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Abstract

We present several algorithms that use invariant cumulative histograms
to non-invasively diagnose tumors detected on a mammogram. First, we
define three specialized cumulative histograms called the cumulative cen-
troid, kappa, and kappa-s histogram. Then we compute metrics over each
cumulative histogram to quantitatively distinguish benign versus malig-
nant tumors. Our methodology has been tested on a dataset of 150 tumors
and we include an ROC analysis of our results.

1 Introduction

Non-invasive diagnosis of breast tumors is challenging because benign and
malignant tumors detected on a mammogram can be indistinguishable to the
human eye. Despite malignant tumors having a more irregularly shaped contour,
visual assessment of the tumor by a human is subjective and unreliable for an
official diagnosis. Thus, surgical incision and histological examination of the
tumor is the standard diagnostic procedure. However, due to the large number of
mammograms performed each year, this leads to many unnecessary procedures
and increases the risk of false positive diagnosis. We propose a cumulative
histogram based methodology that automatically diagnoses a tumor detected
on a mammogram. The methodology is based on the observation that benign
tumors present on a mammogram with an elliptically shaped contour as seen
in Figure 1. In contrast, malignant tumors have finger-like proliferations along
the tumor contour called spiculations, which give these tumors an irregularly
shaped contour as seen in Figure 2 [5],[13].

Figure 1: Benign contour Figure 2: Malignant contour

This paper is an application of the work done by Olver in [3], where he
defines a cumulative distance histogram as follows.
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Definition 1. The cumulative distance histogram of a finite set of points {p1, . . . , pn}
is the function Λ : R+ → N defined by

Λ(r) =
1

n2
#{(i, j) : d(zi, zj) ≤ r},

where d is the Euclidean distance metric.

The graph of a cumulative distance histogram provides a representation of the
geometric shape of a set of points, which is invariant under rigid transforma-
tions. For this reason, distance histograms have been used in object-based query
along with color and angle histograms [9]. In this application, a distance his-
togram is computed using distances between the center of mass and points along
the contour of an object extracted from an image or video frame. This shape
information can then be used to query the content of images and videos. An-
other application of cumulative histograms is to measure border irregularity in
skin lesions. In this application, a cumulative distance histogram is computed
over the border of a skin lesion and the shape of the histogram is used to de-
termine a diagnosis of malignant or benign. In this paper, we will extend the
work done in [2] and [10] by defining a cumulative histogram called a cumulative
centroid histogram that uses centroid rather than arbitrary distances in Section
2.1. Then we will define two additional cumulative histograms called the cu-
mulative kappa histogram and cumulative kappa-s histogram in Section 2.2 that
profile a contour’ s curvature. In Section 3, we will summarize our results and
provide an ROC analysis of these methods.

2 Methodology

2.1 Cumulative Centroid Histogram

Let P = {p1, ..., pn} ⊂ R2 be a finite set of points with centroid pc such that
pi = (xi, yi).

Definition 2. Two points pi, pj ∈ P are collinear with the centroid pc if

det

xi yi 1
xj yj 1
xc yc 1

 = 0

The use of the determinant in Definition 2 is geometrically motivated because
the determinant is the area of the parallelogram determined by the points pi, pj ,
and pc. When the determinant is zero, then the parallelogram is degenerate and
the two points are collinear with the centroid.

Proposition 2.1. Collinearity is invariant under uniform scaling and defines
an equivalence relation over P.
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Proof. If two points pi and pj are collinear with pc, then

det

xi yi 1
xj yj 1
xc yc 1

 = 0

by Definition 2. If we scale the points by some λ ∈ R, then the determinant as
calculated in (1) would remain to be zero. To prove the equivalence relation,
any point pi is collinear with itself and the centroid pc because the determinant
as calculated in Definition 1 would not have full rank and consequently have
determinant zero, so reflexivity holds. Collinearity preserves symmetry and
transitivity because geometrically these points all lie on the same line through
the centroid.

When P is a Jordan curve, then each point is collinear with at least one other
point on P . The situation is more complicated when P has a finite number
of points. For example, if the distribution of points on P is sparse, then there
may be no pairs of collinear points. However, we can prove a condition that
guarantees when each point is collinear with another point for a discrete contour.

Proposition 2.2. If #P is finite and all points in P are uniformly spaced with
respect to angular position from the centroid, then each point on P is collinear
with another point on P if and only if the parity of #P is even for #P > 1.

Proof. We begin by proving the converse of our claim. Since collinearity is
invariant under uniform scaling by Proposition 2.1, then we can contract P to
a circle P̃ and preserving every collinear relationship. Since the points in P are
uniformly spaced with respect to angular position, then P̃ must be the vertices
of a regular polygon. If the parity of #P is even, then each point is collinear
with another by the symmetry of an even sided regular polygon. The forward
direction of our claim holds again by the symmetry of a regular polygon. If the
parity of #P is odd, then there does not exist a pair of points that are collinear
through the centroid in P̃ because P̃ is an odd sided regular polygon.

Although Proposition 2.2 provides criteria for when each point is collinear to
another on a discrete contour, it is unlikely that an arbitrary discrete contour
will satisfy the hypothesis of this proposition. However, we assume that the
distribution of points on P is relatively dense, so for purposes it suffices to relax
our definition of collinearity by instead using approximate collinearity.

Definition 3. The measure of collinearity ϕ between two points pi and pj is
defined to be

ϕ(i, j) =

∣∣∣∣det

x̃i ỹi 1
x̃j ỹj 1
xc yc 1

∣∣∣∣,
where p̃i and p̃j denote pi and pj rescaled along the line pipj such that ‖p̃i−pc‖ =
‖p̃j − pc‖ = 1.
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Definition 4. Two points pi and pj are approximately collinear if µ(i, j) = 1
such that

µ(i, j) =

{
1, if j = argmink{ϕ(i, k) : 1 ≤ i, k ≤ n}
0, otherwise.

The function in Definition 4 is used to pair each point on P with another point
that is nearest to being collinear. This definition of approximate collinearity
suffices because we assume that the point distribution on P is relatively dense.
However, it may no longer be true that approximate collinearity defines an
equivalence relation over P because reflexivity and transitivity may not hold.
Now that each point is collinear with another, we can define the cumulative
centroid histogram.

Definition 5. The centroid function of a finite set of points P ⊂ R2 is the
function η : R+ → N defined as

η(r) = #{(i, j) : ‖pi − pj‖ = r and µ(i, j) = 1}.

Definition 6. The cumulative centroid histogram of a finite set of points P ⊂
R2 is the function Λc : R+ → [0, 1] defined to be

Λc(r) =
1

n

∑
s<r

η(s).

Since we assume #P to be finite, then the support of η(r) must also be finite
which implies that only a finite number of nonzero terms are summed in the
definition of Λc(r). In Section 1, we defined the cumulative distance histogram
Λ(r) which is constructed using arbitrary rather than centroid distances. In
the application of diagnosing breast tumors using only the contour, we have
found that the cumulative centroid histogram is more accurate than using a
cumulative distance histogram. To provide some reasoning for this claim, we
provide an example of the differing shape between a Λ(r) versus Λc(r) computed
over the same set of points.

Example 2.1. Let Q = {q1, . . . , qm} be a finite set of points with even car-
dinality from a circle of radius R with points uniformly spaced with respect to
angular position.

Since Q satisfies the hypothesis in Proposition 2.2, then for each point on Q
there exists another point that is collinear. This guarantees that the cumulative
centroid histogram has non-empty support. We have included a plot of Λ(r)
versus Λc(r) computed over Q and show the graphs in Figure 3, respectively.
The cumulative centroid histogram provides a better shape representation of
a circle because all points on a circle are an equal distance from the origin,
which is reflected in the histogram and stated as Proposition 2.3. Since benign
tumors tend to have circular and elliptically shaped contours, then a cumulative
centroid histogram provides a better shape representation than a cumulative
distance histogram.
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Proposition 2.3. For the point configuration Q, there exists a unique r∗ such
that Λc(r) = 1 for r > r∗ and Λc(r) = 0 for r < r∗.

Figure 3: Λc(r) and Λ(r) of a circle

For our second example, we show a comparison of a cumulative distance his-
togram and cumulative centroid histogram computed over a benign and malig-
nant contour that is shown is Figures 4 and 5, respectively. In these figures,
we show an interpolation of Λc(r) defined over its support. The cumulative
centroid histogram provides a better representation of the irregularity in a ma-
lignant contour by having more frequent and quick changes in concavity. This
shape is distinct from the cumulative centroid histogram of a benign tumor
which has a characteristic “s” shape with a single and gradual change in con-
cavity. Our metric Ω for diagnosing tumors will be based on this difference in
frequency and intensity of each change in concavity on the cumulative centroid
histogram. In short, Ω is defined by finding the maximal value in the approxi-
mate second derivative of Λc(r) near each change in concavity and determining
the number of maximal values within a given threshold.

Figure 4: Λc(r) and Λ(r) from
a benign contour

Figure 5: Λc(r) and Λ(r) from a ma-
lignant contour
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We will begin by computing a second derivative of Λc(r), but must be care-
ful because Λc(r) is a step function with finite support. Let Λ̃(r) be a linear
interpolation determined by the support of Λc(r), choose some small ε > 0 and
define the approximate second derivative to be

Λ′′c (r) =

∣∣∣∣ 1

ε2
(
Λ̃c(r − ε)− 2Λ̃c(r) + Λ̃c(r + ε)

)∣∣∣∣.
Since Λ′′c (r) is a numerical approximation, we define a change in concavity as a
point r? such that Λ′′c (r?) < δ for some small δ > 0. Next, partition the domain

[0,1] of Λc(r) with respect to the points where Λ′′c (r) < δ so that [0, 1] =
n⋃

i=1

Ui

and let U = {U1, . . . , Un}. We will define the characteristic function ω which
will be used in the definition of the metric Ω.

Definition 7. Let ω be the characteristic function defined over some interval
V and value λ ∈ R such that

ω(V, λ) =

{
1, if λ ∈ V
0, otherwise.

Definition 8. Let Ω be defined over some interval V and the set of intervals U
determined by the changes of concavity of Λc(r) such that

Ω(U, V ) =
n∑

i=1

ω(V,max{Λ′′c (Ui)}).

The interval V in the definition of Ω allows us to use a grading system to measure
the changes in concavity on a cumulative centroid histogram. In practice, we use
three-grade system with the intervals V1 = (10−8, 10−7), V2 = (10−7, 10−6), and
V3 = (10−6,∞). In general, we observe that for benign tumors either Ω(U, V1) =
1 or Ω(U, V2) = 1 with Ω(U, V3) = 0 because they have a single, gradual change
in concavity. In contrast, Ω(U, V2) and Ω(U, V3) are large for malignant contours
because there are more frequent and quick changes in concavity.

2.2 Cumulative Kappa and Kappa-S Histograms

Let Z = {z1, ..., zn} ⊂ R2 be an ordered finite set of points, which we
identify as the discrete approximation of a smooth curve C ⊂ R2. We begin
by calculating the approximate curvature κ̃ at each point zi ∈ Z by selecting
points zi−1, zi+1 ∈ Z, forming the triangle illustrated in Figure 10 [10,11]. Let4
represent the signed area of the triangle formed by zi−1, zi, zi+1 and s represent
the semi-perimeter, so that4 = ±

√
s(s− a)(s− b)(s− c) with s = 1

2 (a+b+c)
[10]. The approximate curvature at zi follows as

κ̃ (zi) = 4
4
abc

= ±4

√
s(s− a)(s− b)(s− c)

abc
[10]. (1)
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To approximate the first derivative of curvature with respect to arc length, κ̃s,
take the points zi−2, zi+2 ∈ Z and approximate curvature at zi−1, zi+1 using
(6). Then the approximate derivative of curvature at zi is given by

κ̃s (zi) =
3(κ̃(zi+1)− κ̃(zi−1)

2a+ 2b+ d+ e
(2)

with d = ‖zi−1 − zi−2‖ and e = ‖zi+2 − zi+1‖ [11].

Figure 6: Approximate curvature at zi

Definition 9. The curvature histogram of a finite set Z ⊂ R is the discrete
function

ψ(k) = #{zi : κ̃(zi) = k},

where 1 ≤ i ≤ n and the derivative of curvature histogram ψ(ks) is defined in
the same manner.

Since curvature is not invariant under uniform scaling, then we must remedy this
problem by renormalizing the curvature histogram. In the spirit of Definition
4, we renormalize the curvature histogram into a cumulative kappa histogram.

Definition 10. The cumulative kappa histogram Ψ(k) of a finite set Z ⊂ R2 is
the discrete function

Ψ(k) =
1

n

∑
s≤k

ψ(k)

and the cumulative kappa-s histogram Ψs(k) is defined in the same manner.

Since curvature and consequently its derivative are defined with respect to dis-
tance and distance is invariant under rigid motions, then the cumulative kappa
and kappa-s histograms are invariant under rigid transformations of Z. After
calculating the cumulative kappa and kappa-s histograms, we observe that the
area under the cumulative kappa histogram calculated from a malignant contour
is much larger than the area from a benign contour. The contrast is depicted in
Figures 7 and 8, where the range and initial derivative of the cumulative kappa
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histogram for a malignant contour is much larger. We will define a metric ζ
by constructing a step function from Ψ and integrating over this function. The
support of Ψ is finite because the tumor contour is discrete, so call this set
R = {r1, . . . , rn}.

Definition 11. Let Ψ̄(r) be the step function defined as

Ψ̄(r) =


0 if r = 0

Ψ(ri) if r = ri

Ψ(ri+1) if r ∈ (ri, ri+1).

and let Ψ̄s be the step function defined with respect to Ψs

Definition 12. Let ζ be the measure defined over a finite set of points Z be the
function

ζ(Z) =

∫
R

Ψ̄(r)

=
N−1∑
i=1

Ψ̄(ri)(ri+1 − ri)

and ζs be defined similarly with respect to Ψs.

In general, the value of ζ is large when Z corresponds to a malignant con-
tour in comparison to a benign contour. This pattern is a caused by spiculation,
which skews the distribution and increases the variance of curvature and deriva-
tive of curvature values on a malignant contour. The distribution is skewed
towards zero because there are significantly more points where either κ = 0 and
κs = 0, which results a steep initial slope in Ψ and Ψs. The variance of Ψ
and Ψs is large due to the irregular shape of a malignant contour. Therefore, a
large value in ζ(Z) indicates that Z is more likely to correspond to a malignant
contour.

Figure 7: Ψ(k) of a benign con-
tour

Figure 8: Ψ(k) of a malignant
contour
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3 Results

3.1 Data Set

The data set contains 78 benign and 78 malignant mammograms diagnosed
by expert radiologists. Atypical tumors comprise approximately 10% of the data
set with seven spiculated benign and nine circumscribed malignant tumors. The
mammograms were downloaded from the University of South Florida Digital
Database for Screening Mammography and the Mammographic Image Analysis
Society [12,13]. Each mammogram is between 512×512 and 1024×1024 pixels
and was taken with either a Lumysis or Howtek scanner. The database provided
an official diagnosis and delineation of each tumor contour drawn by radiologists.
After downloading the mammograms, each image is individually discretized
into a set of approximately 500 (x,y) points using active contour segmentation
[14,15].

Figure 9: Benign tumor con-
tours

Figure 10: Malignant tumor
contours

3.2 ROC Analysis

We used the metrics defined in Sections 2.1 and 2.2 to define two distinct
decision trees to diagnose a tumor as benign of malignant. The first decision tree
is defined with respect to three-grade system described at the end of Section 2.1
and the second decision tree is defined with respect to metrics ζ and ζS . Next,
the calculate a receiver operating characteristic (ROC) curve from the decision
trees, which is a plot of the true positive rate against the false positive rate.
The area under the ROC curve indicates the accuracy of our methodology to
correctly diagnose benign and malignant tumors. In Figure 14, the sensitivity
and specificity refer to the true positive and false positive rate, respectively.
The measure is an objective assessment of the accuracy of our algorithms and
objectively compares our methodology against existing automated algorithms.
We have defined a correct diagnosis as identifying typical malignant, atypical
malignant, and atypical benign tumors as malignant and identifying typical be-
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nign tumors as benign. Since atypical benign tumors closely resemble malignant
tumors, a biopsy should be clinically tested as a precautionary measure.

Figure 11: ROC Analysis

The ROC values of the cumulative cen-
troid histogram and kappa, kappa-s histogram
methodologies are 0.983 and 0.966, respec-
tively. In the automated diagnosis literature,
we have found our algorithms to be equally
or more accurate than existing methodologies.
Rangayyah and Nguyen used the 1D and 2D
ruler box counting fractal dimension to obtain
an ROC curve values ranging from 0.83-0.89 [8].
In addition, they also developed algorithms us-
ing compactness, fractional concavity, spicula-
tion index, and Fourier-descriptor-based factor,
which obtained ROC curve values ranging from
0.77-0.93 [17]. Another study by Chen, Chung,
and Hun used fractal features in an image pro-
cessing texture analysis using fractals, where
they obtained an ROC curve value of 0.88 [4].

4 Conclusion

The results obtained in this research study show that cumulative histograms can
be used to diagnose tumors detected on a mammogram. Cumulative histograms
can be used to diagnose tumors by accentuating differences in the shape of
benign and malignant tumor contours. Some future work may be to apply this
methodology to distinguishing between moles and melanomas, whose contours
contrast by the degree of irregularity.
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