixed constant.
However, this self-tuning approach yielded worse results empirically than simply manually setting

the scaling parameter σ. Figure 6 demonstrates the percentage of misclustered data points via the
Nyström method with σ = 1 and the self-tuning approach, for the tangent spheres data (shown in
Figure 5 (e)).

The Nyström method is more efficient than the exact algorithm because it is not necessary to
compute eigenvectors of the entire dense similarity matrix. It has a time complexity of O(nm2+m3),
which for m � n is significantly less than the O(n3) runtime of the standard spectral clustering
method.
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(a) (b)

Figure 6 Manually setting σ gives better results than the self-tuning method. An example is shown
here for the tangent spheres dataset for (a) σ = 1 and (b) self-tuning. However, different datasets often
favor different values of σ.

2.4. Spectral Clustering on a Budget. The Nyström method relies on a submatrix to approx-
imate the entire similarity matrix W . There, one usually samples blocks or rows/columns at a
time. Alternatively, one can simply sample the entries themselves at random. This is the approach
of the spectral clustering on a budget method [14]. The aim is to randomly select b different entries
in the matrix (for some budget constraint b) and store only those. The remaining entries are set
to zero, enforcing the approximation to be a sparse matrix whose eigenvectors can be computed
efficiently.

More specifically, the indices for the entries are chosen uniformly at random and without replace-

ment from {(i, j) : i < j}. A new matrix W̃ is formed whose entries are given by

W̃ij = W̃ji =


2b

n(n− 1)
if i = j

Wij if (i, j) is queried

0 otherwise.

(8)

We thus formulate the spectral clustering on a budget method formally as in Algorithm 6.

Algorithm 6 Spectral clustering on a budget

1: procedure (W , m) . n× n similarity matrix W , sample size m

2: Create W̃ by selecting m entries of W according to (8)

3: Run spectral clustering efficiently using sparsified approximation W̃
4: end procedure

It is shown that the perturbation in the eigenvectors via the downsampling in this method can
be bounded with high probability.

Theorem 2.4 (Spectral clustering on a budget [14]). Suppose that the budget is b ≤ 1
4(n2−n), and

denote by v2 and ṽ2 the 2nd (largest) eigenvectors of the Laplacian L = D−W , and corresponding

perturbed Laplacian L̃, respectively. Then

min (‖ṽ2 − v2‖2, ‖ − ṽ2 − v2‖2) .
4

λ2 − λ3

(
n5/3

b2/3
+
n3/2

b1/2

)
,

where λi denotes the ith eigenvalue of L and the relation . ignores lower order logarithmic factors.
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This result shows that either ṽ2 or −ṽ2 is close to the true eigenvector and can be used for
spectral clustering (note that the negative of the eigenvector preserves the same clustering). This
closeness is again controlled by the eigengap of the Laplacian and the budget size b. If the data
are well-clustered, W can be sparsified to have O(n log3/2 n) nonzero entries, and then spectral
clustering can be performed in O(n log n) time.

3. Numerical Results for Approximation Methods

We next describe experimental results for the approximation methods of Section 2. We run each
method using the datasets shown in Figure 5. Each cluster in these sets is clearly defined, and
accuracy can thus be easily analyzed. The aim of these experiments is to compare and analyze
the relationship between sample size, runtime, and accuracy for the approximation methods. We
use the convention that a z% sample size refers to the percentage z of data used in the sample.
For the fast spectral clustering method, this size corresponds to the number of centroids utilized,
k/n. The error is reported in terms of the misclustering rate (6). Although experiments across
different datasets were run on machines of varying specifications, each algorithm for a fixed dataset
was run on the same machine to allow for fair comparison. The algorithms were implemented
in Matlab as described in the pseudocode of Section 2 and the runtimes were computed via the
cputime function. The experiments performed on the interlocked rings, interlocked half rings, and
Gaussian strips were run on Intel Core 2 Duo E8500 3.16 GHz machines with 6 MB cache and
16 GB memory. The concentric spheres and concentric rings experiments were run on Intel Core
i7 870 2.93 GHz machines with 4 cores, 8 MB cache and 16 GB memory. The tangent spheres
experiments were run on an Intel Xeon W3520 2.67 GHz machine with 4 cores, 8 MB cache and 16
GB memory. A constant σ value was used for the Nyström method and the spectral clustering on
a budget method for the interlocked rings dataset (for the values, see the tables below); otherwise,
the self tuning approaches were used.

Table 2 and Figure 7 display the results for each algorithm on the Gaussian strips dataset,
depicted in Figure 5 (a). For this dataset, the error rate and time for the fast spectral clustering
method tend to decrease with small enough representative points k. This is most likely because
at some point, the k-means clustering portion of the algorithm controls how the data clusters.
To get a small error rate for a small enough k, the k-means clustering must work well with the
dataset, in which case spectral clustering is perhaps not necessary (as is most likely the case for a
well-separated dataset like the Gaussian strip set). However, for datasets for which k-means does
not work well, such as the eye dataset below, we cannot assume that a very small k will have the
same accurate results.

As seen in Figure 7, eSPEC generally performs better than the Nyström method, but fails when
we take too small of a sample size. Spectral clustering on a budget performs worst overall, yielding
the highest error rate if too small of a budget is used. A sufficiently large budget will allow the
algorithm to run faster than the original spectral clustering algorithm, but a larger or slightly
smaller budget does not significantly change the runtime. The Nyström method and eSPEC reach
a point beyond which an increase in running time fails to produce a commensurate decrease in
error rate. For small sample sizes, time does not change as much, but error rate can increase
substantially. Since the Gaussian data consists of only n = 200 points, taking a sample as low as
5% might be too small for Nyström and eSPEC to work well. This is not a problem for fast spectral
clustering since the data can be clustered with k-means clustering.

Table 3 and Figure 8 depict the experimental results for the interlocked half rings dataset,
depicted in Figure 5 (b). For this dataset, the Nyström method is ideal across the board. It has
the smallest error rate and requires the least amount of time. Fast spectral clustering and eSPEC
generally follow the same trend and are very similar in performance. For small datasets in general,
even if k-means clustering does not work well with the dataset, fast spectral clustering is effective.
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(n = 200) Fast Budget Nyström (σ = 1) eSPEC
Sample Size Time Error Time Error Time Error Time Error
2% 0.0122 0.0036 0.2044 0.4914 0.0097 0.208
5% 0.0156 0.068 0.1017 0.1308 0.0112 0.1344 0.0287 0.0379
10% 0.0181 0.0548 0.078 0.0015 0.014 0.1183 0.0271 0.0656
15% 0.0212 0.0046 0.0889 0 0.0218 0.0719 0.0275 0.0364
20% 0.0225 0 0.0858 0 0.0281 0.0321 0.0293 0.005
25% 0.0271 0 0.0952 0 0.0312 0.0249 0.0318 0.0098
30% 0.0300 0 0.088 0 0.0415 0.0042 0.0337 0
35% 0.0343 0 0.0924 0 0.0546 0.0088 0.0396 0
40% 0.0371 0 0.0877 0 0.0621 0 0.0446 0
50% 0.0771 0 0.0952 0 0.1026 0 0.0805 0

Table 2 The run time and error rate of each sample size for each approximation algorithm, ran on the
Gaussian strip dataset.

(a) (b)

Figure 7 Graphs show the (a) error rate and (b) CPU running time (in seconds) when using different
sample sizes for all approximation algorithms. Gaussian strip dataset has n = 200 data points and
sample sizes range from 0–100%.

Cells without numerical entries indicate regimes for which the parameters were too small for the
algorithm to perform.

The results obtained from the concentric rings dataset (depicted in Figure 5 (c)) are displayed
in Table 4 and Figure 9. The table shows that spectral clustering on a budget is very inaccurate
with this dataset when the sample size is below 3%, as it misclusters 1 in 5 points. We see that all
methods identify the clusters exactly once 10% of the data is used in the sample.

Table 5 and Figure 10 contain the results of the experiments on the concentric spheres dataset,
depicted in Figure 5 (d). As the three dimensional analog of the concentric rings, it is not surprising
we see similar results. It is to be noted that all algorithms cluster perfectly when the sample size
is 5% or larger.

Table 6 and Figure 11 depict the results of the algorithms run on the tangent spheres dataset,
depicted in Figure 5 (e). This dataset gives us a prime example of how approximate spectral clus-
tering algorithms are ideal for large, structured data. The exact algorithm takes 6, 365.4 seconds,
or almost 2 hours, to give results, when nearly identical results can be given in seconds using ap-
proximations. When just 4.25% of the data is sampled, all of the algorithms perform with error
less than 0.01, and all under a minute.
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(n = 373) Fast Budget Nyström (σ = 0.2) eSPEC
Sample Size Time Error Time Error Time Error Time Error
2% 0.0215 0.0881 - - 0.005 0.1 0.0452 0.1872
5% 0.0231 0.1461 - - 0.0044 0.002 0.0462 0.2122
15% 0.0356 0.2116 - - 0.0069 0 0.0465 0.2426
25% 0.1017 0.1639 0.2805 0.1396 0.01 0 0.0908 0.1795
35% 0.1335 0.1312 0.2493 0.0595 0.0128 0 0.1114 0.1892
45% 0.1529 0.0959 0.2658 0.0129 0.0209 0 0.1407 0.1498
55% 0.2399 0.0354 0.2855 0.0078 0.0228 0 0.2287 0.1031
65% 0.2874 0.0229 0.3170 0.0077 0.0456 0 0.2852 0.069
75% 0.3526 0.0139 0.3382 0 0.0708 0 0.3594 0.0229
85% 0.4287 0 0.3547 0 0.102 0 0.4711 0.0056

Table 3 The run time and error rate of each sample size for each approximation algorithm, ran on the
interlocked half rings dataset.

(a) (b)

Figure 8 The (a) error rate and (b) CPU running time in seconds when using different sample sizes for
all approximation algorithms. Interlocked half rings dataset has n = 373 data points and sample sizes
range from 0–100%.

(n = 800) Fast Budget Nyström (σ = 0.5) eSPEC
Sample Size Time Error Time Error Time Error Time Error
1.0% 0.0187 0.2699 0.3289 0.4979 0.0362 0.2404 0.0646 0.3076
2.0% 0.0259 0.0792 0.3017 0.4341 0.0356 0.1311 0.0661 0.1176
2.5% 0.0291 0.012 0.2839 0.2841 0.0356 0.1127 0.0646 0.0441
3% 0.0324 0.0062 0.2689 0.2061 0.0427 0.0682 0.0633 0.0102
4% 0.0674 0 0.2424 0.0564 0.0378 0.0258 0.0643 0.0046
5% 0.0627 0 0.2409 0.0131 0.0415 0 0.0655 0.0001
10% 0.1186 0 0.2792 0 0.0615 0 0.0764 0
15% 0.171 0 0.341 0 0.0967 0 0.127 0

Table 4 The (a) run time and (b) error rate of each sample size for each approximation algorithm, ran
on the concentric rings dataset.

Finally, Table 7 and Figure 12 demonstrate the results of the algorithms run on the interlocked
rings dataset of Figure 5 (f). We again see similar results to the tangent spheres dataset, most
likely because the structure of the clusters are similar.
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(a) (b)

Figure 9 The (a) average error rate and (b) running time when using different sample sizes for all
approximation algorithms. Concentric rings dataset has n = 800 data points and sample sizes range
from 0–15%.

(n = 5, 000) Fast Budget Nyström (σ = 1) eSPEC
Sample Size Time Error Time Error Time Error Time Error
0.2% 0.1292 0.3688 57.4396 0.4998 1.3934 0.2884 0.356 0.3405
0.3% 0.2296 0.3334 53.7683 0.4996 1.3672 0.2309 0.3588 0.1967
0.4% 0.3404 0.0569 53.6019 0.4997 1.3837 0.1539 0.3622 0.0812
0.5% 0.3644 0.0064 35.6188 0.4995 1.3937 0.0976 0.3469 0.0394
1.0% 0.7033 0 24.5065 0.4993 1.4212 0.089 0.6964 0.0041
1.5% 1.3407 0 18.9463 0.246 1.4546 0 0.3716 0.0006
2.0% 1.487 0 18.0827 0.0498 1.87 0 0.805 0
5.0% 4.3699 0 17.2624 0 3.1868 0 1.1784 0
10.0% 9.6112 0 25.099 0 7.3857 0 3.6448 0
15.0% 17.528 0 67.9837 0 15.3998 0 10.3045 0

Table 5 The run time and error rate of each sample size for each approximation algorithm, ran on the
concentric spheres dataset.

4. Case Study: The Attrition Problem

Clustering methods have a wide range of applications, ranging from image segmentation to social
network identification. An application we focus on here is the attrition problem. In this setting,
the data objects correspond to employees of a particular company, and each data vector contains a
list of employee attributes. For example, age, salary, years at the company, number of children, age
of children, etc. may all be relevant attributes. From this data, one wishes to distinguish a cluster
of employees who are likely to leave the company from the other cluster of employees are likely to
stay with the company. Such a classification allows companies to invest resources appropriately in
an effort to maintain desired employees, saving significant expense and training time. We analyze
here how this problem can be solved using spectral clustering methods. Because the number n of
employees may be very large, and the number of attributes collected about the employees may also
be very large, approximation methods are crucial to solve this problem efficiently. In contrast to
the examples of Section 3, datasets in this setting are not only high dimensional, but accuracy is
often difficult to quantify since there may no longer be a notion of “correct” clusters. To overcome
this last challenge, we utilize historical data about teacher attrition which will allow us to properly
identify the appropriate clustering.
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(a) (b)

Figure 10 The (a) average error rate and (b) running time when using different sample sizes for all
approximation algorithms. Concentric spheres dataset has n = 5,000 data points and sample sizes range
from 0–15%.

(n = 10,000) Fast Budget Nyström (σ = 1) eSPEC
Sample Size Time Error Time Error Time Error Time Error
0.25% 0.8022 0.036 86.5802 0.4268 6.647514612 0.030166 0.8833 0.2763
0.50% 1.9678 0.0075 51.4463 0.0247 6.592 0.0021 0.9316 0.2571
0.75% 3.428 0.0097 41.0183 0.0087 6.6759 0.00037 0.9382 0.1987
1% 5.5 0.0081 39.0598 0.0061 6.7492 0.000118 0.9734 0.1177
1.5% 7.4556 0.0052 41.432 0.0039 6.9648 0.000078 1.0056 0.0524
2% 10.3042 0.0047 43.2666 0.003 7.2534 0.000072 1.1082 0.0334
3% 14.5371 0.0032 50.6176 0.002 8.1726 0.00009 1.3419 0.0141
4% 19.7435 0.0025 57.1082 0.0015 10.0714 0.0001 1.9394 0.0112
5% 25.3318 0.0019 63.0219 0.0011 11.4333 0.0001 2.5556 0.0083
10% 64.279 0.0016 100.6472 0.000656 27.7863 0.0001 15.0004 0.0054
15% 118.1536 0.0013 136.7211 0.000466 60.9053 0.0001 40.0202 0.0042

Table 6 The run time and error rate of each sample size for each approximation algorithm, ran on the
tangent spheres dataset.

(n = 10,000) Fast Budget (σ = 0.5) Nyström (σ = 0.5) eSPEC
Sample Size Time Error Time Error Time Error Time Error
0.5% 1.136 0.3298 96.986 0.3064 7.429 0.1676 0.8998 0.3252
1% 3.554 0.209 56.876 0.0048 7.575 0.0059 0.9284 0.2958
1.5% 4.538 0.1302 54.718 0.0027 7.759 0.0011 0.9466 0.2335
2% 6.21 0 57.23 0.0018 7.966 0.0009 0.9962 0.1579
3% 9.41 0 60.79 0.0014 8.595 0.001 1.1128 0.0691
4% 13.552 0 66.9 0.001 9.947 0.0009 1.3298 0.0217
5% 16.64 0 80.278 0.0008 10.778 0.001 1.9226 0.0039
10% 49.814 0 118.72 0.0008 24.164 0.001 11.185 0
15% 93.782 0 176.44 0.0007 56.83 0.001 29.976 0

Table 7 The run time and error rate of each sample size for each approximation algorithm, ran on the
interlocked rings dataset.

Each year, the National Center for Education Statistics sends out a follow-up survey to teachers
originally selected for the Teacher Questionnaire in a Schools and Staffing Survey. 4,528 teachers
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(a) (b)

Figure 11 The (a) average error rate and (b) CPU running time in seconds when using different sample
sizes for all approximation algorithms. Tangent spheres dataset has n = 10,000 data points and sample
sizes range from 0–15%.

(a) (b)

Figure 12 The (a) average error rate and (b) CPU running time in seconds when using different sample
sizes for all approximation algorithms. Interlocked rings dataset has n = 10,000 data points and sample
sizes range from 0–15%.

were given one of two surveys according to their employment status. Teachers were classified as
either stayers, movers, or leavers. Stayers are teachers who stayed at their current position, movers
are teachers who continued teaching, but transferred schools, and leavers are teachers who left the
position entirely. Leavers took the former teacher questionnaire while stayers and movers took the
current teacher questionnaire. Both surveys contained different sets of questions; the dataset used
in our experiments is made up of common questions in both surveys from the 1994–1995 school year.
The attributes include household income (broken into intervals), marital status (coded as 0/1/2
for never married / married / separated), number of dependent children, age of youngest child,
and dissatisfaction ratings. Because many teachers had the same responses in the six variables, a
dummy variable was added so that the algorithm would recognize that the teachers are different
people. The dummy variable was drawn uniformly between 0 and 1.

Spectral clustering of the entire dataset yielded a small cluster on 197 teachers who were never
married and did not have children or other dependents. All of their household incomes ranged from
$60,000 to $74,999 and none of the teachers expressed dissatisfaction in the survey. The number of
stayers, movers, and leavers are summarized in Table 8.
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Status Cluster 1 Cluster 2
Stayer 92 1,666
Mover 24 1,016
Leaver 81 1,649
Total 197 4,331

Status Cluster 1 Cluster 2
Stayer 100 870
Leaver 48 699
Total 148 1,569

Status Cluster 1 Cluster 2
Stayer 0 788
Leaver 173 810
Total 173 1,598

Table 8 Resulting clusters of the entire teacher dataset (left), with movers eliminated (center) and with
teachers with children and movers eliminated (right).

Drawing conclusions about the likelihood of attrition for a group of teachers depends on the
classification of movers. From a school’s point of view, a mover is an attritor, but from the
state’s point of view, a mover is still a teacher. In Table 8, if movers are considered leavers, then
the proportion of attritors in Cluster 1 is significantly different from the proportion of attritors in
Cluster 2. The results yield a one-tailed p-value of 0.01 where teachers with the same characteristics
as Cluster 1 are less likely to resign. However, if movers are considered stayers, then the proportion
of attritors in Cluster 1 is not significantly different from the proportion of attritors in Cluster 2.
In this case, the one-tailed p-value is 0.1950 where teachers with the same characteristics as Cluster
1 are more likely to resign. Because conclusions were affected by the classification of teachers who
moved, these teachers were not included in most experiments. However, one can easily use the
applications of spectral clustering to cases where teachers are considered either one or the other.

While the age of a teacher’s youngest child can provide valuable information about the teacher’s
age itself, setting different values for this variable for teachers without children gave varying results.
For example, if the youngest child’s age is set to 50, a large distance away from the maximum value
of 38, spectral clustering tends to group teachers with older children together with childless teachers.
If the youngest child’s age is set to −1, a closer but impossible age, spectral clustering tends to
group teachers with newborns together with childless teachers. In the following experiments, we
used −1 as the age for teachers without children, though the technicalities of this variable bring us
to question if interaction terms ought to be considered when working with data of this nature.

Spectral clustering was applied on subgroups of teachers, such as teachers without children or
unmarried teachers. Most experiments yielded clusters with a mix of teachers who stayed and
teachers who left. If teachers who moved were included, they would generally be mixed in both
clusters as well. An example of this can be seen in Table 8 where we applied spectral clustering to
teachers with children; movers were removed. Although both clusters contained a mix of stayers
and leavers, in a two-proportion Z-test, we obtain a one-tailed p-value of about 0.0023, providing
evidence that Cluster 2 has a greater proportion of teachers who will quit. We conclude that
teachers with similar characteristics as those in Cluster 2 are more likely to quit.

One of the more interesting results that spectral clustering produced on the teacher data was the
case where one of two clusters contained only teachers who left. In this run, movers were removed
and only teachers without children were considered. Spectral clustering grouped 173 teachers
together, all who had quit. They were all married and had household incomes in the $60,000 to
$74,999 range. The teachers in this group expressed at most one dissatisfaction in the survey. In
Table 8, this group is labeled Cluster 1. Cluster 2 consists of all other teachers that were not movers
and did not have children. Among the 1,598 teachers in Cluster 2, 810 quit. In a two-proportion
Z-test, this gave us a one-tailed p-value of less that 0.0001, which supports the idea that teachers
similar to those in Cluster 1 are more likely to quit than those similar to teachers in Cluster 2.

299Copyright © SIAM 
Unauthorized reproduction of this article is prohibited



Cung, Jin, Ramirez, and Thompson Approximation Algorithms for Spectral Clustering

To ensure that spectral clustering worked and would give us accurate clusters, the clustering
algorithm was applied to a 1/3 sample of a subgroup of teachers. Results were used to try to
predict the remaining 2/3. For example, in the case of the 488 unmarried teachers, 163 teachers
were sampled (Table 9). Spectral clustering grouped 23 of the teachers in one group because they all
did not express complaints and did not have children or other dependents. Among this first cluster,
17 had quit while 38 of the 140 teachers in the second cluster quit. This yielded a one-tailed p-value
of less than 0.0001 where teachers in the first cluster are more likely to quit. Going through the
325 unsampled teachers, 55 displayed the same characteristics as the first cluster. Proportionally,
our prediction that 41 of the 55 teachers would quit was not bad considering that in actuality 38
teachers quit. Our prediction for the second group of teachers was further off, but still supported
the finding that teachers similar to those in the first cluster are more likely to quit than teachers
similar to those in the second cluster. Spectral clustering was able to group the 55 teachers together
in its run with the remaining 2/3 data points.

With Children Cluster Without Children Cluster
SC on 1/3 17/23 38/140
Predicted 41/55 73/270

SC on 2/3 38/55 94/270

Table 9 Prediction given by spectral clustering for the teacher dataset (married teachers and movers
eliminated).

Although [13] recommended using the 7th nearest neighbor to help determine the similarity
bandwidth of each point, using different values of nearest neighbor for this dataset yielded different
clusters that provided valuable information. We applied spectral clustering to married teachers who
were not movers using the 7th, 50th, and 100th nearest neighbor. All teachers in the smaller cluster
(Cluster A) using the 7th nearest neighbor were found in the same cluster (with other teachers)
when using the 100th nearest neighbor. That same cluster, with the newly added teachers, in the
100th nearest neighbor was also found in the same cluster with almost the rest of the teachers when
using the 50th nearest neighbor. Define Cluster B as teachers grouped with teachers in Cluster A
using the 100th nearest neighbor. Define Cluster C as teachers grouped with teachers in Cluster A
and B using the 50th nearest neighbor. The remaining teachers make up Cluster D. A summary of
the characteristics of teachers in each cluster can be found on Table 10. Note that the table does
not reflect correlations; for example, a dissatisfaction value of 1 only appears in Cluster B if the
teacher does not have a child.

We found that the difference between all four clusters is statistically significant with a p-value
of less than 2.2E-16. With this, we can obtain a ranking of the teachers where teachers with 2 or
3 points of dissatisfaction are most likely to resign. Teachers with a young only child and teachers
without children, excluding those with the exact characteristics of Cluster A, are very likely to
resign. Teachers with the exact characteristics of Cluster A could possibly resign, while all other
teachers with at most one dissatisfaction point are not likely to resign. In summary, a ranking of
teachers who are most likely to quit teaching is achievable with spectral clustering. It brings us to
consider multiple clusters in spectral clustering.

Our analyses of spectral clustering on the teacher data was facilitated by looking at subgroups
of teachers. It is perhaps that the variables that create the divide for the subgroups (i.e. unmarried
teachers only, teachers without children only, etc.) interact with other variables, such as age of
youngest child. Variable transformations, interaction terms, multiple clusters, and weighting are
thus important points of consideration when working with spectral clustering on attrition-like data.

4.1. Approximation Results. To measure the effectiveness of the approximation algorithms on
the teacher dataset, we ran each one given a different sample size 10 times and compared average
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Characteristics Cluster A Cluster B Cluster C Cluster D
Household Income 60,000–74,999 Varies Varies Varies
Children None 0 to 1 Varies Varies
Youngest Child -1 -1 to 4 Varies Varies
Other Dependents None None 0 to 1 0 to 3
Dissatisfaction None 0 to 1 0 to 1 2 to 3
Stayer 92 398 772 0
Leaver 81 567 480 214
Total 173 965 1,252 214

Table 10 Four clusters given by altering the tuning parameter on the teacher dataset (unmarried
teachers and movers eliminated).

run time and error rate. The “movers” category was removed for simplicity. As the ground truth,
we use the answers obtained by the exact spectral clustering algorithm. In other words, we measure
the ability of the approximation algorithms to give the same answer as exact spectral clustering in
a shorter amount of time (the exact algorithm ran in 476.47 seconds).

Although the results are similar to those obtained using visually apparent clusters, we see two
major differences. First, as seen in Table 11, spectral clustering on a budget was not necessarily the
slowest or most inaccurate algorithm of the group. Secondly, as seen in Figure 14, it took a longer
time for the algorithms to reach zero error. This is potentially due to the use of proximity of the
clusters. Perhaps spectral clustering on a budget handles less structured clusters better than the
others. Still, it displays an odd progression in terms of run time – one that is not entirely upward
sloping, as seen in Figure 14. This leads us to believe it may be unstable in this setting. For this
kind of dataset, fast spectral clustering or eSPEC may offer more advantages. Alternatively, if it
is acceptable for the error rate to be up to 5%, Nyström gives adequate results the quickest. A
depiction of the tradeoff between efficiency and accuracy for this dataset is given in Figure 13.

Figure 13 Error rate versus time (in seconds) plot for the teacher data (without movers).

5. Discussion

Fast spectral clustering frequently gives the most accurate results in the shortest running time for
small datasets using a small k. For easily clustered data, this may be due to the k-means algorithm
overpowering the fast spectral clustering algorithm for really small k values. The Nyström method
often performs quickly and accurately as well, especially on the larger or more complicated datasets.
eSPEC is the fastest when n is extremely large, but also the most inaccurate.
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(a) (b)

Figure 14 Sample sizes range from 5–100% of the teacher dataset with n = 3, 488, and without the
classification of movers.

(n = 3,488) Fast Budget Nyström eSPEC
Sample Size Time Error Time Error Time Error Time Error
5% 1.9906 0.2518 102.9295 0.0499 1.7644 0.066 0.4243 0.1889
10% 3.4086 0.1691 136.6257 0.0499 4.1699 0.0551 0.8143 0.1721
20% 10.3694 0.1735 204.2521 0.0502 14.2835 0.0601 5.4663 0.1709
30% 22.8323 0.1541 276.855 0.0493 37.1969 0.0517 16.3941 0.1618
40% 41.5103 0.1079 208.5421 0 80.0753 0.0567 34.2765 0.1328
50% 69.0788 0.0812 194.2056 0 146.9904 0.0536 61.5502 0.0843
60% 106.2819 0.065 222.941 0 241.4677 0.0506 102.1619 0.052
70% 164.4188 0.07 223.8302 0 371.103 0.0511 162.096 0.0752
80% 236.8828 0.045 239.8047 0 532.3269 0.0533 232.819 0.035
90% 329.4538 0.01 277.4946 0 733.4184 0.0511 326.2121 0.015

Table 11 The run time and error rate of each sample size for each approximation algorithm, ran on
the teacher dataset.

Intuitively, we sacrifice accuracy for efficiency when we run the approximation algorithms on a
relatively small set of points compared to the dataset size. However, the trend is not so apparent
for spectral clustering on a budget. The other algorithms face approximately the expected tradeoff.
Across all datasets, spectral clustering on a budget often takes longer than the other three with
limited advance in accuracy. Interestingly, it consistently reaches a point where smaller sample
sizes actually make it increase in running time. Thus, it may be preferable to utilize one of the
other three algorithms, depending on the size of the data and the goal of the clustering results.

In addition, when given the right data, spectral clustering can find similarities in individuals that
may point to employees at high risk of attrition. Using a subset of the teacher dataset, we found
we could predict with some accuracy which teachers had left. This shows that if possible, breaking
the data down and running spectral clustering on smaller groups is very useful. Approximation
methods did not perform quite as well on the teacher dataset, but they do give accurate results
and cut down run time by a few minutes. If run on a larger employee dataset, they would likely
increase efficiency by a greater factor. With finer tuning of parameters and variable choices, even
more improvements may be possible.
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