
Linear extensions of a partial order subject to algebraic constraints

Zane Huttinga†

Advisors: Bree Cummins† and Tomáš Gedeon†

January 24, 2018

Abstract

We present a novel combinatorial problem that arises from mathematical biology. In order
to understand the dynamics of models of gene regulatory networks over a parameter space, a
problem of constructing linear extensions of a partial order with algebraic constraints arises
naturally. We formulate the problem for a class of algebraic constraints related to the form
of nonlinearities in the gene regulation model. We provide an algorithm that partially solves
the problem. We formulate a conjecture on the special role of additive constraints in the class
of all considered constraints. We present several examples where we show that the number of
solutions is much smaller than the number of unconstrained linear extensions.

1 Introduction

In this paper we formulate and study a problem of counting linear extensions of a fixed partial
order that are subject to additional algebraic constraints. We propose a framework for a solution
to the problem and state and prove several key results in this framework. Our motivation comes
from the study of dynamics of regulatory networks over parameter space.

The computation of linear extensions from partial orders is a well-known problem [1, 2]. We
consider an extension of this problem in which there is conditional dependence between the inequal-
ities in the partial order. In other words, the choice of one inequality can determine the choice of
another inequality when constructing a linear extension of the partial order.

In our case, we consider a conditional dependence that is described by an algebraic expression
M in k variables σn, written as a vector σ = (σn). Each σn ∈ {an, bn} can take on two constant
values, an and bn with an < bn. The elements of the partial order are then all of the realizations
M ◦ σ over the set of all combinations of values of σn, n = 1, . . . , k, which is a collection of
2k values. The collection of constraints an < bn, n = 1, . . . , k, imposes a partial order on the
2k elements that has the structure of a hypercube. However, the algebraic form of M imposes
additional constraints. For example, if M = σ1 + σ2 + σ3 and during the construction of a linear
order we choose a1 + b2 + a3 < a1 + a2 + b3, then by necessity b1 + b2 + a3 < b1 + a2 + b3. This is
the conditional dependence referred to earlier.

We present a partial solution to this problem: an algorithm that requires an oracle for a decision
question. Although we cannot provide an algorithm for the oracle, we present a method for counting
all linear extensions of a constrained partial order for a multilinear M , given responses from the
oracle.

We begin by defining regulatory networks as a motivation for our work. We show how a
partial order arises on elements that are themselves algebraic expressions in the parameters of

†Department of Mathematical Sciences, Montana State University, Bozeman, MT 59717

 Copyright © SIAM
 Unauthorized reproduction of this article is prohibited

167

the dynamical system associated to the regulatory network. In Section 4, we introduce an oracle
and an algorithm that queries the oracle in order to construct the algebraically constrained linear
extensions, and in Section 5 we discuss stronger results for a class of partial orders where M is an
additive function. We conclude with examples demonstrating our results.

2 Switching systems

In this section, we introduce a particular class of ordinary differential equations (ODEs) as mo-
tivation for the origin of partial orders with conditional dependence. These ODEs describe the
dynamics of the concentrations of interacting molecular species. The interactions between molec-
ular species are compactly described by a regulatory network. Typically, a regulatory network is
represented as an annotated directed graph, where each vertex represents the concentration of a
molecular species (e.g. protein, mRNA), and an edge from node i to node j indicates that i directly
regulates j, as in [5].

Definition 2.1. A regulatory network RN is a finite directed annotated graph (V,E) with vertices
V = {1, . . . , N} and edges E ⊂ V × V × {→,a}. An edge annotated → indicates activation, while
a indicates repression. By convention we write i → j or i a j if (i, j,→) ∈ E or (i, j,a) ∈ E,
respectively. We say i regulates j if i → j or i a j. Self-edges may exist for some nodes, but for
each pair (i, j) ∈ V × V , there exists at most one edge from i to j.

One of the common models for the dynamics of these systems uses a system of coupled ordinary
differential equations, where each equation describes the evolution of a single species. It is typically
assumed that the interactions have switch-like behavior and thus the nonlinearities in these ODEs
are often assumed to have a sigmoidal shape. One common approximation [3, 4, 6, 7, 8, 9, 10, 11,
12, 13] yields nonlinearities that take the form of piecewise constant functions.

Definition 2.2. Given a regulatory network, the associated switching system takes the following
form

ẋj = −γjxj + fj(x), j = 1, . . . , N (1)

where N is the number of nodes in the regulatory network and for all j, γj > 0. Consider a
particular j and let S(j) = {i | yi regulates yj} and k = |S(j)|, and for each i ∈ S(j) let θj,i be a
threshold value associated to the edge from i to j (recall from Definition 2.1 there is a unique such
edge). This threshold is a value about which i behaves as an ON/OFF switch for j as in Figure 1.

We define fj = Mj ◦ σj where Mj : Rk → R is a logic function (which we explain in greater
detail below) and σj : D → Rk, D ⊂ RN , is a multidimensional step function, which we define by

θj,i

xi

σj,i

aj,i

bj,i

Figure 1: An example of an ON/OFF switch for j described in Definition 2.2.

168

its coordinate projections σj,i = πi ◦ σj (whenever i ∈ S(j)):

σj,i(x) =

{
aj,i if i→ j and xi < θj,i or i a j and xi > θj,i

bj,i if i→ j and xi > θj,i or i a j and xi < θj,i
(2)

where the inequalities are evaluated at the point x = (x1, . . . , xN) in the domain D, and for
j = 1, . . . , N and each i ∈ S(j), 0 < aj,i < bj,i (note the assumption 0 < aj,i, bj,i is reasonable for
biological applications). D is defined to be

D =
{

(x1, . . . , xN) ∈ RN
∣∣ xi 6= θj,i for any i, j

}
Mj is called a logic function because it determines the type of regulatory interactions via the

logical operators AND (∧) and OR (∨) acting on Boolean values. For example, suppose a Boolean
variable Bj = 1 only if (Bi = 1) ∨ (Bk = 1). Then Bj = min(1, Bi + Bk). On the other hand,
suppose Bj = 1 only if (Bi = 1)∧ (Bk = 1); then Bj = Bi ∗Bk. One can see that there is a natural
relationship between addition and OR, and one between multiplication and AND. In our regulatory
network, the condition “j is regulated if i ∨ k pass threshold” translates into an additive function
so that

ẋj = −γjxj + σj,i(x) + σj,k(x)

while likewise “j is regulated if i ∧ k pass threshold” becomes

ẋj = −γjxj + σj,i(x)σj,k(x).

In the first case, Mj(p, q) = p+ q and in the second Mj(p, q) = pq. For more than two regulators,
we consider logical expressions in which each regulator appears exactly once, and we replace ∨ with
+ and ∧ with ∗ to arrive at Mj . This class of functions is called multilinear. It is readily verified
that for 0 < ai, bi, the range of Mj ◦ σj is a subset of R+.

The thresholds θj,i play an important role in the dynamics of (1). In particular, these thresholds
divide phase space into finitely many domains with the property that flow is mono-directional
across each face of each domain. Using this domain structure, Cummins et al. [5] have recently
developed a method to describe the coarse dynamics of the system (1) over the parameter space.
This description of the system’s dynamics centers on an object called the parameter graph, a finite
undirected graph which discretizes parameter space into a finite set of parameter nodes; each of
these is a set of parameters that all give rise to the same direction of flow across each domain’s
boundary in phase space, and consequentially, the same coarse dynamics.

For our purposes it will be sufficient to consider a single node j and the associated function
fj . Because of this, the nodes regulating j are arbitrary, and accordingly we can assume S(j) =
{1, . . . , k} without loss of generality. We will simplify notation by dropping the j index, so that
instead of writing fj = Mj ◦ σj , we write f = M ◦ σ, and each element of σ is now written with a
single index, σi.

3 Partial orders with algebraic constraints

We can now address the main focus of this paper; roughly speaking, we deal with the outputs of
f , on which there exists a partial order. We seek to count the linear extensions of this partially
ordered set that respect algebraic constraints imposed by the logic M and the arithmetic of R. This
tells us how many ways the parameters of the system can be arranged. We make these notions
rigorous here.

169

Definition 3.1. We define the finite discrete set

F :=
{
M(c1, . . . , ck) ∈ R+

∣∣ ci ∈ {ai, bi} for i = 1, . . . , k
}
,

where recall that ai and bi are fixed parameters of the function σi, and M is the logic function
associated to f .

Definition 3.2. A partially ordered set or poset (U,E) is a set U together with a reflexive, anti-
symmetric, transitive binary relation E on U called a partial order. If in addition x E y or y E x
for each x, y ∈ U , then E is a linear order.

Throughout this work, any partial order or linear order E will be denoted with a horizontal
bar, indicating possible equality, unless the order is strict, in which case it will be omitted. For
instance, x E y means x C y or x = y, while x C y implies x 6= y. Therefore, C is irreflexive.

A linear extension of a partial order C on a set U is a linear order E∗ on U such that for any
x, y ∈ U satisfying x E y, we have x E∗ y.

Let (U,E), (V,E′) be two posets where V ⊂ U and E,E′ may each be either a partial or linear
order. If it is never true that x C′ y and y C x simultaneously for any x, y ∈ V , then we say that E′

respects E. Note that with the appropriate domain restriction, we may also say that E |V respects
E′.

There exists a natural partial order on the set F , which arises entirely from the assumption
that 0 < ai < bi for i = 1, . . . , k.

Definition 3.3. We define a partial order ≤ on F in the following way. Let ci, di ∈ {ai, bi} for
i = 1, . . . , k. Then M(c1, . . . , ck) < M(d1, . . . , dk) if and only if there exists a nonempty subset
I ⊂ {1, . . . , k} such that ci = ai and di = bi if i ∈ I, and ci = di otherwise.

Remark 3.4. Note that in Definition 3.3 we abuse notation by using ≤ to denote the partial order
on F , while previous usage of this symbol (for instance, the assumption 0 < ai < bi) has referred to
the standard linear order on R. This linear order on R and the partial order ≤ are not synonymous,
and furthermore, even the restriction of the former to F is not equal to the partial order. However,
it is easy to verify that if M(c1, . . . , ck) < M(d1, . . . , dk) in the partial order, then M(c1, . . . , ck) <
M(d1, . . . , dk) in the linear order on R. Because we deal with linear extensions ≤∗ of ≤, it will be
important to keep in mind that not every ≤∗ respects the standard order on R. See Definition 3.6.

Remark 3.5. A consequence of Definition 3.3 is that there is always a unique minimal element
M(a1, . . . , ak) and a unique maximal element M(b1, . . . , bk) of (F ,≤).

We illustrate (F ,≤) visually by a Hasse diagram. For instance, Figure 2 displays two Hasse
diagrams for (F ,≤) when k = 3, with differing logic M . Note the partial order is independent of
M .

Definition 3.6. We denote the set of all linear extensions of the partial order ≤ by W . Further, we
say a linear extension ≤∗ of ≤ is realizable if there exists a particular tuple (a∗1, b

∗
1, . . . , a

∗
k, b
∗
k) ∈ R2k,

with 0 < a∗i < b∗i for i = 1, . . . , k, such that ≤∗ equals the restriction of the usual order on R to
{M(c1, . . . , ck) | ci ∈ {a∗i , b∗i } for i = 1, . . . , k}. We denote the set of all realizable linear extensions
of ≤ by Υ. If S ⊂ F , then we say a linear order E on S is realizable if there exists a realizable
linear extension of ≤ whose restriction to S equals E.

A fundamental open problem in the study of parameter graphs of regulatory networks is explicit
construction of Υ, or at least a computation of its magnitude |Υ|. This seems to be a difficult
problem in algebraic geometry, since it involves enumeration of semi-algebraic sets in the space

170

a1 + a2 + a3

a1 + b2 + a3b1 + a2 + a3 a1 + a2 + b3

b1 + a2 + b3b1 + b2 + a3 a1 + b2 + b3

b1 + b2 + b3

(a) Additive M .

(a1 + a2)a3

(a1 + b2)a3(b1 + a2)a3 (a1 + a2)b3

(b1 + a2)b3(b1 + b2)a3 (a1 + b2)b3

(b1 + b2)b3

(b) Additive-multiplicative M .

Figure 2: Partial order on F when k = 3.

of parameters that are determined by inequalities involving multilinear functions [5]. The sets W
and Υ are not the same in general, since not every linear extension of ≤ satisfies the algebraic
constraints from M . For instance, note the following (in which the minimal and maximal elements
from Remark 3.5 are omitted), is by definition a linear extension of the partial order ≤ in Figure 2a.

b1 + a2 + a3 <
∗ a1 + b2 + a3 <

∗ a1 + a2 + b3 <
∗ b1 + a2 + b3 <

∗ b1 + b2 + a3 <
∗ a1 + b2 + b3.

Yet under the linear order ≤ on R, a1 + b2 + a3 < a1 + a2 + b3 implies (b2 − a2) < (b3 − a3) while
b1 + a2 + b3 < b1 + b2 + a3 implies (b3 − a3) < (b2 − a2). Hence ≤∗ is not realizable.

4 Compatibility and Block Meshing

In this section, we present the most general results that we have for multilinear expressions M . This
includes the introduction of an oracle called Compatible, an algorithm for counting algebraically
constrained linear extensions that depends on the oracle, and several counting theorems. We begin
by explaining that there is a natural “block structure” of the partial order induced by f .

Definition 4.1. Let ` ∈ {0, 1, . . . , k}. Then the `th block is the set

∆` := {M(c1, . . . , ck) ∈ F | ` = |{ci = bi}|}.

In other words, the `th block is the subset of F whose elements are such that exactly ` values
σi(x) = bi, referring back to (2) and dropping the j index. See Figure 3.

Remark 4.2. We remark that the nature of our problem causes the cardinality of the blocks to
follow the Pascal sequence in the kth row of Pascal’s triangle, where k is the number of elements in
the algebraic expression. For example, in Figure 3 where there are three elements, the cardinality
of the blocks follows the sequence 1 3 3 1.

Division into blocks ∆`, ` = 0, 1, . . . , k, has two advantages. The first of these arises when we
make the following definition.

Definition 4.3. Let P(F) be the power set of F . We define a partial order � on P(F) in the
following way. If U, V ⊂ F , then U � V if for every u ∈ U there exists v ∈ V such that u ≤ v in
(F ,≤).

171

a1 + a2 + a3

a1 + b2 + a3b1 + a2 + a3 a1 + a2 + b3

b1 + a2 + b3b1 + b2 + a3 a1 + b2 + b3

b1 + b2 + b3

∆0

∆1

∆2

∆3

Figure 3: Blocks within (F ,≤) when k = 3 and M is additive.

The following is immediate from Definition 4.3.

Lemma 4.4. The blocks ∆`, ` = 0, . . . , k, satisfy

∆0 � ∆1 � . . . � ∆k−1 � ∆k,

thus forming a linearly ordered subset of P(F).

The second advantage is that the elements within each block ∆` are unordered in (F ,≤).
Therefore it is straightforward to count all possible linear orders of each block ∆`; their number is
simply |∆`|!.

This suggests the following approach to generating a linear order on F . We first impose a linear
order on each ∆`, and then merge them into a linear order on F . There are two key difficulties in
the last step. The first is that selecting a linear order on a particular ∆` may impose restrictions
on the linear orders of ∆i for i 6= `. We call this issue compatibility and define it in Definition 4.6.
The second is that the linear orders on ∆` may support multiple realizable linear extensions of ≤,
since they can be merged in multiple ways. We call this process block meshing, which we define in
Definition 4.8.

Remark 4.5. Throughout the rest of this work we will refer to several arbitrary partial or linear
orders on subsets of F . Unless otherwise stated, if U ⊂ F , then we will assume any partial or linear
order on U to which we refer must respect the partial order ≤ on F .

Definition 4.6. Let U, V ⊂ F , U ∩V = ∅, and U � V . Let E′ and E′′ be a pair of linear orders on
U and V , respectively. We denote the partially ordered set formed by the disjoint union of E′ and
E′′ by (U ∪ V,E). Recalling Definition 3.6, we say that E′ and E′′ are compatible if there exists a
realizable linear extension E∗ of E.

As an example of compatibility, again consider the poset (F ,≤) in Figure 2a. If we impose
linear orders E′ and E′′ on ∆1 and ∆2, respectively, such that

b1 + a2 + a3 C
′ a1 + b2 + a3 C

′ a1 + a2 + b3

and
b1 + b2 + a3 C

′′ b1 + a2 + b3 C
′′ a1 + b2 + b3,

172

there exists a linear order E∗ on ∆1 ∪∆2 such that

b1 + a2 + a3 C
∗ a1 + b2 + a3 C

∗ a1 + a2 + b3 C
∗ b1 + b2 + a3 C

∗ b1 + a2 + b3 C
∗ a1 + b2 + b3,

and E∗ respects the partial order ≤ on F (see Figures 2a,3). Furthermore, this order is realized at
the tuple (a1, b1, a2, b2, a3, b3) = (1, 4, 2, 6, 3, 8) (see Definition 3.6). Hence the linear orders E′ and
E′′ on ∆1 and ∆2 are compatible. We currently lack an algorithmic way to check compatibility of
linear orders. However, we have partial results that ease the search for compatibility in cases when
the logic function M is additive (see Section 5).

Remark 4.7. Throughout Section 4 we will maintain the convention from Definition 4.6 that given
two linear orders E′ and E′′ on two sets U and V , respectively, then the partial order formed from
their disjoint union over U ∪ V will be denoted E.

Definition 4.8. Let U := ∆0 ∪ . . . ∪∆m−1 and V := ∆m for some m ∈ {1, . . . , k}. Block meshing
is the process of constructing the set of realizable linear orders on U ∪ V (see Algorithm 1). Note
that when m = k, this amounts to constructing Υ.

Remark 4.9. For the remainder of this work, we will assume that any two elements M(c1, . . . , ck)
and M(d1, . . . , dk) of F are distinct if there exists i such that ci = ai and di = bi, or vice versa.
That is, elements with distinct a and b labelings are distinct, and so |F| = 2k. In other words, the
partial order on F is strict (<), and orders on subsets of F are strict as well (C). This assumption
induces strictness on the block ordering as well:

∆0 ≺ ∆1 . . . ≺ ∆m.

To emphasize these orders’ strictness, we will use notation without the equal bar throughout the
rest of the work, as we have here.

The idea of block meshing naturally gives rise to the idea of positions within a linear order.

Definition 4.10. Let U = {u1, . . . , un} and V = {v1, . . . , vm} be subsets of F with U ∩ V = ∅
and U ≺ V . Let C′ and C′′ be two linear orders on U and V , respectively. Assume without loss of
generality that

u1 C
′ · · · C′ un and v1 C

′′ · · · C′′ vm.

Let C∗ be a linear extension of the order C on U ∪ V . For i = 1, . . . , n, we say ui is in the position
pj with respect to C∗ if vj C∗ ui C∗ vj+1. We say ui is in position p0 if ui C∗ v1, and ui is in
position pm if vm C∗ ui.

Note it is possible for multiple elements of U to occupy the same position. For example, if
v1 C∗ u1 C∗ u2 C∗ v2, we say u1 and u2 are in position p1.

Definition 4.11. Let U = {u1, . . . , un} and V = {v1, . . . , vm} be subsets of F , with U ∩ V = ∅
and U ≺ V . Let C′ and C′′ be compatible linear orders on U and V , respectively. Then for each
ui ∈ U let C′i be the restriction of C′ to U \ {ui} and let C′′i be a linear order on V ∪{ui} such that
if vj C′′ vk, then vj C′′i vk as well. We define

ζi :=
{
j
∣∣ if ui is in position pj , then C′i and C′′i are compatible

}
.

We will sometimes say that ui is in a compatible position pj if j ∈ ζi.

173

Algorithm 1 Construction of Υ

procedure Main(∆0, . . . ,∆k)
Input: list of blocks
Output: list of realizable linear exten-

sions
B ← Permutations(∆0)
return BlockMeshing(0, B, ∅)

end procedure

procedure BlockMeshing(m,B,D)
Global variables: ∆0, . . . ,∆k

Input: m← block index
B ← list of orders
D ← accumulator

Output: list of realizable linear exten-
sions

if m = k then
D ← D ∪B
return D

else
for C′∈ B do

for C′′∈ Permutations(∆m+1) do
B′ ← LinearOrders(C′,C′′, ∅)
BlockMeshing(m+ 1, B′, D)

end for
end for

end if
return D

end procedure

procedure LinearOrders(C′,C′′, B′)
Input: C′← order, C′′← order

B′ ← accumulator
Output: list of compatible orders
U, V ← set of nodes in C′,C′′

if U = ∅ then
return B′ ∪ {C′′}

else
for u ∈ U do

C̃′ ←C′ restricted to U \ {u}
for j = 0 to |V | do

C̃′′ ← insert u at index j of C′′

if Compatible(C̃′, C̃′′) then
B′ ← LinearOrders(C̃′, C̃′′, B′)

end if
end for

end for
end if
return B′

end procedure

4.1 Construction Algorithm

We can now present the partial algorithm that we have devised to construct all of the linear
extensions in Υ. As we mentioned previously, we are missing a key component of the algorithm,
which is a procedure stating whether two orders are compatible. This is unfortunately a large hole,
since it encompasses the algebraic constraints of the problem; however, we do have partial results
for additive M , which we discuss in the following sections. Given that we lack the key component,
the contribution of this algorithm is to leverage the unique block formation of the problem in order
to construct the realizable linear extensions of the partial order.

In Algorithm 1, we introduce two recursive procedures BlockMeshing and LinearOrders. In
BlockMeshing, we start with block ∆0, which has exactly one element, M(a1, . . . , ak), and therefore
exactly one linear order. Since the elements of ∆1 are incomparable, we calculate the permutations
of ∆1 to check each one as a possible compatible order. Of course, every permutation of ∆1 is
compatible with ∆0, as the (unique) compatible linear extension of ∆0 ∪∆1 for each permutation
simply has M(a1, . . . , ak) as the minimum element. However, this becomes a nontrivial question
as soon as we consider ∆m and ∆m+1 for m > 0.

174

Let B be the set of linear orders on
⋃
i≤m ∆i such that for any j, any of the linear orders C′∈ B

restricted to the sets
⋃
i≤j ∆i and

⋃
j<i≤k ∆i are compatible. We submit each pair (C′,C′′), with

C′∈ B and C′′∈ Permutations(∆m+1), to the procedure LinearOrders. Within this function, each
element of (∆0 ∪ . . . ∪∆m,C′) is sequentially inserted into every position in ∆m+1 with respect to
C′′, and each case is checked for compatibility. Each linear order on ∆0 ∪ . . . ∪∆m+1 formed from
meshing C′ into C′′, and that satisfies compatibility, is recorded.

LinearOrders is dependent on the procedure Compatible, for which we do not possess an explicit
algorithm. Compatible(C′,C′′) returns True if C′ and C′′ are compatible and False otherwise. Pro-
vided that such a procedure can be defined, perhaps via a symbolic mathematics language, we
prove the following theorem.

Theorem 4.12. Assuming a correct algorithm for Compatible and a strictly ordered linear extension
(that is, no equality between distinct elements as in Remark 4.9), Algorithm 1 records each realizable
linear extension of the partial order < on F exactly once.

Proof. Let <∗ be a realizable linear extension of <. Then for m = 0, . . . , k − 1, letting U =
∆0 ∪ . . . ∪∆m and V = ∆m+1, <U := <∗

∣∣
U

and <V := <∗
∣∣
V

are by definition compatible linear
orders on U and V . Now we proceed as follows.

Let m = 0. Since U = ∆0 = {M(a1, . . . , ak)}, B = Permutations(∆0) contains the single
permutation of U , which is trivially <∗

∣∣
U

. We have m 6= k, so for the single element <∗
∣∣
U

of B, we compute Permutations(∆1). By definition, <∗
∣∣
V
∈ Permutations(∆1), so we compute

L = Compatible
(
<∗
∣∣
U
, <∗

∣∣
V

)
, and as previously noted, L = True. Therefore we define B′ =

LinearOrders
(
<∗
∣∣
U
, <∗

∣∣
V
, ∅
)
. Since LinearOrders checks every u ∈ U at every place in C′′, we will

recover <∗
∣∣
U∪V in the output accumulator B′ of LinearOrders.

Now suppose for some m ∈ {0, . . . , k − 1}, for each n ≤ m, BlockMeshing(n,B,D) computes
<∗
∣∣
U ′

for U ′ = ∆0∪ . . .∪∆n. Let U = ∆0∪ . . .∪∆m and V = ∆m+1. Since we have <∗
∣∣
U
∈ B by

assumption and <∗
∣∣
V
∈ Permutations(∆m+1), and L = Compatible

(
<∗
∣∣
U
, <∗

∣∣
V

)
= True, we then

compute B′ = LinearOrders
(
<∗
∣∣
U
, <∗

∣∣
V
, ∅
)
, and, for the same reason as above, <∗

∣∣
U∪V ∈ B′.

Hence when m = k − 1, BlockMeshing will compute <∗. Moreover, since BlockMeshing takes a set
union at every complete order, the linear extension <∗ is recorded exactly once. Since we assume
a strict order (see Remark 4.9), none of the distinct recorded sequences are equivalent.

Remark 4.13. It remains an open problem to determine the oracle-time complexity of Algorithm 1
taking the unsolved decision question Compatible to be an oracle.

4.2 Counting Theorems

Given compatible linear orders C′ and C′′ on two disjoint sets, each equal to some union of blocks,
we will now show how to compute an upper bound on the number of realizable linear extensions of
C.

Let U = {u1, . . . , un} and V = {v1, . . . , vm} be subsets of F with U ∩ V = ∅ and U ≺ V .
Consider two compatible orders C′ and C′′ on U and V , respectively, such that

u1 C
′ · · · C′ un and v1 C

′′ · · · C′′ vm,

and let C be the partial order on U ∪V equal to the disjoint union of C′ and C′′ as in Definition 4.6.
Recall ζi is given in Definition 4.11. Let j0 = 0 and recursively define for i = 1, . . . , n

zi = ζi ∩ {l | l ≥ ji−1}, (3)

175

where ji−1 ∈ zi−1 is chosen at each step before computing zi. Notice that z1 = ζ1. After the
construction all the way through zn, notice that each ui is fixed in a position pji that independently
guarantees the existence of a linear extension consistent with the standard order on R. Moreover,
the choices {ji} jointly satisfy u1 C′ · · · C′ un. This is not necessarily enough to state that there
is a linear extension jointly satisfying the collective choice of {ji}, but it does provide an upper
bound on the number of realizable linear extensions of C.

Lemma 4.14. For i = 1, . . . , n − 2, recursively fix ji ∈ zi. Then the number of realizable linear
extensions of C that can be constructed by varying positions pjn−1 and pjn for un−1 and un is at
most ∑

jn−1∈zn−1

|zn|.

Proof. Let pj1 ≤ · · · ≤ pjn−2 be fixed compatible positions for u1, . . . , un−2, respectively, and
let pjn−1 and pjn vary. By definition, un−1 is in a compatible position pjn−1 only if pjn−1 ∈ ζn−1.
Moreover, un−2 C′ un−1 implies that jn−2 ≤ jn−1 under any extension of C. Therefore, jn−1 ∈ zn−1
is necessary to construct a realizable linear extension. Given that un−1 is in some position pjn−1 ,
we then know that jn ∈ zn by a similar argument. Then the number of realizable linear extensions
is at most the sum of the size of sets zn over all jn−1 ∈ zn−1 as desired.

Theorem 4.15. Let U = {u1, . . . , un} and V = {v1, . . . , vm} be subsets of F with U ∩ V = ∅ and
U ≺ V . Consider two compatible orders C′ and C′′ on U and V , respectively, such that

u1 C
′ · · · C′ un and v1 C

′′ · · · C′′ vm.

Then the number of realizable linear extensions of the order C on U ∪ V is at most∑
j1∈z1

∑
j2∈z2

· · ·
∑

jn−1∈zn−1

|zn|. (4)

Proof. For a proof by induction, we first let n = 2. By Lemma 4.14, the number of pairs of positions
that u1 and u2 can occupy is at most ∑

j1∈z1

|z2|.

For the inductive step, assume we have U = {u1, u2, . . . , un−1, un}, and that for each subset U ′ =
{u1, u2, . . . , um}, with m ≤ n − 1, it is true that the number of realizable linear extensions of
C
∣∣
U ′∪V is at most∑

j1∈z1

∑
j2∈z2

· · ·
∑

jm−1∈zm−1

|zm| =
∑
j1∈z1

∑
j2∈z2

· · ·
∑

jm−1∈zm−1

∑
jm∈zm

1. (5)

This is in particular true for m = n − 2. Then Lemma 4.14 states that the number of realizable
linear extensions of C with fixed positions ji for i = 1, . . . , n− 2 is at most∑

jn−1∈zn−1

|zn|. (6)

The total number of distinct collections {ji}n−2i=1 for which this count can be made is (5) with
m = n − 2. Therefore, the total is at most the sum of counts over all of these choices, which we
obtain by replacing 1 in the right hand side of (5) (with m = n− 2) with (6):∑

j1∈z1

∑
j2∈z2

· · ·
∑
jn−2∈
zn−2

∑
jn−1∈
zn−1

|zn|.

176

5 Additive logic M

There is a special case of (1) that is of particular interest, namely the case when the logic function M
is additive, so that M(c1, . . . , ck) =

∑k
i=1 ci. Throughout Section 5, we will assume M is additive,

unless otherwise stated, and we will prove stronger results than in the previous section for general
multilinear M .

Remark 5.1. For a fixed k, the purely additive and purely multiplicative cases, e.g. σ1 + σ2 + σ3
and σ1σ2σ3, are effectively the same. Let F+ and F× refer to F in the additive and multiplicative
cases, respectively. Then for any ≤+∈ Υ in the additive case, the natural logarithm provides an
order isomorphism from (F+,≤+) to a unique (F×,≤×) in the multiplicative case. Similarly, the
exponential function provides an order isomorphism from each (F×,≤×) to a unique (F+,≤+).

In the additive case additional symmetries simplify the process of finding compatible linear
orders. We make the following conjecture.

Conjecture 5.2. Fix a particular k ∈ N and let Υ+ be the set of realizable linear extensions of the
partial order < with additive M and Υa that for an arbitrary logic function, both with |S(j)| = k.
Then

|Υ+| ≤ |Υa|.

Our reasoning for this conjecture is as follows. Recall the poset in Figure 2a. Note that in this
example and all examples where M is additive, each edge in the Hasse diagram is characterized by
a difference bi− ai for some i ∈ {1, . . . , k}, with no multiplicative dependence on other terms. This
imposes strong requirements for compatibility of linear orders, as we will show in this section.

Definition 5.3. Let A,B ⊂ {1, . . . , k}, A ∪ B = {1, . . . , k}, and A ∩ B = ∅. Let c =
∑

i∈A ai +∑
i∈B bi ∈ F . Then the complement of c is

c′ =
∑
i∈A

bi +
∑
i∈B

ai.

It is clear from Definition 5.3 that c ∈ ∆` if and only if c′ ∈ ∆k−`. Furthermore, c′′ = c. This
leads to the following result.

Theorem 5.4. Let c ∈ F , r ∈ {1, 2, 3, . . . , 2k}, and let <∗ be a realizable linear extension of <
such that c is in the rth place of (F , <∗). Then the complement of c is in the (2k + 1 − r)th place
of (F , <∗).

Proof. Because <∗ is realizable, it must respect the arithmetic of R. Let ca := a1 + · · · + ak
and cb := b1 + · · · + bk. Then for some B ⊂ {1, . . . , k} we have c = ca +

∑
i∈B(bi − ai), and

c′ = cb −
∑

i∈B(bi − ai). This implies c′ = cb − (c − ca), and therefore c′ + c = cb + ca. Because
the right hand side of this last equation is independent of r, we know that for each d ∈ F , d <∗ c
if and only if c′ <∗ d′. This implies that since exactly r − 1 elements d ∈ F satisfy d <∗ c, there
must be exactly r − 1 elements d′ ∈ F satisfying c′ <∗ d′.

We have the following immediate corollary of this result.

Theorem 5.5. For each ` ∈ {1, . . . , k},

1. Each linear order on ∆` is equivalent to a linear order on ∆k−`.

2. Each linear order on ∆0 ∪ . . . ∪∆⌊ k
2

⌋ implies a unique linear order on ∆⌊ k
2

⌋
+1
∪ . . . ∪∆k.

177

We seek compatible orders on sets

U = ∆0 ∪ . . . ∪∆m−1 and V = ∆m

for additive M . We now show that two compatible positions for an element ui ∈ U interpolate to
an intermediate position.

Lemma 5.6. Let (U,C′) and (V,C′′) be two linearly ordered subsets of F with U ∩ V = ∅ and
U ≺ V , and consider the poset (U ∪ V,C). Let ui ∈ U and suppose there are two realizable linear
extensions C∗0 and C∗2 of C such that ui occupies positions pj and pj+r for some r ≥ 2 with respect
to C∗0 and C∗2, respectively. Then for any 1 ≤ l ≤ r − 1 there exists another realizable linear
extension C∗1 of C under which ui occupies position pj+l.

Proof. Let n = |U | and m = |V | and denote the elements of U and V by u1 C · · · C un and
v1 C · · · C vm. Note this implies all of

u1 C
∗
0 · · · C∗0 un; u1 C

∗
2 · · · C∗2 un; v1 C

∗
0 · · · C∗0 vm; v1 C

∗
2 · · · C∗2 vm.

By assumption there exist tuples p, q ∈ R2k at which C∗0 and C∗2 are realized, respectively. We will
denote each u ∈ U and v ∈ V by u(p) and v(p) or u(q) and v(q) to indicate the parameter at which
they are realized. Then the hypotheses imply that

ui(p) C
∗
0 vj+1(p) and vj+r(q) C

∗
2 ui(q).

Because C∗0 and C∗2 are realizable, they must respect the standard linear order on R; for the
remainder of this proof we will abuse notation and denote this order by ≤. We leverage this fact
in the remainder of the proof, starting with

ui(p) < vj+1(p) and vj+r(q) < ui(q). (7)

We define the line segment t : [0, 1] → R2k from q to p in parameter space such that for all
s ∈ [0, 1], t(s) = sp + (1 − s)q. In particular, note that if p = (a1(p), b1(p), . . . , ak(p), bk(p)) and
q = (a1(q), b1(q), . . . , ak(q), bk(q)), then

t(s)` =

{
sac(p) + (1− s)ac(q) if ` = 2c− 1
sbc(p) + (1− s)bc(q) if ` = 2c

(8)

We may then note that 0 < t(s)` < t(s)`+1 for ` = 1, . . . , 2k − 1, so that the quantity t(s) satisfies
the requirements of a parameter for any s ∈ [0, 1]; see Definiton 3.6. In other words,

t(s) = (a1(t(s)), b1(t(s)), . . . , ak(t(s)), bk(t(s)))

and 0 < min{ac(p), ac(q)} ≤ ac(t(s)) < bc(t(s)) for all c ∈ {1, . . . , k}.

Note that by the additivity of M , we have

M(sc1(p) + (1− s)c1(q), . . . , sck(p) + (1− s)ck(q))
= sM(c1(p), . . . , ck(p)) + (1− s)M(c1(q), . . . , ck(q)).

(9)

Then as a consequence of (8) and (9), for α = 1, . . . , n and β = 1, . . . ,m and every s ∈ [0, 1], we
have

uα(t(s)) = suα(p) + (1− s)uα(q)

vβ(t(s)) = svβ(p) + (1− s)vβ(q).
(10)

178

Since for α = 1, . . . , n and β = 1, . . . ,m and every s ∈ [0, 1], uα(t(s)) and vβ(t(s)) are fixed real
numbers, the set U ∪ V evaluated at t(s) is endowed with the restriction of the standard order
≤ on R. Generically, the restriction is strict. If the restriction is not strict, an arbitrarily small
perturbation of s will result in a strict order, since there are only finitely many s ∈ [0, 1] at which
wη(t(s)) = wγ(t(s)) occurs, where wη, wγ ∈ U∪V . Only finitely many such s exist because, by (10),
each w(t(s)) is a strictly monotone function of s and we impose wη 6= wγ at both p, q by Remark 4.9.
This means wη(t(s)) and wγ(t(s)) can only intersect at a single point, not along an interval.

Moreover, if wη C wγ , then wη(p) < wγ(p) and wη(q) < wγ(q), so it is immediate from (10)
that

wη(t(s)) < wγ(t(s))

for any s ∈ [0, 1]. Thus the strict order C on U ∪ V is preserved under t(s), and the (generically
strict) restriction of ≤ on R to U ∪ V evaluated at t(s) is a realizable linear extension of C.

It remains to show that for each position pj+l for l ∈ {1, . . . , r − 1}, there exists a realizable
linear extension C∗1 induced by t(s0) for some s0 ∈ [0, 1] such that ui(t(s0)) is in position pj+l. We
do this by choosing an arbitrary l ∈ {1, . . . , r − 1} and applying a bisection technique.

Define F : [0, 1]→ R such that for all s ∈ [0, 1],

F (s) = 2ui(t(s))− vj+r(t(s))− vj+1(t(s)).

Then F is a continuous function such that

F (0) = 2ui(p)− vj+1(p)− vj+r(p) = (ui(p)− vj+1(p)) + (ui(p)− vj+r(p)) < 0

F (1) = 2ui(q)− vj+1(q)− vj+r(q) = (ui(q)− vj+1(q)) + (ui(q)− vj+r(q)) > 0,

which follows from (7). Therefore there exists s0 ∈ (0, 1) such that F (s0) = 0. This means

1

2
(vj+1(t(s0)) + vj+r(t(s0))) = ui(t(s0)).

Since the average of two unequal numbers lies strictly between them, we have

vj+1(t(s0)) < ui(t(s0)) < vj+r(t(s0)). (11)

Generically, ui(t(s0)) 6= vj+w(t(s0)) for any w ∈ {1, . . . , r− 1}, and even in the degenerate cases we
can use continuity to perturb s0 by an arbitrarily small amount such that ui(t(s0)) 6= vj+w(t(s0))
for any w ∈ {1, . . . , r− 1}. Therefore, by (11), under the linear extension of C realized at t(s0), ui
is in some position pj+w where w ∈ {1, 2, . . . , r − 1}.

Now if l = w the result holds. If l < w, then we repeat the argument with r replaced by w, and
if w < l, then we repeat the argument with j replaced by j+w. We continue to repeat the argument
in this way; because V is a finite set, there are only finitely many positions between pj and pj+r,
and each time we repeat the argument we show that there exists a realizable linear extension of
C under which ui occupies some new such position. Hence this process must eventually produce a
realizable linear extension C∗1 of C under which ui occupies pj+l.

Remark 5.7. Theorem 5.5 and Lemma 5.6 are two properties of additive logic that substantially
ease the search for compatible orders. Consequently, it would be beneficial to show these properties
hold for general logic functions M . It remains open whether Lemma 5.6 holds for non-additive M ,
and because the proof of the lemma depends on linearity of M , it does not immediately apply to
any M involving multiplication. On the other hand, Theorem 5.5 may fail when M is not additive.

179

As a counterexample, let k = 3 and let M(x1, x2, x3) = (x1 + x2)x3. Define a1 = 1, a2 = 4, a3 = 9,
b1 = 7, b2 = 8, and b3 = 10. It is readily seen that

(a1 + a2)b3 < (a1 + b2)a3 < (b1 + a2)a3

and
(a1 + b2)b3 < (b1 + a2)b3 < (b1 + b2)a3

Now let a1 = 4, a2 = 8, a3 = 12, b1 = 14, b2 = 16, and b3 = 17. Then we again have

(a1 + a2)b3 < (a1 + b2)a3 < (b1 + a2)a3

yet now
(a1 + b2)b3 < (b1 + b2)a3 < (b1 + a2)b3.

Hence the order (a1 + a2)b3 < (a1 + b2)a3 < (b1 + a2)a3 on ∆1 does not imply any single order on
∆2.

We now discuss finding sets ζi, as in Definition 4.11, for additive M . Let U := ∆0 ∪ . . .∪∆m−1
and V := ∆m, and let C′ and C′′ be compatible linear orders on U and V , respectively, and let C
be the partial order on U ∪ V formed by the disjoint union of C′ and C′′. Let ui ∈ U . We wish to
constrain the set of positions that ui can occupy by containing the set ζi. Let ca := a1 + · · ·+ ak.
From Definition 5.3 there exist disjoint (possibly empty) sets A,B ⊂ {1, . . . , k} such that ui =∑

j∈A aj +
∑

j∈B bj ∈ F , or equivalently, ui = ca +
∑

j∈B(bj − aj). We decompose the index set B

into two disjoint (possibly empty) sets B1 and B2 such that B = B1 ∪B2. Let
{

1, 2, 3, . . . , 2|B|
}

be

an indexing set for all such decompositions, and for each α ∈
{

1, 2, 3, . . . , 2|B|
}

, define

wα1 :=
∑
j∈Bα1

(bj − aj) and wα2 :=
∑
j∈Bα2

(bj − aj).

Then for each α ∈
{

1, . . . , 2|B|
}

we have a representation of ui as

ui = ca + wα1 + wα2 .

Since ui ∈ U , we have |Bα
1 |, |Bα

2 | ≤ m−1, which implies that both ca+wα1 and ca+wα2 are elements
of U .

Definition 5.8. As above, let U := ∆0∪. . .∪∆m−1 and V := ∆m, and let C′ and C′′ be compatible
linear orders on U and V , respectively, and let C be the partial order on U ∪ V formed by the
disjoint union of C′ and C′′. Let ui = ca +

∑
j∈B(bj − aj) = ca + wα1 + wα2 ∈ U where Bα

1 , B
α
2 ,

α ∈
{

1, 2, 3, . . . , 2|B|
}

, is a decomposition of B as above. Let

Lα := {λ | ca + λ ∈ U \ {ca + wα1 } and ca + λ+ wα2 ∈ ∆m}.

Since for all λ ∈ Lα, ca +λ and ca +wα1 are distinct elements of U , and because C′ is a strict linear
order on U , we must have either ca + wα1 C′ ca + λ or ca + λ C′ ca + wα1 . For each λ ∈ Lα, define
a partial order Cα

λ on ∆m ∪ {ui} such that ui Cα
λ ca + λ + wα2 if and only if ca + wα1 C′ ca + λ,

and ca + λ + wα2 Cα
λ ui if and only if ca + λ C′ ca + wα1 , and all other elements of ∆m ∪ {ui} are

unordered by Cα
λ . Now define Cα to be the partial order on ∆m ∪ {ui} equal to the disjoint union⋃

λ∈Lα Cα
λ .

180

Lemma 5.9. If C∗ is a realizable linear extension of the order C on U ∪ V , then for all α ∈{
1, 2, 3, . . . , 2|B|

}
and λ ∈ Lα, ui C∗ ca+λ+wα2 if and only if ui Cα ca+λ+wα2 , and ca+λ+wα2 C∗ ui

if and only if ca + λ+ wα2 Cα ui.

Proof. Let α ∈
{

1, 2, 3, . . . , 2|B|
}

. Since C has a realizable extension C∗, C and C∗ must respect
the strict linear order on R, which for this proof we will again denote by <.

First let ui C∗ ca + λ + wα2 where λ ∈ Lα. Then ui < ca + λ + wα2 . Then by the translational
property of <, ca + wα1 < ca + λ. Then ca + wα1 C′ ca + λ, since C must respect < and C′=C

∣∣
U

and ca + wα1 , ca + λ ∈ U . This implies ui Cα
λ ca + λ + wα2 by definition of Cα

λ . Since Cα is the
disjoint union of all Cα

λ , this implies ui Cα ca + λ + wα2 . An analogous argument shows that if
ca + λ+ wα2 C∗ ui, then ca + λ+ wα2 Cα ui.

Now let ui Cα ca + λ+wα2 where λ ∈ Lα, so that ui Cα
λ ca + λ+wα2 by definition of Cα. Then

ca + wα1 C′ ca + λ by definition of Cα
λ , and ca + wα1 < ca + λ by realizability as before, implying

ui < ca + λ+ wα2 by translation. Finally ui C∗ ca + λ+ wα2 since C∗=< |U∪V by realizability. An
analogous argument shows that if ca + λ+ wα2 Cα ui, then ca + λ+ wα2 C∗ ui.

Definition 5.10. Let α ∈
{

1, 2, 3, . . . , 2|B|
}

. A shifted order Uα = U + wα2 is the set of all u+ wα2
where u ∈ U . In other words, Uα is the set of all ca + λ+ wα2 where ca + λ ∈ U . If they exist, let

mα := maxC′′{vj ∈ ∆m ∩ Uα | vj Cα ui}
Mα := minC′′{vj ∈ ∆m ∩ Uα | ui Cα vj}

where the maximum and minimum are with respect to C′′. When these exist, we define pminα and
pmaxα to be the positions in ∆m immediately above mα and immediately below Mα (with respect
to C′′), respectively. Now we define

Pαi := {j | minα ≤ j ≤ maxα}.

If either mα or Mα does not exist (which may occur if, for instance, Uα ∩∆m = ∅), we remove the
respective inequality from the definition of Pαi . If neither exists, then Pαi is just the index set of
all positions among the elements of ∆m. By construction, Pαi is the index set of the positions that
ui may occupy under the order Cα on ∆m ∪ {ui}.

We now have the following immediate result.

Corollary 5.11. Let Pi :=
⋂
α Pαi . Then ζi ⊂ Pi, where recall from Definition 4.11, ζi is defined

with respect to C. In other words, under any realizable linear extension of C, ui cannot occupy any
position whose index is not in Pi.

Proof. By assumption C′ and C′′ are compatible, so there exists at least one realizable linear exten-
sion C∗ of the order C on U ∪V . By Lemma 5.9, Cα must respect C∗ for all α ∈

{
1, 2, 3, . . . , 2|B|

}
.

Then since under Cα, the index of the position of ui must be in Pαi , this must hold under C∗ as
well.

Conjecture 5.12. If M is additive and |F| = 2k as assumed in Remark 4.9, then ζi = Pi.

The proof of the conjecture requires that restrictions that an order C′ on U imposes on any
compatible order C′′ on V can be captured by a shift by wα2 for some α. Although we do not have
a proof of this, the partial result in Corollary 5.11 restricts our search for compatible positions to
a smaller set.

181

6 Additive examples

In this and the following section we compute an upper bound on |Υ| for a few specific functions
f . Roughly speaking, we do this by applying Algorithm 1; however, because we lack a conclusive
method to check compatibility short of finding explicit parameters, we will not compute the exact
sets ζi of compatible positions. Instead, we will compute sets ηi containing these ζi. For each pair
U = ∆0 ∪ . . . ∪ ∆m and V = ∆m+1, we construct each ηi by obtaining upper and lower bounds
on the compatible positions of each element of U ; these bounds are determined by the algebraic
constraints from the logic M and certain considerations of compatibility. However, the indices
of the maximum and minimum positions in each ηi may not actually be in the corresponding ζi,
and therefore even in an additive system the result of Lemma 5.6 may not hold for our calculated
ηi. Because of this, the upper bounds we compute for these examples may be less strict than the
respective upper bounds given by Theorem 4.15. However, in many cases in the following examples,
we have observed that ηi = ζi = {0}.

For any case with k ≤ 2, counting realizable linear extensions of the partial order < is trivial, as
these cases do not require any consideration of compatibility. In particular, when k = 1, Υ contains
only the linear extension <∗ such that a1 <

∗ b1, and when k = 2, Υ contains two linear extensions,
<∗1 and <∗2, such that

a1 + a2 <
∗
1 b1 + a2 <

∗
1 a1 + b2 <

∗
1 b1 + b2

a1 + a2 <
∗
2 a1 + b2 <

∗
2 b1 + a2 <

∗
2 b1 + b2

These two orders are realized at (a1, b1, a2, b2) = (1, 2, 1, 3) and (1, 3, 1, 2), respectively. Recall
from Remark 5.1 that M(c1, c2) = c1 + c2 has an order isomorphism to M(c1, c2) = c1c2, so that
the multiplicative case has two linear extensions as well.

In addition to these cases, we can bound |Υ| for f with additive M and k = 3 or 4 and for f
with non-additive M and k = 3. Although |Υ| has the trivial upper bound of |W | (the number of
all linear extensions of <), our bound is more strict. In particular, for the k = 3 examples below,
|W | = 48 in comparison to |Υ| ≤ 12 (Section 6.1) and |Υ| ≤ 20 (Section 7). More dramatically,
in the additive case where k = 4, |W | = 1,680,384 as opposed to |Υ| ≤ 336 (Section 6.2). The
numbers |W | for k = 3 and k = 4 were calculated using the digraphtools package for Python 2.7.

Remark 6.1. In the following examples, we largely neglect the minimal and maximal elements
M(a1, . . . , ak) and M(b1, . . . , bk) of F , since their exclusion does not affect the counts we make.

6.1 Additive M with k = 3

In this section, refer back to Figures 2a and 3. Consider the blocks

∆0 = {a1 + a2 + a3}
∆1 = {b1 + a2 + a3, a1 + b2 + a3, a1 + a2 + b3}
∆2 = {b1 + b2 + a3, b1 + a2 + b3, a1 + b2 + b3}
∆3 = {b1 + b2 + b3}.

We will begin by choosing a linear order C′ on ∆1. We will arbitrarily pick C′ such that

b1 + a2 + a3 C
′ a1 + b2 + a3 C

′ a1 + a2 + b3.

By Theorem 5.5, this implies a unique compatible linear order C′′ on ∆2, such that

b1 + b2 + a3 C
′′ b1 + a2 + b3 C

′′ a1 + b2 + b3.

182

Now we must find sets of positions containing ζi for each ui ∈ ∆1. Because |∆1| = 3, we require
sets for each of ζ1, ζ2, and ζ3. Note the partial order < on F stipulates

b1 + a2 + a3 < a1 + b2 + a3 < b1 + b2 + a3

and
a1 + a2 + b3 < b1 + a2 + b3,

but a1 + a2 + b3 and b1 + b2 + a3 are not comparable under <. Therefore, ζ1 = η1 := {0},
ζ2 = η2 := {0} and ζ3 ⊂ η3 := {0, 1}.

Finally, we must extend C′ and C′′ to ∆1 ∪∆2. We will substitute our sets containing η1, η2, η3
into (4); for i = 2, 3, let hi := ηi∩{l | l ≥ ji−1} where recall ji−1 refers to the position of ui−1 (note
the analogy with (3)). Then ∑

j1∈{0}

∑
j2∈h2

|h3| = 2

Therefore, there exist at most two realizable linear extensions of (F , <) that respect our linear
order C′ on ∆1. Since this assumption was an arbitrary choice of one of 3! permutations of the
elements on ∆1, there exist at most 3! · 2 = 12 realizable linear extensions of <. Each of these can
be found by renaming parameters in the linear extensions we have computed above.

6.2 Additive M with k = 4

The poset (F , <) is illustrated in Figure 4. Because linear orders on these blocks and their unions
are lengthy to write, we will use the shorthand in Figure 5 to refer to the vertices in Figure 4.

We divide F into blocks as follows.

∆0 = {v0}
∆1 = {v1, v2, v3, v4}
∆2 = {v5, v6, v7, v8, v9, v10}
∆3 = {v11, v12, v13, v14}
∆4 = {v15}

We begin by choosing a linear order C′ on ∆1 such that

v1 C
′ v2 C

′ v3 C
′ v4. (12)

Now we seek to bound the number of linear orders C′′ on ∆2 such that C′ and C′′ are compatible.
By inspection, we find that (12) implies

v5 C
′′ v6 C

′′
{
v7
v8

}
C′′ v9 C

′′ v10.

Given these inequalities, we have a choice of two distinct linear orders C′′1 and C′′2 on ∆2, such that
v7 C′′1 v8 and v8 C′′2 v7.

Next we find the sets η1, η2, η3, η4 containing ζ1, ζ2, ζ3, ζ4, respectively, for v1, . . . , v4 ∈ ∆1, with
respect to each of C′′1 and C′′2. We will begin with the former. By inspection, we find v1, v2 < v5,
and hence ζ1, ζ2 = η1, η2 := {0}. Further, v3 < v6, but v3 is not necessarily less than v5 under <,
which implies ζ3 ⊂ η3 := {0, 1}; finally, v4 < v7, but v4 is not necessarily less than v5 or v6 under
<, and so ζ4 ⊂ η4 := {0, 1, 2}.

183

a1 + a2 + a3 + a4

a1 + a2 + a3 + b4

a1 + a2 + b3 + b4

a1 + b2 + b3 + b4

b1 + b2 + b3 + b4

b1 + b2 + b3 + a4

b1 + b2 + a3 + a4

b1 + a2 + a3 + a4

b1 + a2 + b3 + a4

b1 + a2 + b3 + b4

b1 + a2 + a3 + b4

b1 + b2 + a3 + b4

a1 + b2 + a3 + b4

a1 + b2 + a3 + a4

a1 + b2 + b3 + a4

a1 + a2 + b3 + a4

Figure 4: (F , <) with additive M and k = 4.

v0

v4

v10

v14

v15

v11

v5

v1

v6

v13

v7

v12

v9

v2

v8

v3

Figure 5: Shorthand for elements of (F , <) in the additive case with k = 4.

184

Now for C′′2, many of the inequalities induced by C′′1 remain valid in this case. In fact, the only
change is that v4 may now occupy the position above v8, so that η4 = {0, 1, 2, 3}, while η1, η2 and
η3 remain the same.

We now substitute these sets into (4). For C′′1, we find that∑
j1∈{0}

∑
j2∈h2

∑
j3∈h3

|h4| = 5

and for C′′2, we have ∑
j1∈{0}

∑
j2∈h2

∑
j3∈h3

|h4| = 7

This gives the following twelve linear orders C=Ci, i = 1, . . . , 12, on the union ∆1 ∪∆2.

v1 C1 v2 C1 v3 C1 v4 C1 v5 C1 v6 C1 v7 C1 v8 C1 v9 C1 v10

v1 C2 v2 C2 v3 C2 v5 C2 v4 C2 v6 C2 v7 C2 v8 C2 v9 C2 v10

v1 C3 v2 C3 v3 C3 v5 C3 v6 C3 v4 C3 v7 C3 v8 C3 v9 C3 v10

v1 C4 v2 C4 v5 C4 v3 C4 v4 C4 v6 C4 v7 C4 v8 C4 v9 C4 v10

v1 C5 v2 C5 v5 C5 v3 C5 v6 C5 v4 C5 v7 C5 v8 C5 v9 C5 v10

v1 C6 v2 C6 v3 C6 v4 C6 v5 C6 v6 C6 v8 C6 v7 C6 v9 C6 v10

v1 C7 v2 C7 v3 C7 v5 C7 v4 C7 v6 C7 v8 C7 v7 C7 v9 C7 v10

v1 C8 v2 C8 v3 C8 v5 C8 v6 C8 v4 C8 v8 C8 v7 C8 v9 C8 v10

v1 C9 v2 C9 v3 C9 v5 C9 v6 C9 v8 C9 v4 C9 v7 C9 v9 C9 v10

v1 C10v2 C10v5 C10v3 C10v4 C10v6 C10v8 C10v7 C10v9 C10v10

v1 C11v2 C11v5 C11v3 C11v6 C11v4 C11v8 C11v7 C11v9 C11v10

v1 C12v2 C12v5 C12v3 C12v6 C12v8 C12v4 C12v7 C12v9 C12v10

With these twelve choices we apply the algorithm to ∆1 ∪ ∆2 and ∆3. By Theorem 5.5 the
linear order C′ on ∆1 implies a unique linear order C′′′ on ∆3. In particular,

v11 C
′′′ v12 C

′′′ v13 C
′′′ v14.

Now we must find ηi for each ui ∈ ∆1 ∪ ∆2 (here we will assume ui = vi for i = 1, . . . , 10).
However, because this is an additive case, Theorem 5.4 simplifies this step significantly. For exam-
ple, we observe that v1, v2, v3 < v11, and therefore ηi = {0} for ui = v1, v2, v3. By Theorem 5.4, the
positions of these three elements of ∆1 in the linear order on (∆1 ∪∆2) imply unique positions of
their complements in the linear order on (∆1 ∪∆2 ∪∆3). We display the sets ηi in Table 1.

Finally, we substitute these sets into (4). The results are displayed in Table 2. We conclude
that there exist at most 14 realizable linear extensions of F consistent with our choice of C′ on ∆1.
Since C′ is an arbitrary choice of one of 4! possible permutations, the total number of realizable
linear extensions is at most 4! · 14 = 336.

7 Multiplicative example

In this example we consider a logic function M such that M(c1, c2, c3) = (c1 + c2)c3, which gives
rise to the poset in Figure 2b. Compared with additive logic functions, this additive-multiplicative
function is less restrictive, and the results of Section 5 do not hold in general.

185

C η1 η2 η3 η4 η5 η6 η7 η8 η9 η10
C1 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
C2 {0} {0} {0} {0} {0} {0} {0} {0} {0} {1}
C3 {0} {0} {0} {0} {0} {0} {0} {0} {1} {1}
C4 {0} {0} {0} {0} {0} {0} {0} {0} {0} {2}
C5 {0} {0} {0} {0} {0} {0} {0} {0} {1} {2}
C6 {0} {0} {0} {0} {0} {0} {0} {0} {0} {0}
C7 {0} {0} {0} {0} {0} {0} {0} {0} {0} {1}
C8 {0} {0} {0} {0} {0} {0} {0} {0} {1} {1}
C9 {0} {0} {0} {0} {0} {0} {0, 1} {1} {1} {1}
C10 {0} {0} {0} {0} {0} {0} {0} {0} {0} {2}
C11 {0} {0} {0} {0} {0} {0} {0} {0} {1} {2}
C12 {0} {0} {0} {0} {0} {0} {0, 1} {1} {1} {2}

Table 1: ηi for ∆1 ∪∆2 and ∆3 in Example 6.2.

C C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

No. of extensions 1 1 1 1 1 1 1 1 2 1 1 2

Table 2: Bounds on number of compatible linear extensions consistent with each order on ∆1 ∪∆2

in Example 6.2, as computed by (4) with set η1 and h2, h3, . . . , h10.

We begin by following the additive examples and imposing an arbitrary linear order on the set
of differences {(b1 − a1), (b2 − a2)}, since we have σ1 + σ2 as a factor of M ◦ σ. We will choose

(b1 − a1) < (b2 − a2). (13)

The blocks in F are as follows.

∆0 = {(a1 + a2)a3}
∆1 = {(b1 + a2)a3, (a1 + b2)a3, (a1 + a2)b3}
∆2 = {(b1 + b2)a3, (b1 + a2)b3, (a1 + b2)b3}
∆3 = {(b1 + b2)b3}

First, we deal with the compatible linear orders C′ and C′′ on ∆1 and ∆2 satisfying (13). We
find that (b1 + a2)a3 C′ (a1 + b2)a3, and that none of our assumptions restrict (a1 + a2)b3 from any
of the three places under C′. Similarly, (b1 +a2)b3 C′ (a1 + b2)b3, while (b1 + b2)a3 may occupy any
place under C′′. This yields the following linear orders C′ on ∆1 and C′′ on ∆2 satisfying (13).

(A) (b1 + a2)a3 C′ (a1 + b2)a3 C′ (a1 + a2)b3

(B) (b1 + a2)a3 C′ (a1 + a2)b3 C′ (a1 + b2)a3

(C) (a1 + a2)b3 C′ (b1 + a2)a3 C′ (a1 + b2)a3

(α) (b1 + b2)a3 C′′ (b1 + a2)b3 C′′ (a1 + b2)b3

(β) (b1 + a2)b3 C′′ (b1 + b2)a3 C′′ (a1 + b2)b3

(γ) (b1 + a2)b3 C′′ (a1 + b2)b3 C′′ (b1 + b2)a3

Suppose C∗ is a realizable linear extension of the partial order C on ∆1 ∪∆2 formed from the
disjoint union of C′ and C′′. Then by realizability, if (a1 + b2)a3 C∗ (a1 + a2)b3, then because
0 < ai < bi for i = 1, 2, 3, we see (b1 − a1)a3 + (a1 + b2)a3 is less than (b1 − a1)b3 + (a1 + a2)b3
in R. Simplifying gives (b1 + b2)a3 C∗ (b1 + a2)b3. Similarly, if (b1 + a2)a3 C∗ (a1 + a2)b3,

186

then (b2 − a2)a3 + (b1 + a2)a3 is less than (b2 − a2)b3 + (a1 + a2)b3 in R, and simplifying gives
(b1 + b2)a3 C∗ (a1 + b2)b3. As a consequence, only (α) is compatible with (A), and only (α) and
(β) are compatible with (B).

Beginning with the linear orders arising from (A) and (α), we find (b1 + a2)a3, (a1 + b2)a3 <
(b1 + b2)a3 and (a1 + a2)b3 < (b1 + a2)b3, but (a1 + a2)b3 is not necessarily less than (b1 + b2)a3
under <. Hence η1 = η2 = {0} and η3 = {0, 1}.

Next we consider the linear orders consistent with (B) and (α). Note that (a1 + b2)a3 <
(b1 + b2)a3, so η1 = η2 = η3 = {0}. For (B) and (β), we note that (a1 + a2)b3 < (b1 + a2)b3, so
η1 = η2 = {0}. Since (a1+b2)a3 < (b1+b2)a3, but (a1+b2)a3 is not necessarily less than (b1+a2)b3
under <, η3 = {0, 1}.

Finally, for (C) and (α) we find η1 = η2 = η3 = {0}; for (β) we have η1 = η2 = {0} and
η3 = {0, 1}; and for (γ) we again have η1 = η2 = {0} and η3 = {0, 1}.

We substitute each ηi into (4).

∑
j1∈{0}

∑
j2∈h2

|h3| =

{
1 if η3 = {0}
2 if η3 = {0, 1}

Because the pattern η1 = η2 = η3 = {0} occurs twice and η1 = η2 = {0}, η3 = {0, 1} four times,
there are at most 2 · 1 + 4 · 2 = 10 realizable linear extensions of < consistent with (13). Identical
considerations are valid when the inequality in (13) is reversed, and therefore there exist at most
2 · 10 = 20 realizable linear extensions.

8 Conclusion

We have introduced a construction and counting problem important to the dynamical classification
of switching systems across global parameter space [5]. We have shown that the parameterization
of a switching system gives rise to a natural partial order that is subject to algebraic constraints.
The resulting poset has a special block structure that simplifies the construction of realizable linear
extensions. The remaining open question is how to assess whether two linear orders on blocks
can be merged in such a way that the algebraic constraints of the system are satisfied. We give
further results for the special case of purely additive constraints, and we demonstrate these results
on several examples.

Acknowledgements

T. G. was partially supported by NSF grants DMS-1226213 DMS-1361240, DARPA D12AP200025
and NIH R01 grant 1R01AG040020-01. B.C. was supported by DARPA D12AP200025 and Z.H.
was partially supported by the NIGMS Award P20GM103474. Research reported in this publication
was supported by the National Institute of General Medical Sciences of the National Institutes of
Health under Award Number P20GM103474. The content is solely the responsibility of the authors
and does not necessarily represent the official views of the National Institutes of Health.

References

[1] G. Brightwell and P. Winkler, Counting linear extensions, Order, 8 (1991), pp. 225–242.

[2] E. R. Canfield and S. G. Williamson, A loop-free algorithm for generating the linear extensions of a poset,
Order, 12 (1995), pp. 57–75.

187

[3] R. Casey, H. de Jong, and J. L. Gouzé, Piecewise-linear models of genetic regulatory networks: equilibria
and their stability, J. Math. Biol., 56 (2006), pp. 27–56.

[4] M. Chaves, E. D. Sontag, and R. Albert, Methods of robustness analysis for Boolean models of gene control
networks, IEE Proceedings-Systems Biology, 153 (2006), pp. 154–167.

[5] B. Cummins, T. Gedeon, S. Harker, K. Mischaikow, and K. Mok, Combinatorial representation of pa-
rameter space for switching networks, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 2176–2212.

[6] M. Davidich and S. Bornholdt, From differential equations to Boolean networks: a case study in modeling
regulatory networks. manuscript (2008).

[7] H. de Jong, Modeling and simulation of genetic regulatory systems: a literature review, J. Comput. Biol., 9
(2002), pp. 67–103.

[8] H. de Jong, J. L. Gouzé, C. Hernandez, M. Page, T. Sari, and J. Geiselmann, Qualitative simulation
of genetic regulatory networks using piecewise-linear models, Bull. Math. Biol., 66 (2004), pp. 301–340.

[9] R. Edwards, Analysis of continuous-time switching networks, Phys. D, 146 (2000), pp. 165–199.

[10] R. Edwards and L. Ironi, Periodic solutions of gene networks with steep sigmoidal regulatory functions, Phys.
D, 282 (2014), pp. 1–15.

[11] L. Glass and S. A. Kauffman, The logical analysis of continuous, non-linear biochemical control networks, J.
Theoret. Biol., 39 (1973), pp. 103–129.

[12] J. L. Gouzé and T. Sari, A class of piecewise linear differential equations arising in biological models, Dyn.
Syst., 17 (2002), pp. 299–316.

[13] L. Ironi, L. Panzeri, E. Plahte, and V. Simoncini, Dynamics of actively regulated gene networks, Phys. D,
240 (2011), pp. 779–794.

188

