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By Richard D. James

Like much of mathematics, the math-
ematical study of materials begins with 
Euler [7], or perhaps with Hooke’s models 
of crystals as periodic arrays of balls ([8], 
Schem. 7). Some readers might know of a 
more recent historical touchstone, the N – 
6 rule of von Neumann and Mullins [11, 
16]. Scientists trained on both sides of the 
increasingly blurred line between math-
ematics and materials science have been 
attracted by the striking beauty of micro-
structure, the extreme nonlinearity, non-
convexity, and even nonexistence exhibited 
by theories of materials, and the surprising 
links between the atomic structure of mate-
rials and a host of mathematical subjects, 
including  geometry, calculus of variations, 
partial differential equations, group theo-
ry, graph theory, topology, and harmonic 
analysis. Mathematics is now guiding the 
discovery of materials using principles that 
in some cases run counter to accepted 
beliefs in materials science, and materials 
are inspiring new mathematics. 

One of the most fruitful areas has 
been the study of phase transformations. 
There are a myriad of important phase 
transformations: solid to liquid, crystal-

line to amorphous, the ordering of atoms 
on a lattice, diffusional precipitation, and 
shape-changing transformations between 
crystalline forms without diffusion. The 
latter, called martensitic phase trans-
formations, are particularly interesting 
because they can occur quickly. Highly 
ordered structures like crystals are famous 
for their “ferro” properties––ferromagne-
tism, ferroelectricity, ferroelasticity. The 
strongest materials and superconductors 
are also ordered materials. Having a phase 
transformation between two crystals with 
different ferro (or other) properties means 
that the material can be made to switch 
between these properties: in short, multi-
ferroism by phase transformation.  Some 
of the most interesting technological chal-
lenges today involve the possible appli-
cation of these phase transformations to 
such fields as microelectronics, informa-
tion storage, energy conversion, robotics, 
and sensing.

In nearly all of these applications, we 
want the material to pass back and forth 
through the phase transformation many 
times, through heating and cooling. (Ferroic 
martensitic materials, by the way, can often 
be made to transform at a fixed tempera-
ture, with the application of an electric 

or magnetic field.) Martensitic materials 
have a higher transformation temperature 
on heating than on cooling, a phenomenon 
known as hysteresis. The loop in a plot of 
phase-fraction vs. temperature is a hys-
teresis loop. To achieve fast switching of 
phases, we want a small hysteresis loop, 
i.e., we do not want to have to heat and cool 
by hundreds of degrees just to get the mate-
rial to transform back and forth. Equally 
problematic for many applications is that 
the area enclosed by the hysteresis loop is 
a measure of the energy dissipated by the 
transformation.

What causes hysteresis? What governs 
the reversibility of phase transformations? 
In the pure element tin (Sn), the marten sitic 
phase transformation that occurs around 
10º C is so disruptive that during the first 
cooling cycle the material tears itself apart, 
yielding a pile of powdered tin. This is often 
attributed to a large volume change. Other 
textbook ideas for the origins of hyster-
esis include the “pinning” of interfaces by 
defects and the thermally activated crossing 
of energy barriers.  

Mathematical theory suggests a quite 
different explanation. To understand this, 
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Periodic Table of the Finite Elements 
By Douglas Arnold and  
Anders Logg

The finite element method is one of the 
most powerful and widely applicable tech-
niques for the numerical solution of partial 
differential equations and, therefore, for 
the simulation of the physical world. First 
proposed by engineers in the 1950s as a 
practical numerical method for predicting 
the deflection and stress of structural com-
ponents of aircraft, the method has since 
been continuously extended and refined. It 
is now used in almost all application areas 
modeled by PDEs: solid and fluid dynam-
ics, electromagnetics, biophysics, and even 
finance, to name just a few.

Finite element methods approximate 
solutions with piecewise polynomials; the 
first finite element methods were based on 
the simplest sorts of piecewise polynomials: 
continuous piecewise linear functions on 
triangles, and continuous piecewise bilinear 
functions on squares. Over the years, to 
extend the stability, accuracy, and applica-
bility of the method, more complex finite 
element spaces have been introduced, ana-
lyzed, implemented, and applied. In addi-
tion to the common and the tensor-product 
Lagrange elements, these include the seren-
dipity elements, Nédélec elements of vari-
ous types, the Raviart–Thomas elements, 
and the Brezzi–Douglas–Marini elements. 
Even to specialists, the resulting collection 
can seem a disorganized zoo of possibilities.

Fortunately, much as the chemical ele-
ments can be arranged in a periodic table 
based on their electron structure and recur-
ring chemical properties, a broad assort-
ment of finite elements can be arranged in a 
table that clarifies their properties and rela-
tionships. This arrangement, which is based 
on expression of the finite element function 
spaces in the language of differential forms, 
is one of the major outcomes of the theory 
known as finite element exterior calculus 
[4, 5], or FEEC. Just as the arrangement of 
the chemical elements in a periodic table 
led to the discovery of new elements, the 
periodic table of finite elements has not 

only clarified existing elements but also 
highlighted holes in our knowledge and led 
to new families of finite elements suited for 
certain purposes.

A poster displaying this organized pre-
sentation of the principal finite elements is 
included with this issue of SIAM News. It 
is reduced from the full-size poster, which 
can be obtained at http://femtable.org. The 
poster was developed by us with the help 
of graphic designer Mattias Schläger and 
the support of Simula Research Laboratory. 
Harish Narayanan adapted it to the web. 

Explanation of the Poster
In our explanation, we assume some famil-

iarity with differential forms on domains in 
n. Readers looking for a brief introduction 
or review may skip ahead to the final section 
on differential forms now.

The most prominent aspect of the poster is 
the arrangement of 108 colored boxes, each 
corresponding to a finite element space. They 
form the periodic table of finite elements or, 
more accurately, a finite section of the table, 
which is infinite. The element boxes are 
arranged in four groups, corresponding to the 
four primary families of finite element spaces, 
the left-hand two based on simplicial meshes, 
the right-hand two on cubical or box meshes. 
The family names, in the notation of FEEC, 
are  r –Lk and r Lk for simplices, and r

 –Lk 
and r Lk for cubes––for short, the  –, ,  –, 
and  families.

Each family contains elements for differ-
ential forms of all possible degrees k, from 
0 up to the space dimension n, as indicated 
by the Lk incorporated into the notation for 
the family. The form degree determines the 
coloring, with green boxes used for 0-forms 
and blue boxes for n-forms, the scalar 
elements. In 3D, red is used for 1-forms 
and yellow for 2-forms ((n – 1)-forms), 
the vector elements. In 2D, 1-forms and 
(n – 1)-forms coincide, and are displayed 
in orange. These correspond to two ways 
to identify a vector field (v1, v2) with a 
1-form––as v1 dx1 + v2 dx2 or as v1 dx2 – v2 
dx1––which accounts for the double ele-
ment diagrams in the orange boxes.

The subscript r in the finite element fam-
ily name refers to the polynomial degree 
of the element. The elements exist in any 
number of space dimensions n ³ 1 and for 
any value of polynomial degree r ³ 1, but 
the poster displays only the lower-order ele-
ments (r = 1, 2, and 3) in low dimensions 
(n = 1, 2, and 3). As we move down the 
table, the space dimension increases, and 
for each space dimension the polynomial 
degree increases. A few elements appear in 
more than one family and so are repeated 
on the table.

In summary, each element included in the 
table corresponds to a choice of

• element family  –, ,  –, or ;
• space dimension n ³ 1;
• differential form degree k, with  

0 £ k £ n;
• polynomial form degree r ³ 1.

For example, the element box in Figure 1, 
which appears in the 8th row, 6th column of 
the periodic table, corresponds to the choice 
n = 3, k = 1, r = 2 in the  family. This is 
an element introduced by Nédélec in 1986 
[11], commonly called the Nédélec second 
kind edge element of degree 2. The com-
mon name is reflected in the element box 
in the symbol assigned to the element, in 
this case N2e 

2. Next to the element symbol 
in the box appears the notation 2L1(D3), 
which is the FEEC notation for the shape 
function space of the element. Finite ele-
ment functions are piecewise polynomials, 
and the shape functions are the polynomial 
pieces; that is, they are the restrictions of the 
functions in the global finite element space 
to a single element. The shape functions 
for r Lk are differential k-forms whose 
coefficients are polynomials of degree at 
most r. Because a differential 1-form can be 
viewed as a vector field, the shape function 
space 2L1(D3) consists of vector fields on 
a tetrahedron D3 for which each of the three 
components is a polynomial of degree at 
most 2. The space of such polynomials in 
3D has dimension 10 (count the monomials: 
1, x, y, z, x2, xy, .  .  ., z2), so dim2L1(D3)                            

                       See Finite Elements on page 8 

Sherry Towers, Oscar Patterson-Lomba, 
and Carlos Castillo-Chavez, among 
those working to model the dynam-
ics underlying the 2014 West African 
Ebola outbreak, describe their data-
driven approach, which “gives public 
health experts a simple framework that 
is useful for assessing in near-real time 
whether control efforts are efficacious.” 

Shown here, from Figure 1, is a time 
series of recorded average number 
of new cases of Ebola virus disease 
per day (dots) during the initial phase 
of the 2014 outbreak for all three of 
the West African countries (Guinea, 
Sierra Leone, and Liberia) studied. 

See page 2.

Modeling the Dynamics of 
the Ebola Outbreak
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Emerging Disease Dynamics
The Case of Ebola
By Sherry Towers,  
Oscar Patterson-Lomba, and  
Carlos Castillo-Chavez

Sir Ronald Ross introduced the first 
mathematical model for the transmission 
of malaria in 1911; this was the de facto 
creation of the field of mathematical epi-
demiology as we know it today. Kermack 
and McKendrick formulated the classic 
Susceptible, Infected, Recovered (SIR) 
compartmental model of the spread of dis-
ease in 1927. In the ensuing decades these 
models have been expanded in the broader 
context of host–parasite dynamics and dis-
ease evolution into the robust field of math-
ematical epidemiology [2, 7].

Soon after September 11, 2001, and 
the outbreak of Severe Acute Respiratory 
Syndrome in 2003, modelers across the 
world mobilized not only to forecast the 
progression of the SARS outbreak, but 
also to assess optimal control strategies, 
including quarantine and isolation (see, 
for instance, [4]), as well as the threats 
posed by the deliberate release of biological 
agents [1]. Identification of the causative 
agent responsible for SARS led to the quick 
development of diagnostic tools that, when 
combined with quarantine and isolation, 

were ultimately responsible for halting the 
spread of SARS. It was thus the efforts to 
assess the potential impact of SARS that 
highlighted the utility of single-outbreak 
epidemic models for emerging or re-emerg-
ing diseases.

The global health threat posed in 2009 
by a pandemic influenza generated by a 
novel strain of A/H1N1 prompted further 
theoretical advances in modeling that led 
to a myriad of immediate and long-term 
contributions to our understanding of how 
to best control this global outbreak (see, for 
instance, [3, 8]). Most of these contributions 
involved assessing the rate of growth of an 
epidemic outbreak, estimation of its peak 
time, and the overall impact (final epidemic 
size). The models were also used to assess 
the role that interventions would have in 
reducing the peak, and to determine the con-
ditions needed to turn a situation of explo-
sive growth into one of no growth or decay. 

The dimensionless quantity that plays 
a key role in assessing all the above fac-
tors with SIR Kermack–McKendrick-type 
models is known as the basic reproduction 
number, or R0 [2]. R0 measures the ability 
of a pathogen to invade a population not 
previously challenged by a disease, and the 
average number of secondary infections 

generated by a typical infectious individual 
introduced into a purely susceptible popula-
tion. As time passes, in a closed popula-
tion with constant transmission rate, the 
resource (susceptible individuals at time 
t, S(t)) becomes less accessible (because 
infected or recovered individuals are no 
longer susceptible). In other words, the rate 
of growth naturally begins to recede. Hence, 
the basic reproduction number R0 is dis-
tinguished from the effective reproduction 
number, Re, and Re is sometimes modeled 
by a time-dependent dimensionless quantity 
R0s(t), with s(t) being the proportion of sus-
ceptibles in the population at time t. Finding 
ways of estimating appropriate measures for 
Re(t) is critical to assessing the challenges 
posed by emergent or re-emergent diseases 
over short times.

The West African Ebola outbreak has 
inspired several new modeling analyses, 
motivated by our desire to contribute to 
the understanding of the dynamics under-
lying this emerging global health threat. 
The 2014 Ebola outbreak is characterized 
by rapidly changing local and regional 
dynamics, altered by evolving control 
measures, patterns of spread from rural 
to densely populated urban areas [5], 
and behavioral responses in the popula-
tion that may either inhibit or facilitate 
the spread of the disease [6]. Therefore, 
it is evident that the design of real-time 
control strategies must include temporal 
components that capture the unfolding 
dynamics and the variable transmission 
rate of Ebola.

Our recent paper “Temporal Variations 
in the Effective Reproduction Number of 
the 2014 West Africa Ebola Outbreak” 
makes use of the limited existing data and 
novel elementary statistical methods (in 
this context), in combination with a sim-
ple single-epidemic nonlinear dynamic 
model and its associated Re, to determine 
whether the transmission rate of Ebola 
has been changing over time in West 
Africa [9]. To this end, piecewise expo-
nential curves were fit to the time series 
of outbreak data (see Figure 1). This 
ansatz, combined with a mathematical 
model, was used to estimate the temporal 
evolution of the effective reproduction 
number of the disease, estimating the 
temporal variations in the average num-
ber of secondary cases per infectious 
case in a population composed of both 
susceptible and non-susceptible individu-
als. Typically, depletion of susceptible 
individuals in a closed population during 
the course of an outbreak would cause the 
effective reproduction number to decline 
over time, with a faster-than-expected 
drop suggesting that control measures 
and/or changes in population behaviors 
are effective in inhibiting the spread of 
the disease. Accordingly, an increasing 
Re would indicate a worsening of the 
conditions.

Unfortunately, yet not surprisingly, 
rather than a drop in the effective repro-
duction number, our study showed evi-
dence that the transmission rate of Ebola 
in Guinea and Liberia actually rose in 
early August (see Figure 2). What led to 
the increased transmission rate is some-
what unclear, as many factors could be 
responsible. Was it increases in the size 
of the susceptible population linked to the 
time when the outbreak spread to densely 
populated cities? Or was it the military-
enforced quarantine of entire regions in 
West Africa, measures that were put in 
place with no attempt to limit the spread 
of disease within the quarantined areas, 
and that may thus have increased the risk 
of transmission due to crowding, lack 
of medical and basic services, and poor 
sanitation? If the latter, then it is clear 

Figure 1. Time series of recorded average number of new Ebola Virus Disease cases per 
day during the initial phase of the 2014 West African outbreak, for Guinea, Sierra Leone, and 
Liberia (dots). The green lines show a selection of the piecewise exponential fits to the data 
(for clarity of the presentation, not all fits are shown); a moving window takes groups of 10 
contiguous points at a time, and the rate of exponential rise (or decline) is estimated for those 
10 points. As a reference, the red dotted line shows the fit to all points between July 1 and 
September 8, 2014. The results for the estimated exponential rise for the full set of piecewise 
fits are shown in Figure 2.

                            
                                See Ebola on page 3 
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that careful attention must be paid to the 
design of control measures to ensure that 
they, first and foremost, do no harm. The 
analysis further indicated that if the expo-
nential growth in the spread continued, 
there would have been approximately 
4400 new Ebola cases by the begin-
ning of October (95% confidence interval 
[3000,6800]). Unfortunately, the actual 
case counts by that date were within the 
predicted range.

Beyond its applicability to the current 
Ebola outbreak, this data-driven approach 
gives public health experts a simple 
framework that is useful for assessing in 
near-real time whether control efforts are 
efficacious.
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“Shareability Networks”: A New Way  
to Model the Taxi-sharing Problem
By Paolo Santi

The burgeoning “sharing economy” phe-
nomenon––the collaborative consumption 
of shared resources made possible by the 
pervasiveness of information technologies 
and Internet connectivity [4, 6]––is rap-
idly taking hold in the context of urban 
transportation. Business is booming for 
vehicle-sharing companies, such as Zipcar 
and Car2Go, and for companies that offer 
ride-sharing services, such as Bandwagon 
and Uber, which recently launched the 
new UberPool application. New sharing 
services/companies are popping up in cities 
worldwide.

What are the reasons for this boom? First, 
urban traffic congestion is a worldwide 
problem, and it is predicted to become 
even worse, with an expected tripling in the 
number of urban trips by 2050 [8]. Second, 
it is well known that mobility resources are 
highly underutilized. For instance, most 
private vehicles lie unused most of the 
time [3] and typically carry only the driver 
when in use; in the vast majority of taxi 
rides, a single passenger is on board [7]. 
Hence, sharing is considered an effective 
way of increasing the utilization of mobility 
resources and, consequently, the efficiency 
of urban traffic: The higher the vehicle-
utilization factor, the lower the number 
of circulating vehicles, which implies less 
congestion and pollution.

Despite wide agreement on the potential 
benefits of the shared economy in urban 
transportation, quantitative, scientifically 
accurate studies have been lacking. This 
is due mostly to two factors: the lack of 
fine-grained spatial and temporal informa-
tion about urban mobility patterns, and the 
immense computational and algorithmic 
challenges of combining massive numbers 
of trips at the city scale. As to the former, 
the big data era is opening the way toward 
an unprecedented understanding of human 
mobility at the urban scale [2], which is 
the prerequisite for the task at hand. As to 
the latter, the recently introduced notion of 
shareability networks [5] is a first example 
of how suitably defined mathematical mod-
els can help tame computational and algo-

rithmic challenges. 
In a recently published study [5], we 

faced the challenge of quantifying the ben-
efits of taxi ride sharing in New York City, 

starting from a massive data set composed of 
the more than 150 million trips reported in 
the city in 2011. A visualization of the trips 
is available through the HubCab website 

(hubcab.org) and shown in Figure 1.
Traditionally, ride-sharing prob-

lems have been approached as an 
instance of the general class of 
dynamic pick-up and delivery prob-
lems (DPDP) [1], in which items 
(taxi passengers, in our case) must 
be picked up from and delivered to 
specific locations within well-defined 
time windows, and the goal is to opti-
mize some criterion, such as total dis-
tance traveled or number of vehicles 

used for pick up/delivery. DPDP are typi-
cally solved by means of linear program-
ming, and their computational feasibility 
depends heavily on the number of variables 
and equations used to describe the problem 
at hand. This approach is thus unfeasible 
when applied to problems like city-wide 
taxi ride sharing, where the potential num-
ber of shared trips (roughly corresponding 
to the number of system variables) is on the 
order of several thousands or millions.

In [5], we approached the taxi ride-
sharing problem in a novel way. The idea 
was to use combinatorics to impose a struc-
ture on an otherwise unstructured, immense 
search space, as would be explored in tradi-
tional linear programming. To structure the 
search space, we defined two parameters: 
the shareability parameter k, the maximum 
number of trips that can be shared, and the 
delay parameter D, the maximum delay* a 
customer is willing to tolerate in a shared 
taxi service. Structuring of the search space, 
coupled with the notion of shareability net-
works, as described below, allowed us to 
find an optimal solution† in an efficient way 
for an otherwise intractable problem. 

Shareability networks are a mathemati-
cal model of sharing opportunities. For 
simplicity, we assume k = 2, and our share-
ability network is a graph of pair-wise 
sharing opportunities over all trips. We 
construct the graph by assigning a node 
to each trip in the data set, and connect-
ing two nodes with an edge if and only if 
the trips can be shared. Trip shareability is 
determined on the basis of the existence of 
at least one route touching the starting and 
ending points of both trips,‡ such that both 
passengers arrive at their destinations with 
delay at most D. An example of a taxi trip 
set and corresponding shareability network 
is shown in Figure 2.

Figure 2. Estimated exponential rise from piecewise exponential fits to the average daily EVD 
incidence data, as shown in Figure 1; a moving window takes groups of 10 contiguous inci-
dence data time series points at a time, and the rate of exponential rise is estimated for those 
10 points. The dates shown on the x-axis are the last date in each contiguous set of 10 points, 
and the vertical error bars denote the 95% confidence interval. The horizontal black line shows 
the estimated rate of rise of an exponential fit to the incidence time series from July 1 to the 
present, with the black dotted lines indicating the 95% interval.

Figure 1. Visualization of the taxi rides in New York City in 2011, with pick-up locations shown 
in yellow, drop-off locations in blue. Image courtesy of hubcab.org. 

Figure 2. From taxi trips (left) to 
“shareability networks” (below).

* Delay is computed as the difference be-
tween the estimated arrival times at the des-
tination in the case of a shared trip and in the 
case of no sharing (single ride). 

†The optimality statement holds subject to 
the above described constraints. 

‡Only routes in which both starting points 
precede the end points are considered.

                           
                               

                            
See Taxi Sharing on page 5 
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By David H. Bailey and  
Jonathan M. Borwein

“Experimental mathematics” has emer-
ged in the past 25 years or so as a competing 
paradigm for research in the mathemati-
cal sciences. Challenges in 21st Century 
Experimental Mathematical Computation, 
an exciting workshop held at ICERM 
(the Institute for Computational and 
Experimental Research in Mathematics), 
July 21–25, explored emerging challenges 
of experimental mathematics in the rapidly 
changing era of modern computer technolo-
gy. We summarize the workshop findings in 
this article; information about the research 
presentations can be found at http://icerm.
brown.edu/tw14-5-cemc/.

Despite several more precise definitions 
that have been offered for “experimental 
mathematics,” we prefer the informal one 

ICERM Workshop Sets Out Opportunities and Challenges 
in Experimental Mathematics*

given in the book The Computer as Crucible 
(Jonathan Borwein and Keith Devlin, AK 
Peters, 2008):

“Experimental mathematics is the use of a 
computer to run computations––sometimes 
no more than trial-and-error tests––to look 
for patterns, to identify particular numbers 
and sequences, to gather evidence in support 
of specific mathematical assertions that may 
themselves arise by computational means, 
including search.”

“Experimental mathematics” is distin-
guished from “computational mathematics” 
and “numerical mathematics” in that the 
latter two generally encompass methods for 
applied mathematics, whereas “experimental 
mathematics” refers to advancing the state of 
the art in mathematical research per se.

While the overall approach and phi-
losophy of experimental mathematics have 
not changed greatly in the past 25 years, 
its techniques, scale, and sociology have 
changed dramatically. The field has ben-
efited immensely from advances in com-
puter technology, including those predicted 
by Moore’s law, but the increases in speed 

brought by algorithmic progress have often 
outpaced Moore’s law, notably in such 
areas as linear programming, linear system 
solving, and integer factorization.

Software available to experimental math-
ematicians has also advanced impressively. 
Along with improvements in earlier ver-
sions of commercial products like Maple, 
Mathematica, and MATLAB, many new 
“freeware” packages are now in use, includ-
ing the open-source Sage, numerous high-
precision computation packages, and an 
impressive array of software tools and visu-
alization facilities.

With all these tools and facilities, many 
new results have been published, rang-
ing from new formulas for mathematical 
constants, such as pi, log(2), and zeta(3), 
to computer-verified proofs of the Kepler 
conjecture. Whereas it was once consid-
ered atypical or even improper to men-
tion computations in a published paper, 
now it is commonplace. Several journals, 
such as Experimental Mathematics and 
Mathematics of Computation, are devoted 
almost exclusively to mathematical research 
involving computations.

Yet many challenges remain as research-
ers push the envelope in mathematical com-
puting. Among the most critical issues are 
the following:

Adapting codes to new platforms. The 
emergence of powerful, advanced-archi-
tecture platforms, particularly those incor-
porating such features as highly parallel, 
multi-core, or many-core designs, present 
daunting challenges to researchers, who 
must adapt their codes to these new archi-
tectural innovations or risk being left behind 
in the scientific computing world.

Ensuring reliability and reproducibil-
ity. Reproducibility means ensuring, for 
example, that the results of floating-point 
computations are numerically reproducible, 
or that the results of a symbolic computa-
tion are reliable (complications can arise 
when two expressions are compared to 
determine whether they are mathematically 
equivalent). Many users implicitly trust 
results obtained with these tools, losing 
sight of the fact that they are far from infal-
lible. One of the approaches to increased 
reliability should be stronger interactions 
with the cousin discipline of formal proof 

systems (as used by Thomas Hales to 
complete, in 2014, a multi-year com-
puter-verified proof of the Kepler con-
jecture on stacking spheres), but huge 
efficiency issues have to be addressed.

Managing the exploding scale of 
data. The size of datasets used in 
the field has increased at least as fast 
as Moore’s law growth. Algorithmic 
progress is thus necessary in, for 
example, tools that aid in the quest for 
structure in large numerical or sym-
bolic datasets.

Large-scale software mainte-
nance. The rapidly increasing size 
of many of the software tools used 
in the field means that mathemati-
cians must confront the challenge of 
large-scale software maintenance. 
This includes the discipline, unfamil-
iar to many research mathematicians, 
of strict version control, collaborative 
protocols for checking out and updat-
ing software, validation tests, issues of 
worldwide distribution and support, 
and persistence of the code base.

Changing sociological and com-
munity issues. Numerous recently 
published results arise from Internet-
based collaborations, with research 
ideas, computer code, and work-
ing manuscripts often circling the 
globe multiple times in a single day. 
One example is the PolyMath proj-
ect, whereby loosely knit Internet-
based teams of mathematicians have 
addressed and, in several cases, 
“solved” or progressed toward the 
solution of interesting unsolved math-
ematical problems. Further progress 
will require improved tools and plat-
forms for such collaborations, as well 
as an international “clearing house” 
that will collect, validate, and coordi-
nate such activities.

Education. Computer-based tools 
are also being introduced into mathe-
matical education, permitting students 
to see mathematical concepts emerge 
from hands-on experimentation and 
thus attracting to the field a cadre of 
21st-century computer-savvy students. 
This is not the first time that technol-
ogy has promised to reinvent math-
ematical education, but it is clear that 
much additional thought is needed on 
how computation can be best incorpo-
rated into education.

Other issues. The workshop discus-
sion highlighted the fact that much of 
the published work to date in experi-
mental mathematics has focused on a 
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*The full report, by D.H. Bailey, J.M. 
Borwein, U. Martin, B. Salvy, and M. Taufer, 
“Opportunities and Challenges in 21st Century 
Experimental Mathematical Computation,” 
August 26, 2014, is available at http://www.
davidhbailey.com/dhbpapers/icerm-2014.pdf.
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we focus on the ubiquitous microstructure 
known as the austenite/martensite interface 
(Figure 1). During transformation, a lot 
of individual austenite/martensite interfaces 
make up the boundary between phases. 
We can understand its structure in part by 
solving 

            inf
y Ω∫ W(Ñy(x), q) dx,               (1)          

where y : W ® 3 is a deformation that 
describes transformation and elastic distor-

tion, q is the temperature, and the infimum 
is taken over a suitable finite energy space. 
W has energy wells, whose precise form 
comes from careful x-ray diffraction mea-
surements of the crystal structures of the 
two phases. The austenite/martensite inter-
face is explained as a minimizing sequence 
of this energy, with q = qc, the transition 
temperature. Several features, including 
the (finite) number of such interfaces, the 
angles seen in Figure 1, the full 3D struc-
ture, and the volume fraction of the bands 
on the left, are nicely predicted [1, 2].

What is not predicted by this argument 
is the fineness of the bands on the left. 
Here again, though, a better mathematical 
understanding is emerging [4, 5, 10]. The 
essential idea is that the boundary of each 
of these bands supports a small interfacial 
energy per unit area, which is not included 
in (1). Refining the bands drives the elastic 
energy in the transition layer between phas-
es (calculated with (1)) to zero, but at the 
expense of increasing the total interfacial 
energy. Conversely, coarsening the bands 
reduces the interfacial energy but gives a 
big elastic energy. Figure 1 represents the 
compromise between these two energies. 
Their sum is a kind of coexistence energy. 
Whenever both austenite and martensite are 
present, the material has an additional posi-
tive coexistence energy.

But this suggests a reason for hysteresis 
based on metastability. Suppose that we start 
in the high-temperature austenite phase and 
lower the temperature. We reach the tem-
perature at which the two bulk phases have 
the same free energy, then we lower the 
temperature a bit more. If martensite appears, 
we also must accept a (positive) coexistence 

energy. This will disfavor the transformation 
to martensite.  Mathematically, we should 
find an energy barrier [18]. 

The study of this barrier is in its infancy 
[19], but there is a very simple way to 
remove it.  The energy wells of W have the 
form RU, where R is a rotation matrix and 
U is a positive-definite symmetric matrix. 
For the martensite, U Î {U1, . . . Un} 
(determined completely from x-ray mea-
surements*), whereas for austenite, U = 
I, the identity matrix. We could have an 
energy minimizer without either the elastic 
transition layer or the bands on the left of 
Figure 1, if there were a continuous function 

y(x) satisfying 

       ∇ =
>
≤





y
RU x n
I x n

1 0
0

, · ,
, ·

for
for

          (2)

for some 3 ´ 3 rotation matrix R. As every 
undergraduate student in both mathematics 
and materials science should know [9], (2) 
holds if and only if  l2 = 1, where l2 is 
the middle eigenvalue of U1. The situation 
is pictured in Figure 2. When l2 = 1, the 
phases fit together perfectly. The reason for 
the complex microstructure in Figure 1 is 
precisely that l2 ¹ 1!

How do we arrange to have l2 = 1? We 
are given the material, and either l2 = 1 or 
it does not. But every material has a com-
position. All its properties, including the 
value of l2, can be modified by composi-
tional changes. This has been done, guided 
by mathematical theory: New alloys were 
made, with the value of l2 systematically 
moved closer and closer to 1. The result-
ing alloy exhibits unprecedented low hys-
teresis [6, 17]. Earlier, people had made 
thousands of alloys, even in the systems 
where l2 = 1 has now been achieved to 
high accuracy. Why did people not, by 
accident, hit the composition for which l2 
= 1? Hysteresis is so sensitive to l2 that, in 
most cases, they jumped over it. There is a 
singularity in the graph of the size of the 
hysteresis vs. l2.

This is one way in which mathemat-
ics can discover materials: Identify special 
conditions on material properties at which 
interesting behavior, particularly singular 

behavior, is expected, then design composi-
tional changes to achieve those conditions. 
This is an inverse problem. It can potentially 
be solved theoretically with first-principles 
methods, but many properties (including 
hysteresis) are not currently predictable by 
those methods. Much remains to be done, 
and multiscale mathematics is expected to 
play a central role. 

Even stronger conditions of compat-
ibility, called the cofactor conditions [3], 
have been achieved through systematic 
compositional changes. This recently led 
[14] to the fascinating alloy Zn45Au30Cu25. 
It shows record low hysteresis for big first-
order phase transformations (as low as 0.2º 
C) and remarkable reversibility. With its 
changing pattern of microstructure [12] 
during cyclic transformation, it is unlike 
any other martensitic material and begs 
for a dynamic analysis. Satisfaction of the 
cofactor, or even stronger, conditions in 
other material systems could lead to revo-
lutionary materials, e.g., a shape-memory 
material that displaces NiTi, the most 
popular one (by far), or an oxide material 
that is able to go back and forth through 
a ferroelectric transformation many times 
without cracking.  

Ferroic transformations suggest intrigu-
ing new applications. Imagine a martensitic 
alloy with one phase a strong magnet and 
the other nonmagnetic, and also with l2 
» 1. If you transform the alloy by, say, 
heating, the magnetization will suddenly 
increase. Wrap a coil around the specimen, 
and, during transformation, a current will 
be induced in the coil. This is the direct 
conversion of heat to electricity (i.e., with-
out a separate electrical generator [15]). 
Mathematically, it involves Maxwell’s eq-
uations, micromagnetics, thermodynamics, 
and the theory of phase transformations 
[13]. Much remains to be understood about 

this method, and its many ferroic analogs, 
but it is a promising candidate for recovery 
of some of the vast heat energy created 
every day by diverse sources, from a data 
center to the sun. 
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Given a shareability network, the problem 
of optimally matching taxi rides becomes 
equivalent to the well-known maximum 
matching problem on graphs, for which 
efficient solutions exist; this problem for-
mulation allows us to compute the optimal 
matching of trips across the entire data set 
of more than 150 million trips. The share-
ability parameter k has a major impact on 
computational complexity: When k > 2, the 
shareability network becomes a hypergraph, 
and the problem of computing a maximum 
matching on the network becomes NP-hard.

The results of our study are extremely 
encouraging from the sharing economy 
viewpoint: With k = 2 and a passenger delay 
of at most 5 minutes, more than 95% of taxi 
rides in New York can be shared, resulting 
in a 30% reduction in the total travel time 
needed to accommodate all taxi requests 
and, as a consequence, a corresponding de-
crease in emissions. 

The study reported in [5] is only a starting 
point in the quest for a deeper understand-
ing of the benefits provided by the shared 
economy of mobility resources, and share-
ability networks can prove a valuable tool in 
this endeavor: The main idea, the translation 
of sharing into graph problems, might prove 

useful in analyzing other sharing scenarios in 
tomorrow’s urban mobility landscape.
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In the spirit of micro-level digital inter-
actions, one of us has initiated a LinkedIn 
group on MSSC: Mathematical Sciences for 
Smart Cities. Interested readers are encour-
aged to join us.
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Peter Grindrod is a professor at the 
Mathematical Institute of the University of 
Oxford. Desmond J. Higham is a professor in 
the Department of Mathematics and Statistics 
at the University of Strathclyde. Robert S. 
MacKay is a professor in the Mathematics 
Institute and Centre for Complexity Science 
at the University of Warwick, UK.

few areas that are particularly ame-
nable to computational exploration––
among them finite group theory, com-
binatorics and graph theory, number 
theory, evaluation of series and inte-
grals. How can we expand the scope 
of questions that have been examined 
with these methodologies, not just 
to other areas of mathematics but to 
other fields as well?

All this also raises the question 
of how such work can be paid for. 
Unlike the case in the “hard sciences,” 
the majority of published mathemati-
cal research (pure and applied) is 
completed without direct research 
funding, by academic mathematicians 
or others as they have time alongside 
their teaching or other formal duties. 
But some of the work described here, 
particularly that involving substantial 
software development and mainte-
nance, cannot be done so informally. 
Nor does a royalty model work, as it 
has for traditional publications––the 
development costs are too great and 
the academic rewards too small.

It is clear that researchers in 
experimental mathematics need to 
work more vigorously with govern-
ment funding agencies to find ways 
to provide this funding. Perhaps this 
may be done more easily if projects 
can be pursued in collaboration with 
researchers in other disciplines, par-
ticularly in fields such as computer 
science that have typically been 
somewhat more generously funded.

David H. Bailey is a retired senior 
scientist at the Lawrence Berkeley 
National Laboratory and a Research 
Fellow at the University of California, 
Davis. Jonathan M. Borwein is 
Laureate Professor in the School of 
Mathematical and Physical Sciences 
at the University of Newcastle and 
director of the university’s Priority 
Research Centre in Computer 
Assisted Research Mathematics and 
its Applications (CARMA). 
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Bill Davidon: Back Stories
The late William Davidon, longtime profes-

sor of mathematics and physics at Haverford 
College, may be known to readers of SIAM 
News for his part in the DFP (Davidon–
Fletcher–Powell) family of quasi-Newton 
methods. Those familiar with the SIAM 
Journal on Optimization might remember 
him as the author of the first paper––actually 
a reprint of his never-before-published 1959 
Argonne report––in the first (February 1991) 
issue of the journal.

SIOPT founding editor John Dennis, 
explaining the choice of Davidon’s then 
30-year-old paper to launch the new journal, 
pointed out to SIAM News that “the line 
of research begun by Davidon dominated 
research in nonlinear programming for more 
than 20 years.”

The story of the unhurried, indirect path 
to publication of the paper was recounted 
to SIAM News (July 1990) by the relaxed 
and unassuming Davidon, along with some 
remarkable side stories. The focus of those sto-
ries was Davidon’s anti-Vietnam war activi-
ties, which included his spearheading of a 
1971 break-in and burglary of the FBI office 
in Media, Pennsylvania. What motivated the 
burglary was Davidon’s hope of obtaining 
and making public documents that would 
reveal attempts of the FBI to suppress dis-
sent through surveillance and harassment of 
protesters. Downplayed by Davidon in the 
interview with SIAM News, the break-in and 
ensuing events are the subject of the recently 
published Burglary: The Discovery of J. Edgar 
Hoover’s Secret FBI (by Betty Medsger, 
Vintage, 596 pages, $16.95, paper).  

A review of the book in The New 
York Review of Books (October 23, 
2014) concludes that the disclosure of 
the stolen material (originally in The 
Washington  Post, where Medsger was a 
reporter), “helped to put a stop to many 
great abuses.” In the end, the group did 
“a public service.” NEW  DIRECTIONS  IN 

MATHEMATICAL  APPROACHES  FOR  
TRAFFIC  FLOW MANAGEMENT

Scientific Overview

INSTITUTE FOR PURE AND APPLIED MATHEMATICS
Los Angeles, California

September 8 - December 11, 2015

Participation
There will be an active program of scientific activities, seminars and workshops throughout the September 8 -
December 11, 2015 period. Full and partial support for long-term participants is available. We are especially
interested in applicants who intend to participate in the entire program, but will consider applications for shorter
periods. Funding is available for participants at all academic levels, though recent PhDs, graduate students, and
researchers in the early stages of their careers are especially encouraged to apply. Encouraging the careers of
women and minority mathematicians and scientists is an important component of IPAM's mission and we
welcome their applications. More information and an application is available online.

ORGANIZING COMMITTEE: Alexandre Bayen (UC Berkeley), Carlos Canudas de Wit (INRIA),
Christian Claudel (KAUST), Serge Hoogendoorn (Technische Universiteit Delft), Jean-Patrick
Lebacque (IFSTTAR), Hani Mahmassani (Northwestern Univ.), and Laura Wynter (IBM)

www.ipam.ucla.edu/programs/tra2015

• Mathematical Approaches for Traffic Flow Management Tutorials. September 9 - 12, 2015.
• Workshop I: Mathematical Foundations of Traffic. September 28 - October 2, 2015.
• Workshop II: Traffic Estimation. October 12 - 16, 2015.
• Workshop III: Traffic Control. October 26 - 30, 2015.
• Workshop IV: Decision Support for Traffic. November 16 - 20, 2015.
• Culminating Workshop at Lake Arrowhead Conference Center. December 6 - 11, 2015.

Workshop Schedule

The recent emergence of new technologies such as sensor networks, smartphones, and new paradigms such
as crowdsourcing social networks has induced profound transformations in the way traffic management will be
done in the future. Sensor networks have enabled robust and resilient monitoring of the backbone of the
transportation network. Smartphones have provided ubiquitous coverage of the transportation network, but
provide unpredictable, sometimes unreliable data, which requires a significant amount of filtering. Finally, the
emergence of social networks has enabled direct access to people's mobility patterns and the ability to interact
with them, thus presenting an opportunity to incentivize behavior change (either through a social group or the
social network). All of these advances have created the need for new modeling approaches (in particular to
encompass the new data), new estimation, inference and filtering methods and are leading to the development
of new paradigms for control. This revival of traffic engineering in the age of web 2.0 and social networks has
generated a significant amount of excitement in the mathematics, applied mathematics and engineering
communities in support of these new approaches. In this program we would like to capture these breakthroughs
and bring together the world experts of these cross-disciplinary fields.
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= 3 ´ 10 = 30. That dimension appears as 
the “atomic number” of the element at the 
upper right of the element box in Figure 1. 
It is a special case of the general formula

 
       dim ( ) .r
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r n
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This formula, and similar ones for the other 
three families, appear in the gray family-
description boxes near the top of the poster. 
Tables of values of the dimensions, for n up 
to 4 and r up to 7, appear at the bottom of 
the poster. In addition to the dimension and 
nomenclature for the elements, the element 
boxes display information about the degrees 
of freedom of the elements, and how the ele-
ments can be used in computer code.

Degrees of freedom. In addition to the 
shape functions of a finite element, we must 
specify its degrees of freedom (DOFs). 
These are a unisolvent set of functionals on 
the shape functions, with each functional 
associated to a face of some dimension 
(e.g., a vertex, edge, 2-face). The DOFs 
specify how the polynomial pieces are 
pasted together in a manner that can be 
efficiently implemented. In constructing 
the global finite element space from the 
polynomial pieces (the shape functions), the 

associated DOFs are constrained to take the 
same values whenever two elements share 
a common face. In this way the choice of 
DOFs imposes a certain degree of continu-
ity on the finite element space.

As shown in Figure 1, for the 2L1 

element, 3 DOFs are associated to each 
of the 6 edges of the tetrahedron, and 
another 3 to each of its 4 faces, but none 
are associated to the vertices or to the 
tetrahedron itself. Because the full set of 
DOFs is a basis for the dual space of the 
space of shape functions, their number must 
equal the dimension of the shape function 
space, which is reflected in the calcula-
tion 6 ´ 3 + 4 ´ 3 = 30. The equation 

                                                            (1)

displayed in the element box for the 2L1  
element includes this information, along 
with additional information about the DOFs.

For all of the elements in the four fami-
lies, the DOFs are weighted moments. More 
precisely, the DOFs associated to a face f 
of dimension d are functionals acting on a 
k-form u as

                                                            (2)

for an appropriate set of weight functions 
q. The weight functions are differential (d 
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– k)-forms on f; that is, q Î Ld – k( f ). 
Then, because the trace trf u of a dif-
ferential k-form u belongs to Lk( f ), 
the integrand  (trf u) Ù q Î Lk + (d – k)

( f ) = Ld( f ), and so the integral 
makes sense. Notice that no DOFs 
are associated to faces of dimension 
d < k.

The choice of weighting func-
tions is described on the post-
er for each of the four families. 
For example, the DOFs for the 
element r Lk(Dn) are given by 
(2) with q belonging to the space 
r k d

d k f+ −
− −Λ ( ) (or more properly 

to a basis of that space). When 
r + k – d < 1, this space is to be 
interpreted as vanishing, and so 
there are DOFs only on the faces 
of dimension d with k £ d £ r + k 
– 1. Returning to our example with 
k = 1, r = 2, we see that there are 
indeed DOFs only on the faces of 
dimensions 1 and 2 (edges and tri-
angles). On an edge f, the weights 
are given by the 3-dimensional 
space 2 –L0( f ), while on a triangular face, 
the weights come from   1 –L1( f ), which is 
again 3-dimensional. This is all captured 
in (1), which appears in the element box. 
Interestingly, the weight functions for the 
DOFs used to specify an element in the 
 family come from the shape function 

spaces of the  – family, and vice versa.
Using the elements in computer code.

The final component of the element box 
in Figure 1 is a snippet of computer code: 
(“N2E”, tetrahedron, 2). This can be 
used to solve PDEs with the r Lk(Dn) ele-
ment in the FEniCS finite element software 

environment [8, 9, 10]. The element is 
instantiated there by calling element 
= FiniteElement(“N2E”, tetra-
hedron, 2), which translates the ele-
ment symbol N2e 2

 into FEniCS syntax. 
Alternatively, FEniCS allows a syntax 
directly from the FEEC notation: ele-
ment = FiniteElement(“P”, tet-
rahedron, 2, 1).

Finite element spaces and their 
continuity. For each finite element in 
the table (choice of family, n, k, and 
r) and any n-dimensional mesh of 
simplices (for  – or ) or cubes (for 
 – or ), we obtain a finite element 
space. This is a space of piecewise 
polynomial differential k-forms––that 
is, a space of scalar functions for k = 
0 or n, a space of vector fields for k = 
1 or n – 1.

The DOFs ensure that when two 
elements share a face, the traces of 
the corresponding shape functions 
agree. For 1-forms, for example, 
this means that the tangential com-
ponents are continuous across faces, 
while for 2-forms in 3D it means 
the normal components are. This is 
reflected in the choice of symbol 
used to signify the DOFs in the 
element diagram. Continuity of the 
traces is exactly what is required 
to ensure that the finite element 
k-forms belong to the domain of the 
kth exterior derivative. For 0-forms, 
this means that the function is square 
integrable together with its gradient 
(which is the exterior derivative for 
0-forms). Thus, the k = 0 spaces are 
spaces of H1 finite elements, used, 
for example, to solve scalar second-
order elliptic PDE problems, like the 
Poisson equation. These finite ele-
ments are continuous from element 
to element. By contrast, for k = n, no 
DOFs are specified on any faces of 
dimension < n, so no interelement 
continuity is imposed. These are L2 

finite elements, which are the basis 
of the discontinuous Galerkin meth-
ods. The case k = n – 1 gives H(div) 
finite elements, piecewise polyno-
mial vector fields whose normal 
component is continuous across ele-
ment faces. These elements are very 
important in modern finite element 
methods, being used, for example, 
to solve the Darcy flow equations. In 
three dimensions, there remains the 
case of k = 1, which gives H(curl) 
finite elements, crucial in electro-
magnetics.

Join us for short courses, exhibits, poster sessions, career 
placement, practical computing demos, concurrent sessions, 
and tutorials!
 
Themes:

Communication, Impact, and Career Development

Data Modeling and Analysis

Big Data Prediction and Analytics

Software, Programming, and Graphics
 
Important Deadlines:

Early Registration Closes: January 5, 2015

Housing Closes: January 19, 2015

Online Registration Closes: February 5, 2015
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www.amstat.org/csp

American Statistical Association Conference on
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February 19–21, 2015 • New Orleans, LA
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                         See Finite Elements on page 9 

Finite Elements
continued from page 1
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Figure 1. An element box from the periodic 
table. This is the Nédélec second kind edge 
element of degree 2 or, in more mathematical 
nomenclature, 2L1(D3).
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Institute for Advanced Study
School of Mathematics

The School of Mathematics at the Institute 
for Advanced Study, in Princeton, New Jersey, 
will have a limited number of memberships 
with financial support for research during the 
2015–2016 academic year. School term dates for 
2015–2016 are: Term I, Monday, September 21 
to Friday, December 18, 2015; Term II, Monday, 
January 11 to Friday, April 8, 2016. Applicants 
should  note that the school’s Term II begins and 
ends one week later than the rest of the institute’s. 
The school frequently sponsors special programs; 
however, these programs comprise no more than 
one-third of the membership so that a wide range 
of mathematics can be supported each year. 

During the 2015–2016 academic year, the 
school will have a special program on geomet-
ric structures on 3-manifolds. Ian Agol, of the 
University of California, Berkeley, will be the 
Distinguished Visiting Professor. Thurston pro-
posed classification of geometric structures on 
n-manifolds. While the spectacular geometriza-
tion theorem classified the geometric structures 
on 3-manifolds with compact isotropy group, 
i.e., locally homogeneous Riemannian metrics, 
there is a cornucopia of other fascinating struc-
tures, such as contact structures, foliations, 
conformally flat metrics, and locally homoge-
neous (pseudo-) Riemannian metrics. The goal 
of this program is to investigate these other 
geometric structures on 3-manifolds and to dis-
cover connections between them. Additionally, 
it is important to forge connections between 
geometric structures on 3-manifolds and other 
geometric constructs, such as gauge theory, 
PD (3) groups, minimal surfaces, cube com-
plexes, geometric structures on bundles over 
3-manifolds, and strengthened structures, such 
as taut foliations, tight contact structures, pA 
flows, convex projective structures, and quasi-
geodesic foliations. Many of these do not even 
have a conjectural classification (in terms of 
topological restrictions and moduli), and spe-
cific examples are still being constructed.

Applicants must give evidence of ability in 
research comparable with at least that expected 
for a PhD degree but can otherwise be at any 
career stage. Successful candidates will be free 
to devote themselves full time to research. About 
half of the school’s members will be postdoctoral 
researchers within five years of receipt of a PhD. 
The school also expects to offer some two-year 
postdoctoral positions.

Applications are invited for up to eight von 
Neumann Fellowships that are available each 
academic year; to be eligible for a von Neumann 

Fellowship, applicants should be at least five, but 
no more than 15, years after receipt of a PhD. 

Applicants can also apply for Veblen Research 
Instructorships, which are three-year posi-
tions that were established in partnership with 
the Department of Mathematics at Princeton 
University. These instructorships are offered each 
year to candidates in pure and applied mathemat-
ics who have received a PhD within the last three 
years. Usually, Veblen research instructors spend 
their first and third years at Princeton University; 
these years will carry regular teaching responsi-
bilities. The second year is spent at the institute 
and dedicated to independent research of the 
instructor’s choice. Applicants interested in a 
Veblen instructorship position can apply directly 
at the IAS website (https://applications.ias.edu) 
or through MathJobs, https://www.mathjobs.org/
jobs. Applicants applying through MathJobs must 
also complete an application form at https://
applications.ias.edu; however, they do not need 
to submit a second set of reference letters. 
Applicants who have questions about the appli-
cation procedure can e-mail applications@
math.ias.edu.

Applications are also invited for two-year 
postdoctoral positions in computer science and 
discrete mathematics to be offered jointly with 
one of the following: Department of Computer 
Science at Princeton University, http://www.
cs.princeton.edu;  DIMACS at Rutgers, The 
State University of New Jersey, http://www.
dimacs.rutgers.edu; or the Intractability Center, 
http://intractability.princeton.edu. For a joint 
appointment applicants must apply to the IAS, 
as well as to one of the listed departments 
or centers, indicating their interest in a joint 
appointment. The deadline for all applications 
is December 1, 2014.

The Institute for Advanced Study is committed 
to diversity and strongly encourages applications 
from women and minorities.  

Dartmouth College
Department of Mathematics

New or recent PhD graduates with research 
interest in applied and computational mathemat-
ics may apply for instructorships in these areas for 
terms of two to three years. Successful candidates 
will teach three 10-week courses spread over 
three terms. Appointments are for 26 months, 
with a possible 12-month renewal. Positions offer 
a monthly salary of $5,202, which includes a two-
month research stipend for instructors in resi-
dence during two of the three summer months; if 
an instructor is not in residence, the salary will be 
adjusted accordingly. 

To initiate an application, applicants should 
go to http://www.mathjobs.org and find posi-
tion ID IACM #6022. The application can also 
be accessed at http://www.math.dartmouth.
edu/activities/recruiting/. General inquiries can 
be directed to Tracy Moloney, Administrator, 
Department of Mathematics, tfmoloney@math.
dartmouth.edu. Applications completed by Jan-
uary 5, 2015, will be considered first. 

Dartmouth College is committed to diver-
sity and strongly encourages applications from 
women and minorities.

Dartmouth College
Department of Mathematics

The Department of Mathematics anticipates a 
senior opening with an initial appointment in the 
2015–2016 academic year. The successful appli-
cant will have a research profile with a concen-
tration in computational or applied mathematics, 
will be appointed at the level of full professor, 
and is expected to have an overall record of 
achievement and leadership consonant with such 
an appointment. 

Applicants should apply online at www.
mathjobs.org (position ID: PACM #6023). 
Applications received by December 15, 2014, 
will receive first consideration. For more infor-
mation about this position, please visit http://
www.math.dartmouth.edu/activities/recruiting/. 

Dartmouth is committed to diversity and encour-
ages applications from women and minorities.

Dartmouth College
Department of Mathematics

John Wesley Young Research Instructorships 
are available for two to three years for new or 
recent PhD graduates whose research overlaps 
a department member’s. Successful candidates 
will teach three 10-week courses spread over 
three terms. Appointments are for 26 months, 
with a possible 12-month renewal; the month-
ly salary is $5,202, including a two-month 
research stipend for instructors in residence 
during two of three summer months. If an 
instructor is not in residence, the salary will be 
adjusted accordingly. 

To initiate an application go to http://www.
mathjobs.org (position ID: JWY #6021). The 
application can also be accessed through a link 
at http://www.math.dartmouth.edu/activities/
recruiting/. General inquiries can be directed to 
Tracy Moloney, Administrator, Department of 
Mathematics, tfmoloney@math.dartmouth.edu.  
Applications completed by January 5, 2015, will 
be considered first. 

Dartmouth College is committed to diver-
sity and strongly encourages applications from 
women and minorities.

Dartmouth College
Department of Mathematics

The Dartmouth College Department of 
Mathematics is pleased to announce a tenure-
track opening for the academic year 2015–2016.  
There is a preference for a junior appointment, 
but appointment at higher rank, with tenure, is 
possible. The successful candidate will have a 
research profile with a concentration in applied 
or computational mathematics. 

Applicants should apply online at www.
mathjobs.org (position ID: APACM #6024). 
Applications received by December 15, 2014, 
will receive first consideration. For more infor-
mation about this position, please visit http://
www.math.dartmouth.edu/activities/recruiting/. 

Dartmouth is committed to diversity and encour-
ages applications from women and minorities.

National University of Singapore
Department of Mathematics

The Department of Mathematics at the 
National University of Singapore (NUS) invites 
applications for tenured, tenure-track, and visit-
ing positions at all levels, beginning in August 
2015. 

NUS is a research intensive university that 
provides quality undergraduate and graduate 
education. The Department of Mathematics has 
about 65 faculty members and teaching staff 
whose expertise covers major areas of contempo-
rary mathematical research.

The department seeks promising scholars and 
established mathematicians with outstanding 
track records in any field of pure and applied 
mathematics.  The department, housed in a newly 
renovated building equipped with state-of-the-art 
facilities, offers an internationally competitive 
salary with start-up research grants, as well as an 
environment conducive to active research, with 
ample opportunities for career development.  The 
teaching load for junior faculty is kept especially 
light.

The department is particularly interested in, 
but not restricted to, considering applicants spe-
cializing in any of the following areas:

• partial   differential   equations   and   applied
  analysis;
• computational science, imaging and data science;
• operations research and financial mathematics;
• probability; or
• combinatorics.
Application materials (as PDF files) and 

enquiries should be sent to the Search Committee 
via email: search@math.nus.edu.sg.    

Please include the following supporting docu-
mentation in the application:

Differential Forms and  
Exterior Calculus 

The organization and understanding of the 
periodic table depend heavily on differential 
forms and the primary operations on them, 
briefly discussed below.

Differential forms and exterior calculus 
unify numerous concepts of multivariable 
calculus in a fashion that applies to arbitrary 
manifolds. In exterior calculus, the fundamen-
tal object is a differential k-form, where the 
integer k ranges from 0 to the dimension n of 
the domain or manifold. 0-forms and 3-forms 
capture two different roles of scalar func-
tions in trivariate calculus, while 1-forms and 
2-forms give two viewpoints on vector fields. 
For example, 1-forms are the integrands of 
line integrals, and 2-forms are fluxes, which 
can be integrated over surfaces. Although 
Élie Cartan had not yet developed exterior 
calculus, Maxwell emphasized this distinc-
tion, writing that “physical vector quantities 
may be divided into two classes, in one of 
which the quantity is defined with reference 
to a line, while in the other the quantity is 
defined with reference to an area.” Turning to 
scalar quantities, 0-forms are point functions 
whose gradients are 1-forms, while 3-forms 
are densities that can be integrated over 
spatial regions. In view of Stokes’ theorem, 
it is not surprising that the curl of a 1-form 
results in a 2-form, while Green’s theorem 
implies that the divergence of a 2-form gives 
a 3-form. All the relevant integrals (point 
evaluation, line integral, surface integral, and 
volume integral) are unified in the exte-
rior calculus, and all three basic differential 
operators (grad, curl, and div) are subsumed 

in the exterior derivative d. Similarly, the 
various scalar and vector products of three-
dimensional geometry are different cases of 
the wedge product of a k-form v and a j-form 
w, resulting in a ( j + k)-form v Ù w.

More precisely, a differential k-form is 
simply a function v that assigns to each point 
x of a manifold W an algebraic k-form on 
the tangent space TxW; that is, an alternating 
k-linear map vx : TxW ´ .  .  . ´ TxW ® . 
When W is a domain in n, v is a function 
of (k + 1) variables. The first is the point x 
belonging to W, and the remaining ones are 
vectors belonging to n. As a function of 
the final k variables, v is required to be linear 
and alternating, while as a function of x it is 
required only to possess some desired degree 
of smoothness (C ¥, C 0, L p, .  .  . ). In the 
special case k = 0, differential 0-forms are 
just real-valued functions on W. The space of 
differential k-forms on W is denoted Lk(W) 
(typically with C ¥ smoothness understood).

When the domain W is a subset of n, 
differential forms can be viewed concretely 
through their coordinate representation. Let 
dx i : n ®  denote the linear functional 
taking a vector to its ith coordinate. Then an 
algebraic 1-form (i.e., a linear functional) on 
n can be expressed as v xi

i
i

n
d

=∑ 1 for some 
coefficients vi Î . Allowing the vi to depend 
on x, we obtain a differential 1-form. A basis 
for algebraic k-forms with k > 1 is obtained 
by taking the alternating part of the tensor 
product of k of the dx i. These are denoted by 
dx s1 Ù . . . Ù dxsk , and so a differential k-form 
can be uniquely expressed as

      v v x x k= ∧ ∧∑ σ
σ σ

σ

d d1
 ,

where the sum is over increasing sequences 1 
£ s1 < .  .  . < sk £ n and the (n k ) coefficients 

vs are real-valued functions.
The exterior derivative of a differential 

k-form v is the (k + 1)-form
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while for a k-dimensional submanifold w Ì 
W, the integral

  
     v v x x k= ∧ ∧∫∑∫ σ

σ σ

ω
σ

ω
d d1



is a real number, defined up to a sign that is 
fixed by the choice of an orientation of w.

Returning to the case of 3, a scalar func-
tion v can be viewed as either a 0-form (itself) 
or a 3-form, v dx1 Ù dx2 Ù dx3. A vector field 
(v1, v2, v3) corresponds to either the 1-form v1 
dx1 + v2 dx2 + v3 dx3 or the 2-form v1 dx2 Ù 
dx3  – v2 dx1 Ù dx3 + v3 dx1 Ù dx2. The wedge 
product of a 0-form and a k-form is the scalar 
product; the wedge product of two 1-forms is 
the cross product; and the wedge product of 
a 1- and a 2-form is the dot product (in other 
cases the result is 0). The exterior derivative 
on k-forms is the gradient, curl, divergence, 
and zero, respectively, for k = 0, .  .  ., 3, while 
the integral corresponds to point evaluation 
for 0-forms, the (tangential) line integral for 
1-forms, the (normal) surface integral for 
2-forms, and the volume integral for 3-forms.

The online version of this article (posted at 
sinews@siam.org) contains additional mate-
rial about each of the four finite element 
families. The references in the print version 
that are not cited in the text appear in the 
web version.
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Postdoctoral fellowships are available (up to 6) at the Statistical and Applied Mathematical 
Sciences Institute (SAMSI) for the two SAMSI Research Programs for 2015-2016 Chal-
lenges in Computational Neuroscience (CCNS) and Statistics and Applied Mathematics in 
Forensic Science (Forensics).   Appointments will begin in August 2015 and will typically be 
for two years, although they can also be arranged for one year.   Appointments are made jointly 
between SAMSI and one of its partner universities, where teaching opportunities may be avail-
able.  Extremely competitive salaries, travel stipend, and health insurance will be offered.

Criteria for selection of SAMSI Postdoctoral Fellows include demonstrated research ability in 
statistical and/or applied mathematical sciences, computational skills along with good verbal 
and written communication abilities, and finally, a strong interest in the SAMSI program areas. 
The deadline for full consideration is December 15, 2014, although later applications will be 
considered as resources permit.  

In your cover letter, please specify which of the two SAMSI research programs you are apply-
ing to (CCNS or Forensics) and why you would be a good fit for SAMSI and that program.

To apply, go to mathjobs.org, SAMSIPD2015  Job #6133

Postdoctoral Fellowships for 2015-2016
samsi
NSF•Duke•NCSU• UNC• NISS

The University of Alabama seeks an outstanding individual at the rank of Associate or Full
Professor for the position of Chair of the Department of Mathematics. The successful
candidate must be nationally/internationally recognized, with an active research program
that includes external funding, and with the ability to help shape a progressive thriving
department within a university whose student enrollment has nearly doubled in the last ten
years and whose trajectory is upwards. The applicant should possess proven leadership
abilities, preferably with administrative experience, and have an understanding and
enthusiasm for both the teaching and research missions. The area of expertise of the
applicant is open, but should complement those of the existing faculty and future plans for
growth in the Department. 

The University of Alabama is the flagship campus of a three-campus system. The University
is located in Tuscaloosa, a city of approximately 100,000. The UA Department of
Mathematics has 28 tenured/tenure track faculty, 11 full-time instructors and 40 graduate
students, with research programs in algebra, analysis, fluid dynamics, image processing,
mathematics education, optimization, scientific computing, statistics, stochastic processes
and topology. The department has an in-house Mathematics Ph.D. program and a joint
Applied Mathematics Ph.D. program with the other two campuses. The UA Mathematics
program places emphasis on quality education at the undergraduate and graduate levels. 

Applicants should apply online at https://facultyjobs.ua.edu/postings/35868; attach a
curriculum vita along with a letter of application and arrange for three letters of
recommendation to be sent to math@ua.edu. Statements of administrative and leadership
philosophy, research plans, and teaching philosophy and interests should also be included.
Potential candidates may contact the chairperson of the search committee, Dr. Martyn
Dixon, at mdixon@ua.edu if additional information is desired. Beginning October 15, 2014,
applications and nominations will be reviewed on an ongoing basis and will continue to be
accepted until the position is filled. The position is scheduled to start on August 16, 2015,
or as negotiated.

For more information about the Department and the University visit our website at
http://www.math.ua.edu.

The University of Alabama is an Equal Opportunity Employer/Affirmative Action employer and actively
seeks diversity among its employees. Women and minority candidates are strongly encouraged to apply. 

CHAIR

Department of Mathematics

touching l ives

COMPUTATIONAL 
ENGINEERING SCIENCES

INSTITUTE 
FOR

  
&

POSTDOCTORAL
RESEARCH FELLOWSHIPS

Research areas include, but are not limited to, inverse analysis, 
differential equations, kinetic theory, remediation of 

groundwater contaminants, tidal surges in coastal environments, 
drug design, damage and failure of composite materials, patient-

specific surgical procedures, dynamics of polar ice, and the human ear.

Annual Stipend of $60,000 plus benefits
for up to two years

DEADLINE:  JANUARY 5, 2015
Apply at: www.ices.utexas.edu/programs/postdoc/

is expected to provide leadership in the further 
development of the department’s graduate and 
undergraduate programs. 

The Department of Mathematics offers gradu-
ate degrees in computational and applied math-
ematics and includes 16 tenured or tenure-track 
faculty researchers, all of whom work in applica-
tion areas. Visit http://www.smu.edu/math/ for 
more information.  

To apply send a letter of application with a 
curriculum vitae, a list of publications, research 
and teaching statements, and the names of three 
references to: The Faculty Search Committee, 
Department of Mathematics, Southern Meth-
odist University, P.O. Box 750156, Dallas, 
Texas, 75275-0156.  The Search Committee 
can also be contacted via email, phone, or fax: 
mathsearch@mail.smu.edu; phone: (214)768-
2452; fax: (214)768-2355. A PhD in applied 
mathematics or a related field is required.

Applications received by December 1, 2014 
will receive full consideration, but applications 
will continue to be accepted until the position is 
filled. Applicants will be notified when the search 
is concluded.

 SMU, a private university with active 
graduate and undergraduate programs in the 
sciences and engineering, is situated in a 
quiet residential section of Dallas, Texas. The 
Dallas–Fort Worth Metroplex is America’s 
fourth largest metropolitan area, and residents 
enjoy access to world-class cultural and enter-
tainment activities.

SMU will not discriminate on the basis of race, 
color, religion, national origin, sex, age, disabil-
ity, genetic information, or veteran status. SMU’s 
commitment to equal opportunity includes non-
discrimination on the basis of sexual orientation 
and gender identity and expression. Hiring is 
contingent upon the satisfactory completion of a 
background check. 

Brown University
Institute for Computational and Experimental 
Research in Mathematics (ICERM)

The Institute for Computational and Experi-
mental Research in Mathematics (ICERM) at 
Brown University invites applications for its 
postdoctoral fellowship positions. ICERM’s 
two postdoctoral institute fellowships are 
9-month salaried positions (with the possibil-
ity of summer support), both commencing 
in September 2015. One will participate in 
the fall 2015 “Computational Aspects of the 
Langlands Program” semester program (http://
icerm.brown.edu/sp-f15/) and remain as a 
researcher-in-residence during the spring 2016 
semester. The other will begin as a researcher-
in-residence during the fall 2015 semester and 
will participate in the spring 2016 “Dimension 
and Dynamics” semester program (http://icerm.
brown.edu/programs/sp-s16/). 

ICERM’s eight postdoctoral fellowships 
are semester-long positions that come with sti-
pends. Four begin in September 2015 during 
the “Computational Aspects of the Langlands 
Program” semester program. The other four start 
in February 2016 during the “Dimension and 
Dynamics” semester program. 

All postdoctoral fellows are matched with 
faculty advisors.

Eligible applicants must have completed their 
PhD within three years of the start of the appoint-
ment. Applicants must submit an AMS Standard 
Cover Sheet, curriculum vitae (including publica-
tion list), cover letter, research statement, and three 
letters of recommendation via Mathjobs.org (http://
www.mathjobs.org/jobs/ICERM). Applications 
will be accepted until all positions are filled.

Boston University 
Department of Mathematics and Statistics

The Department of Mathematics and Statistics 
at Boston University invites applications for a 
tenure-track assistant professor in geometry and 
mathematical physics. A PhD is required, and sal-
ary will be commensurate with experience. The 
position will begin in July 2015. Strong commit-
ment to research and teaching at the undergradu-
ate and graduate levels is essential. 

Please submit all materials to mathjobs.org. 
Alternatively send a cover letter, curriculum 
vitae, research statement, teaching statement, 
and at least four letters of recommendation, one 
of which addresses teaching, to: Geometry and 
Mathematical Physics Search, Department of 
Mathematics and Statistics, Boston University, 
111 Cummington Mall, Boston, MA 02215. The 
application deadline is December 15, 2014. 

Boston University is an equal opportunity 
employer, and all qualified applicants will receive 
consideration for employment without regard to 
race, color, religion, sex, national origin, disabil-
ity status, protected veteran status, or any other 
characteristic protected by law. The university is 
a VEVRAA Federal Contractor.

Boston University
Department of Mathematics and Statistics

The Department of Mathematics and Statistics at 
Boston University invites applications for a tenure-
track assistant professor in probability, stochastic 
processes and statistics. A PhD is required, and 
salary will be commensurate with experience. The 
position will begin in July 2015. Strong commit-
ment to research and teaching at the undergraduate 
and graduate levels is essential. 

Please submit all materials to mathjobs.org. 
Alternatively send a cover letter, curriculum 
vitae, research statement, teaching statement, 
and at least four letters of recommendation, one 
of which addresses teaching, to: Probability, 
Stochastic Processes, and Statistics Search, 
Department of Mathematics and Statistics, 
Boston University, 111 Cummington Mall, 
Boston, MA 02215. The application deadline is 
December 15, 2014. 

Boston University is an equal opportunity 
employer, and all qualified applicants will receive 
consideration for employment without regard to 
race, color, religion, sex, national origin, disabil-
ity status, protected veteran status, or any other 
characteristic protected by law. The university is 
a VEVRAA Federal Contractor.

1. NUS Personal Data Consent for Job 
Applicants: http://www.nus.edu.sg/careers/
potentialhires/applicationprocess/NUS-Personal-
Data-Consent-for-Job-Applicants.pdf;

2. an American Mathematical Society Standard 
Cover Sheet;

3. a detailed CV, including publications list;
4. a statement (max. of three pages) of research 

accomplishments and plan;
5. a statement (max. of two pages) of teaching 

philosophy and methodology.  Please attach an 
evaluation on teaching from faculty members or 
students of applicant’s current institution, where 
applicable; and

6. at least three letters of recommendation, 
including one that indicates the applicant’s 
effectiveness in and commitment to teaching. 
Reference letters should be sent directly to 
search@math.nus.edu.sg.

The review process will begin on October 15, 
2014, and will continue until positions are filled.

For further information about the department, 
please visit http://www.math.nus.edu.sg.

Georgia Institute of Technology
School of Mathematics

The School of Mathematics at Georgia Tech 
is accepting applications for faculty positions 
at all ranks and in all areas of pure and applied 
mathematics and statistics.  

Applications by highly qualified candidates, 
especially those from groups underrepresented 
in the mathematical sciences, are particularly en-
couraged.  See www.math.gatech.edu/resources/
employment for more details and application 
instructions.

California Institute of Technology
Department of Computing and Mathematical 
Sciences

The Department of Computing and Math-
ematical Sciences (CMS) at Caltech invites 
applications for a tenure-track faculty position. 
The department is a unique environment where 
innovative, interdisciplinary, and foundational 
research is conducted in a collegial atmosphere. 
The department seeks candidates who have dem-
onstrated exceptional promise through novel 
research with strong potential connections to 
natural, information, and engineering sciences. 
Research areas of particular interest include 
applied mathematics and computational science 
as well as computing. A commitment to high-
quality teaching and mentoring is expected.

The initial appointment at the assistant-pro-
fessor level is for four years and is contingent 
upon the completion of a PhD in applied math-
ematics, computer science, or a related field. 
Exceptionally well-qualified applicants may also 
be considered at the full professor level.

To ensure the fullest consideration, applicants 
are encouraged to have all their application mate-
rials on file by December 28, 2014.  For a list of 
documents required and full instructions on how 
to apply online, visit http://www.cms.caltech.edu/
search. Questions about the application process may 
be directed to: search@cms.caltech.edu.

Caltech is an Equal Opportunity/Affirmative 
Action Employer. Women, minorities, veterans, 
and disabled persons are encouraged to apply.

Southern Methodist University
Department of Mathematics

Applications are invited for the Clements 
Chair of Mathematics (position no. 00050961) to 
begin in the fall semester of 2015.  The depart-
ment is searching for senior scholars with out-
standing records of research in computational and 
applied mathematics as well as a strong commit-
ment to teaching, including an established history 
of advising doctoral students. The department 
seeks candidates whose interests align with those 
of the department and who would contribute in a 
substantial way to the university’s initiatives in 
high-performance computing and interdisciplin-
ary research. In addition, the Clements Chair 

Bates College
Department of Mathematics

The Bates College Department of Mathematics 
invites applications for a tenure-track position at 
the rank of assistant professor, beginning August 
1, 2015. Applicants are particularly welcome in 
the field of computational/applied mathematics, 
with research focusing on areas such as scien-
tific computation, bioinformatics, mathematical 
finance and economics, or others. Applicants 
should have a commitment to undergraduate edu-
cation in a liberal arts college setting and should 
show promise of excellence and innovation in 
both teaching and scholarship. The teaching load 
is five courses per academic year, distributed 
across two 12-week semesters and one 5-week 
spring term. 

Review of applications begins November 15, 
2014, and will continue until the position is 
filled. Preference will be given to candidates who 
will have completed a PhD or equivalent degree 
in mathematics, applied mathematics, or other 
appropriate field by August 1, 2015. 

Applicants should submit all requested materi-
als in PDF format to apply.interfolio.com/26865.  
Only the documents requested in this ad will 
be considered in the review of applications. 
Applications should include the following:

• A cover letter that addresses the applicant’s     
interest in working at a small, residential, lib-
eral arts college;
• a CV;
• a teaching statement that includes a descrip-
tion of how the applicant’s teaching can con-
tribute to a learning community that values 
diversity and inclusion;
• a research statement that describes the appli-
cant’s work to a hiring committee drawn from 
a broad mathematical audience; and
• a graduate school transcript.

Applicants must also arrange for three letters of 
recommendation, at least one of which addresses 

Opportunities
continued from page 9
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The Center Leader provides scientific leadership and line management of the CNLS and plays an institutional and 
integrating role in collaboration with scientists throughout the Laboratory. The CNLS Center Leader is expected 
to develop and lead a program to target and create cooperative long-term research programs consistent with 
the Laboratory’s strategic research objectives, to develop a strong working relationship with the CNLS External 
Advisory Committee, and to maintain effective working relationships throughout all levels of the Laboratory, 
government entities, academia and industry. The successful candidate will be expected to maintain an active 
research program while providing technical vision to nurture and support existing programs of others at the 
Center. The Center Leader should be energetic, results-oriented, a catalyst for change and an outstanding 
relationship builder. Line management responsibilities include accountability for quality research, management 
of financial and human resources, proactive support of Laboratory and Division safety, security, environment 
and diversity objectives, the communications/marketing strategy for the Center and collaboration with the 
Theoretical Division to help provide strategic direction for the organizations.

Position requires a Ph.D. degree in a scientific or engineering field relevant to the Center’s activities and research 
or equivalent combination of education and experience. Demonstrated record of scientific accomplishment 
in one or more areas relevant to the Center as evidenced by an outstanding publication portfolio and/or a 
demonstrable national or international reputation is essential. Demonstrated experience in establishing and 
maintaining research collaborations, from the identification of new potential topics to forming teams, promoting 
proposals, and executing projects is also required.

Applicants may apply to both job postings at careers.lanl.gov

Los Alamos National Laboratory (LANL), a multidisciplinary 
research institution engaged in strategic science on behalf of 
national security, has a single open Center Leader position in 
the Center for Nonlinear Studies (CNLS). It will be filled either 

at the R&D Manager 4 or the R&D Scientist 5 level.

CENTER LEADER 
(R&D MANAGER 4)                              

Job IRC34587      

CENTER LEADER 
(SCIENTIST 5)
Job IRC34586

EOE

The Department of Aerospace Engineering at 
the University of Illinois at Urbana-Champaign is 
seeking highly qualified candidates for multiple 
faculty positions with emphasis on the areas 
of space systems/propulsion, autonomous 
aerospace systems, multi-disciplinary design 
optimization, aeroelasticity, and aerospace 
materials and structures.  Particular emphasis 
will be placed on qualified candidates who work 
in emerging areas of aerospace engineering and 
whose scholarly activities have high impact. 

Please visit http://jobs.illinois.edu to view 
the complete position announcement and 
application instructions.  Full consideration  
will be given to applications received by  
November 3, 2014. Applications received after 
that date will be considered until the positions 
are filled.

Illinois is an EEO Employer/Vet/Disabled - 
www.inclusiveillinois.illinois.edu and committed to a 
family-friendly environment 
(http://provost.illinois.edu/worklife/index.html). 

College of Engineering:  
Open Rank Faculty
Department of Aerospace Engineering

College of Engineering

University of Illinois at Urbana-Champaign

The Department of Mathematics at the University of Alabama invites applications
for a tenure-track position at the assistant professor level in the general area of
high-performance computing in data analysis beginning August 16, 2015.
Candidates with interests in numerical linear algebra in data mining, optimization,
statistical learning or cyber-security are encouraged to apply. Candidates must
possess a doctorate in mathematics, statistics, or a closely related field. Applicants
must apply online at https://facultyjobs.ua.edu/postings/35996 and arrange for
three letters of recommendation, one of which may address teaching, to be sent to
math@ua.edu. The review process starts on December 1, 2014 and continues until
the position is filled. 

More information about the department and the university is available at
http://math.ua.edu

The University of Alabama is an Equal Opportunity Employer/Affirmative Action employer and actively
seeks diversity among its employees. Women and minority candidates are strongly encouraged to apply. 

ASSISTANT PROFESSOR

Scientific Computing Big Data

touching l ives

the applicant’s teaching experience or poten-
tial. These letters must be submitted through 
Interfolio in PDF format.

Please contact search committee chair Pallavi 
Jayawant (pjayawan@bates.edu) for more infor-
mation. Do not send applications to Professor 
Jayawant; see application instructions above. 

An equitable, inclusive and diverse campus 
and curriculum are critical to the educational 
mission of Bates College. Therefore, the col-
lege and the Department of Mathematics are 
committed to enhancing equity, inclusion, and 
diversity, including teaching students from all 
backgrounds. Applicants who can contribute to 
this goal are encouraged to apply, and the search 
committee expects applicants to identify their 
strengths and experiences in this area. 

Bates is an Equal Opportunity/Affirmative 
Action employer. Because the college recognizes 
that employment decisions often involve two 
careers, Bates welcomes applications for shared 
positions. Employment is contingent on success-
ful completion of a background check. For more 
information about the college, please visit www.
bates.edu.

University of Colorado Denver
Department of Mathematical and Statistical 
Sciences

The Department of Mathematical and Stat-
istical Sciences at the University of Colorado 
Denver invites applications for a tenure-track 
assistant professor position in numerical methods 

and scientific computing that begins August 
2015. The university seeks candidates with excel-
lent research potential and a strong commitment 
to quality teaching. 

The application review begins November 15, 
2014.  For more information, see the full posting 
at www.jobsatcu.com (job posting F01791) or 
contact julien.langou@ucdenver.edu. 

The University of Colorado Denver is com-
mitted to diversity and equality in education and 
employment.  

Sandia National Laboratories
Computing Research Center and Computer 
Sciences and Information Systems Center

The Computing Research Center and the  
Computer Sciences and Information Systems 
Center at Sandia National Laboratories invite 
outstanding candidates to apply for the 2015 John 
von Neumann Postdoctoral Research Fellowship 
in computational science. This prestigious post-
doctoral fellowship is supported by the Applied 
Mathematics Research Program in the U.S. 
Department of Energy’s Office of Advanced 
Scientific Computing Research.

Sandia is one of the country’s largest research 
facilities, employing nearly 8,700 people at major 
facilities in Albuquerque, New Mexico and 
Livermore, California. Sandia maintains research 
programs in a variety of areas such as computa-
tional and discrete mathematics, computational 
physics and engineering, and systems software 
and tools. Sandia is a world leader in large-scale 
parallel computer systems, algorithms, software, 
and applications, and provides a collaborative 
and highly multidisciplinary environment for 
solving computational problems at extreme 
scales. Sandia has a state-of-the-art parallel-

computing environment consisting of advanced 
architectures, like the Cielo petascale machine, 
and numerous large-scale clusters and visualiza-
tion servers, including the 264-TFlop Red Sky 
cluster and 392-TFlop Chama Cluster.

The fellowship provides an exceptional 
opportunity for innovative research in com-
putational mathematics and scientific com-
puting on advanced computing architectures 
with application to a broad range of science 
and engineering problems of national impor-
tance. Applicants must have or soon receive 
a PhD in applied/computational mathematics 
or related computational science and engineer-
ing disciplines. Applicants must have less 
than three years of postdoctoral experience. 
This appointment is for one year, with a pos-
sible renewal for a second year, and includes 
a highly competitive salary, moving expenses, 
and a generous professional travel allowance. 
For more details about the John von Neumann 
Fellowship, visit our website at www.cs.sandia.
gov/VN_Web_Page.

To apply for the John von Neumann 
Fellowship, applicants should complete the fol-
lowing two steps:

(1) Submit a single PDF file containing a 
cover letter, CV, and research statement online 
at www.sandia.gov/careers, Job ID 647304. 
If an applicant does not receive information 
regarding the timeline for phone interviews 
within two weeks after submitting an applica-
tion, please contact Denis Ridzal at dridzal@
sandia.gov.

(2) Have three letters of recommendation sent 
to Denis Ridzal at dridzal@sandia.gov. Please 
ask references to use “2015 VN Fellowship” as 
the subject line.

Opportunities
continued from page 10

Applications will be reviewed upon receipt. 
Complete applications received by December 1, 
2014, will receive full consideration; the position 
will remain open until filled.

Equal Opportunity Employer.  M/F/D/V.
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By Peter Grindrod,  
Desmond J. Higham,  
and Robert S. MacKay

More than half of the world’s population 
lives in cities, a proportion that is estimated 
by the World Health Organization to reach 
60% by 2030 and 70% by 2050. Thanks to 
the proliferation of smart devices and inter-
connected services, cities are gushing data, 
much of it related to human behavior. City 
life generates data streams around online 
social media, telecommunication, geo-
location, crime, health, transport, air qual-
ity, energy, utilities, weather, CCTV, wi-fi 
usage, retail footfall, and satellite imaging. 
The powerful new concept of urban centres 
as “Living Labs” is inspiring novel research 
that could lead to improved well-being and 
economic growth.

We argue here that mathematicians can 
make an impact at the heart of this emerging 
interdisciplinary field, where hypotheses 
about human behavior must be quantified 
and tested against large-scale data sets, and 
where decisions and interventions should be 

based on quantitative, testable predictions. 
Moreover, the rapid growth of large-scale, 
disparate, multi-resolution data sets is driv-
ing new research challenges for applied and 
computational mathematicians, drawing on 
such hot topic areas as dynamic and multi-
plex networks (see Figures 1 and 2) [4, 9], 
multiscale modelling and simulation [2], 
uncertainty quantification [15], and sparse 
tensors [12, 13].

The Future Cities research arena we envis-
age is inherently interdisciplinary, encom-
passing the physical and social sciences, 
engineering, business, law, and, in particular, 
issues of privacy and ethics. At the risk of 
buzzword overload, we also note extensive 
overlap with other big-picture themes, includ-
ing Data Science, Big Data, Complexity, 
Planet Earth, Digital Economy, the Internet 
of Things, and Computational Social Science.

Many urban centers around the world are 
becoming active in the Future Cities space, 
with strong support for these developments 
from governments and funding agencies. 
Focussing just on our home institutions, 
Glasgow City Council beat out 30 other 
cities to win a £24 million Future Cities 
Demonstrator competition, funded by the 
Technology Strategy Board, the innovation 
agency of the UK government; under this 
award, the Institute for Future Cities at the 
University of Strathclyde is developing a 
Digital Observatory that will allow public 
access to data generated in Glasgow and 
elsewhere. Future Cities is also one of the 
four strategic themes for Strathclyde’s £89 
million Technology and Innovation Centre, 
a hub for academic research and industrial 

Opportunities at  
the Mathematics/Future Cities Interface

collaboration. The University of Oxford’s 
Engineering and Physical Sciences 
Research Council (EPSRC) Centre for 
Doctoral Training in New Industrially 
Focused Mathematical Modelling has a 
strong data analytics/technology compo-
nent, and its Said Business School hosts 
the Institute for New Economic Thinking. 
The University of Warwick, which has 
designated Sustainable Cities as one of 
its Global Research Priorities, houses the 
Warwick Institute for the Science of Cities 
and offers an EPSRC Centre for Doctoral 
Training in Urban Science. The University 
of Warwick is also a partner in the Center 
for Urban Science and Progress (CUSP; 
http://cusp.nyu.edu/about/), a public/
private research collaboration that uses 
New York City as a laboratory and class-
room, and in its recently announced branch 
“CUSP London.” 

Further afield, Horizon 2020, the big-
gest European Union research and inno-
vation programme to date, chose Societal 
Challenges as one of its three pillars, 
listing a €100 million call for research 

projects under the theme Smart Cities and 
Communities. In a draft strategic plan 
released in July 2014, EPSRC identified 
“designing and building future cities” as 
one of seven key challenges for the global 
economy. 

A report commissioned by the 
UK Department for Business, 
Innovation and Skills [11] consid-
ered opportunities for UK indus-
try in smart city technology across 
five urban market sectors––energy, 
water, transport, waste, and assisted 
living––estimating a global market 
of $408 billion by 2020. 

Future Cities and  
the Math Sciences

We conclude with a brief look at 
recent developments and prospects 
in dynamical systems and in net-
works, with the focus mainly on our 
own research interests.

Macroscale observations have 
revealed scaling laws that relate city 
population size to such attributes 
as energy consumption, household 
income, and patent production, and 
important distinctions have been 
drawn between linear, sublinear, 
and superlinear growth [1, 14]. 
Explanatory, microscale models 
based on “hidden” laws must be 
consistent with such observations. 
Long-time dynamics and stability 
are key issues in the modelling of 
complex urban systems, as are sensi-
tivities to parameter choices, includ-

ing thresholds imposed by resource limita-
tions [5]. In principle, good mathematical 
models can be used to map out ranges of 
possible behavior: An observed phenom-
enon might be constrained within a single 
domain of attraction (with others as yet 
unseen) and have a very low probability of 
breaking out; alternatively, it might reflect 
the trajectory of a chaotic process, where 
the qualitative macroscopic behaviour is 
predictable but the quantitative evolution 
of specific individuals is not (because of 
sensitive dependence on initial conditions 
and instability-driven disruptions). 

In modelling terms, surgical extraction of 
the city from its surroundings may not be 
appropriate, and an open model, subject to 
a range of external influences, may be more 
realistic. Phenomena of interest might then 
be subject to persistent cycling or boiling, 
without ever approaching quiescence [17].

Digital interactions in an urban setting 
can naturally be represented as graphs, 
or networks, but the links between nodes 
in the system typically have an important 
time-dependent feature: Who just texted 

whom, who just logged on to which 
free wi-fi zone, who just reported a 
crime at which location? In a previ-
ous article in SIAM News, two of 
us discussed how a dynamic view 
of classical concepts in graph the-
ory led to useful new algorithms 
[8]. But alongside the data-driven 
issue of extracting and summariz-
ing information from network obser-
vations is the equally compelling 
challenge of deriving models that 
describe the underlying dynamics. 
Representing a network as a time-
dependent matrix A(t) whose (i, j) 
element quantifies the current level 
of interaction between nodes i and 
j, we can formalize concepts from 
the social sciences to derive suitable 
laws of motion (see sidebar). 

In an urban context, where 
dynamic interactions take place on 
many levels between a range of par-
ties, it is natural to think of dynamic 
models that operate across many 
layers, with the dynamics on one 

layer (e.g., the evolution of attitudes toward 
healthy lifestyle) coupled to the dynamics 
on another (e.g., the reach of a social media 
campaign). Moreover, with the advent of 
smartphones and GPS, we can now monitor 

geographic location across time and hence 
test models of urban movement [10].

In the preamble to his recent book 
The New Science of Cities [3], Michael 
Batty of the Bartlett Centre for Advanced 
Spatial Analysis at University College 
London discusses three central principles 
that inform his “networks and flows” 
perspective of city science; all three reso-
nate strongly with the standpoint of this 
article. Batty’s first principle is that the 
relations between objects, not the intrinsic 
attributes of those objects, should condi-
tion our understanding, a viewpoint famil-
iar to those who have been exposed to 
graph theory or category theory. Second, 
we should aim to measure, categorize, 
and look for universal scalings when 
we observe and compare city networks 
across space and time. Third, having 
gathered macro-level observations, we 
should seek to understand the micro-level 
principles that drive them––or, in the lan-
guage of applied mathematics, we should 
aim for explanatory models, based on 
explicit modelling assumptions, with pre-
dictive power. Batty’s book makes use of 
such concepts as agent-based modelling, 
flocking, graph theory, Markov chains, 
Markovian decision problems, optimiza-
tion, and self-similarity/fractals, and hence 
is an excellent starting point for mathema-
ticians wishing to enter the field.

Figure 1. Multiplex visualization of population density, housing cost, deprivation, and drug-use levels 
across the city of Glasgow, Scotland. © LUSTlab/Institute for Future Cities, University of Strathclyde. 
Reproduced with permission.

Figure 2. Reported levels of drug use across Glasgow, in a screen shot from the data streams of Figure 1. After 
discretisation based on, for example, city regions, combination of the levels in Figure 1 leads naturally to a three-
dimensional tensor, with two dimensions representing spatial coordinates and the third dimension indexing the data 
sources. Time dependency in the data would add a fourth dimension. Extracting commonalities and differences, 
and summarising patterns, can be cast in terms of tensor factorisation---for example, generalising the matrix-level 
singular value decomposition. These four dimensions are not comparable---any results should be insensitive to the 
order in which we label the data streams, but for most purposes we should not reorder points in time or space. © 
LUSTlab/Institute for Future Cities, University of Strathclyde. Reproduced with permission.
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Social Balance
Traag, Van Dooren, and De Leenheer [16] 

looked at the concept of social balance (my 
friend’s friend is my friend, my enemy’s en-
emy is my friend, . . .) to derive matrix-valued 
ordinary differential equations of the form 
A· (t) = A(t) ´ A(t) and A · (t) =  A(t) ´ A(t)T. 
Given such an A(t), two of us [6] developed 
an accompanying ODE for the level of impor-
tance, or centrality, of the network nodes, 
showing that the matrix logarithm function 
arises naturally. 

An alternative concept from the social sci-
ences, triadic closure (the more friends I have 
in common with a person, the more likely I am 
to become the person’s friend), was used in [7] 
to derive a stochastic birth and death model 
for link dynamics. There, results of mean-field 
analysis agreed with simulations showing that 
the network can self-organize into either of 
two very different long-term behaviors.


