

JPMorganChase

OPTIMIZATION

- General problem: $\min_{x \in K} f(x)$
- Examples:
 - Find portfolio with maximum return and minimum risk
 - Find a shortest route between two points on a map
- General classes of optimization problems:
 - Combinatorial optimization: variables are discrete (bits, integers)
 - Often NP-hard!
 - Continuous optimization: variables are real (floating point)
 - Convex or non-convex

WHY QUANTUM FOR OPTIMIZATION?

- Straightforward to encode in a circuit
 - Objective function can often be encoded directly, no data loading necessary
- Many small hard problems
 - Some combinatorial optimization problems become intractable at a few hundred binary variables (e.g. Low Autocorrelation Binary Sequences)
- Clear value
 - Optimization is ubiquitous in industry
 - Doing optimization better directly connects to business value
- Evidence of broadly applicable speedups

- We don't expect quantum computers to have exponential speedup for NP-hard problems
- But! Many provable polynomial speedups exist:
 - Quadratic speedups that leverage Grover's algorithm as a subroutine
 - Branch-and-bound [Montanaro '19, Chakrabarti et al. '20]
 - Dynamic programming [Ambainis et al.'18]
 - •
 - Quantum walk algorithms
 - Quadratic speedup for backtracking [Montanaro'15]
 - •

- We don't expect quantum computers to have exponential speedup for NP-hard problems
- But! Many provable polynomial speedups exist:
 - Quadratic speedups that leverage Grover's algorithm as a subroutine
 - Branch-and-bound [Montanaro '19, Chakrabarti et al. '20]
 - Dynamic programming [Ambainis et al.'18]
 - •
 - Quantum walk algorithms
 - Quadratic speedup for backtracking [Montanaro'15]
 - •

🛕 Warning! 🛕

Quadratic speedups are likely to be insufficient in the near term due to overhead of error correction [Babbush et al '20]

polynomial degree d	parallelism	resource "lower bound"		
	speedup S	iterations M	$\text{runtime } \mathcal{T}^\star$	
Quadratic, $d = 2$	1	$5.2 imes 10^5$	2.4 hours	
	10^{3}	$5.2 imes 10^8$	$100 \mathrm{~days}$	
	10^{6}	$5.2 imes 10^{11}$	280 years	
	1	7.2×10^2	12 seconds	
Cubic, $d = 3$	10^{3}	$2.3 imes 10^4$	6.4 minutes	
	10^{6}	$7.2 imes 10^5$	3.4 hours	
	1	$8.0 imes 10^1$	1.4 seconds	
Quartic, $d = 4$	10^{3}	$8.0 imes 10^2$	14 seconds	
	10^{6}	$8.0 imes 10^3$	2.3 minutes	

\Lambda Warning! <u> </u>

Quadratic speedups are likely to be insufficient in the near term due to overhead of error correction [Babbush et al '20]

Quadratic speedups are likely to be insufficient in the near

term due to overhead of error correction [Babbush et al '20]

- We don't expect quantum computers to have exponential speedup for NP-hard problems
- Quadratic speedups are likely to be insufficient in the near term
- Super-quadratic speedups
 - Slightly-better-than-quadratic speedup over brute-force-search by starting Grover from a "warm-start" state [Dalzell et al '22]

- We don't expect quantum computers to have exponential speedup for NP-hard problems
- Quadratic speedups are likely to be insufficient in the near term
- Super-quadratic speedups
 - Slightly-better-than-quadratic speedup over brute-force-search by starting Grover from a "warm-start" state [Dalzell et al '22]

Problem	Our quantum algo	Best classical algo
3-CNF-SAT	$0.5 - (5.2 \times 10^{-7})$	0.39 [3]
k-CNF-SAT	$0.5 - \Omega(2^{-3k}k^{-3})^{2}$	$1 - \Omega(k^{-1})$ [3]
SK model	$0.5 - (2.7 \times 10^{-5})$	0.45 [11]
k-spin	$0.5-\Omega(k^{-3})$	1

- We don't expect quantum computers to have exponential speedup for NP-hard problems
- Quadratic speedups are likely to be insufficient in the near term
- Super-quadratic speedups
 - Slightly-better-than-quadratic speedup over brute-force-search by starting Grover from a "warm-start" state [Dalzell et al '22]
 - Slightly-better-than-quadratic speedup over Markov Chain search for a broad range of constrained problems [Chakrabarti et al '24]
 - Super-quadratic speedup over *any* classical search with a polynomial-time Gibbs sampler for a certain class of problems

- We don't expect quantum computers to have exponential speedup for NP-hard problems
- Quadratic speedups are likely to be insufficient in the near term
- Super-quadratic speedups
 - Slightly-better-than-quadratic speedup over brute-force-search by starting Grover from a "warm-start" state [Dalzell et al '22]
 - Markov Chain search for a broad range of constrained problems [Chakrabarti et al '24]
 - Quartic speedup for planted kXOR [Schmidhuber et al '24]
- Exponential space advantage in streaming setting [Kallaugher et al '23]
- Potential exponential speedup for restricted family of problems which are not known to be NP-hard [Jordan et al '24]

- We don't expect quantum computers to have exponential speedup for NP-hard problems
- Quadratic speedups are likely to be insufficient in the near term
- Super-quadratic speedups
 - Slightly-better-than-quadratic speedup over brute-force-search by starting Grover from a "warm-start" state [Dalzell et al '22]
 - Image Slightly-better-than-quadratic speedup over Markov Chain search for a broad range of constrained problems [Chakrabarti et al '24]
 - Quartic speedup for planted kXOR [Schmidhuber et al '24]
- Exponential space advantage in streaming setting [Kallaugher et al '23]
- Potential exponential speedup for restricted family of problems which are not known to be NP-hard [Jordan et al '24]
 - Easy to study empirically by studying classical decoders!

QUANTUM HEURISTICS FOR OPTIMIZATION Combinatorial

- Heuristics have been proposed that appear to do well numerically
 - Quantum Approximate Optimization Algorithm [Hogg '00, Farhi '14]
 - Some numerical evidence of speedup is available [Boulebnane '22, Shaydulin '23]

Solver	Fit	Error
WalkSAT QAOA	-3.232 + 0.295n	0.011
QAOA $(p = 14)$	-1.064 + 0.326n	0.008
QAOA $(p = 60)$	-2.842 + 0.302n	0.007
walksatlm	-0.309 + 0.325n	0.008
maplesat	1.531 + 0.461n	0.004
glucose4	2.998 + 0.498n	0.005

[[]Boulebnane '22]

				Memetic Tabu	
		QAOA+QMF	QAOA	Reproduced	(23, 30)
ŀ	Fit	1.21	1.46	1.35	1.34
(CI	(1.19, 1.23)	(1.42, 1.50)	(1.33, 1.38)	N/A

[Shaydulin '23]

QUANTUM HEURISTICS FOR OPTIMIZATION Combinatorial

- Heuristics have been proposed that appear to do well numerically
 - Quantum Approximate Optimization Algorithm [Hogg '00, Farhi '14]
 - Some numerical evidence of speedup is available [Boulebnane '22, Shaydulin '23]
 - Quantum Adiabatic Algorithm [Farhi '00]
 - Proving performance is challenging, but can be run heuristically
 - Quantum Counterdiabatic Driving [Berry '09]
- Experiments on hardware will tell if these work

QUANTUM SPEED-UPS FOR OPTIMIZATION Continuous

- Provable polynomial speedups for convex problems
 - Semidefinite programming [Brandao-Svore '16, van Apeldoorn-Gilyen '18]
 - Linear programming [Kerenidis-Prakash '18, Augustino et al. '23]

"Even if quantum computers one day match the gigahertz-level clock-speeds of modern classical computers, 10^{24} layers of T gates would take millions of years to execute. By contrast, the PO problem can be easily solved in a matter of seconds on a laptop for n = 100 stocks."

[Dalzell '22 on Kerenidis-Prakash '18]

QUANTUM SPEED-UPS FOR OPTIMIZATION Continuous

- Provable polynomial speedups for convex problems
 - Semidefinite programming [Brandao-Svore '16, van Apeldoorn-Gilyen '18]
 - Linear programming [Kerenidis-Prakash '18, Augustino et al. '23]

Algorithm	Complexity	QRAM	Notes
IPM [CLS21, vdB20]	$\widetilde{\mathcal{O}}_{n,rac{1}{c}}((m+n)^{\omega})$	-	
QMMWU [BGJ ⁺ 23]	$\widetilde{\mathcal{O}}(\sqrt[6]{m+n}r^{2.5}arepsilon^{-2.5}+arepsilon^{-3})$	1	$r \ge \ x_*\ _1$
IR-QIPM [MFWT23]	$\widetilde{\mathcal{O}}_{n,\kappa(Q),\frac{1}{\varepsilon}}\left((m+n)^{2.5}\kappa(Q)^{2}\ Q\ \ x_{*}\ ^{5}\right)$	\checkmark	
IR-QCPM (this work)	$\widetilde{\mathcal{O}}_{m,n,\kappa(\mathcal{M}),rac{1}{arepsilon}}\left((m+n)\operatorname{nnz}(A)\kappa(\mathcal{M}) ight)$	×	

Table 1: Complexity to solve the primal-dual pair (P)-(\oplus) to precision ε

[Augustino et al. '23]

QUANTUM SPEED-UPS FOR OPTIMIZATION Continuous

- Provable polynomial speedups for convex problems
 - Semidefinite programming [Brandao-Svore '16, van Apeldoorn-Gilyen '18]
 - Linear programming [Kerenidis-Prakash '18, Augustino et al. '23]
- Promising heuristics for non-convex problems
 - Quantum Hamiltonian Descent [Leng et al '23]
 - Quantum Langevin Dynamics [Chen et al '23]

TAKEAWAY

- Optimization is a promising domain for quantum algorithms due to availability of broadly applicable speedups and promising heuristics
- Speedups available in both discrete and continuous setting
 - Mostly polynomial, though recent results suggest possibility of exponential separations
- Experiments on early fault-tolerant devices will show the power of heuristics