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Modeling Population Recovery 
Following an Environmental Disturbance
By Azmy S. Ackleh                     
and Amy Veprauskas

What do populations of invasive and 
endangered species have in com-

mon? To find out, consider the following 
two contrasting scenarios.

Small mammals, such as kangaroo rats, 
are considered to be keystone species in 
many grassland and shrubland communi-
ties [7]. This means that their presence and 
densities help shape community composi-
tion. Because they are granivores, kanga-
roo rats significantly impact annual plants 
that serve as a resource base [4]. However, 
these communities are subject to vari-
ous disturbances—including habitat frag-
mentation, fires, and livestock grazing—
that degrade habitat quality and regularly 
threaten keystone species. For kangaroo 
rats, dense covers of herbaceous nonnative 
plants magnify the effects of these disrup-
tions [5]. This type of vegetation cover has 
been shown to affect population recovery 
following a disturbance.

In contrast, American bullfrogs are an 
invasive species that damage native fauna 
in habitats around the world [8]. The bull-
frog tadpoles’ voracious appetites may dra-
matically reduce algae biomass—in turn 
reducing primary production and nutrient 
cycling—while adults compete with native 
species of birds, reptiles, amphibians, and 
fish for food sources [9]. As such, bullfrogs 
may have profound effects on native habi-
tats, changing ecosystem structure and even 
causing local extinctions among native spe-
cies. Control methods for American bull-
frogs typically focus on the removal of 
tadpoles or adults from the population.

What similarities exist between these 
two scenarios? In addition to both popula-
tions substantially impacting overall com-
munity structure, these situations have two 
common components. Both cases involve 
the idea of a disturbance — such as habi-
tat fragmentation or fires in the first case, 
or the intentional removal of individuals 
in the latter. There is also the concept of 
recovery. Recovery for an invasive species 

means that management strategies must 
be reapplied or modified. Recovery of an 
endangered species is the end goal.

Biological populations continually expe-
rience natural and anthropogenic distur-
bances—like hurricanes, fires, and chemi-
cal and noise pollution—that negatively 
influence their growth. From a management 
perspective, it is important to be able to 
quantify the way in which disturbances may 
affect a population’s dynamics over time. 
This knowledge can help set harvest or land 
use regulations, identify effective conser-
vation approaches, or aid in the establish-
ment of control measures for pest species. 
However, one must exercise caution when 
applying management strategies; in some 
cases, they may have unintended effects. 
For instance, studies have shown that the 
aforementioned strategy for bullfrog regu-
lation might be an ineffective means of 
population control, and in some cases actu-
ally result in increased population sizes. 
Instead, removal of metamorphs in the fall 

Figure 1. Recovery time’s sensitivity to properties of the disturbance. 1a. Recovery time’s sensitivity to changes in survival reduction 0 ,  assum-
ing a 10-year duration of impact. 1b. Duration of impact TC ,  assuming a five percent reduction in survival. Figure adapted from [1].

Deep Learning for COVID-19 Diagnosis
By Keegan Lensink, William 
Parker, and Eldad Haber

Over the last several months, the severe 
acute respiratory syndrome coronavi-

rus 2 (SARS-CoV-2) has rapidly become 
a global pandemic, resulting in nearly 
480,000 COVID-19 related deaths as of 
June 25, 2020 [6]. While the disease can 
manifest in a variety of ways—ranging 
from asymptomatic conditions or flu-like 
symptoms to acute respiratory distress syn-
drome—the most common presentation 
associated with morbidity and mortality is 
the presence of opacities and consolida-
tion in a patient’s lungs. Upon inhalation, 
the virus attacks and inhibits the lungs’ 
alveoli, which are responsible for oxygen 
exchange. In response—and as part of the 
inflammatory repair process—the alveoli 
fill with fluid, causing various forms of 
opacification within the lungs. This opaci-
fication is visible on computed tomography 
(CT) scans. Due to their increased densi-
ties, these areas appear as partially opaque 
regions with increased attenuation, which 
is known as a ground-glass opacity (GGO). 
Consolidation occurs when the accumula-
tion of fluid progresses to an opaque region 
on CT scans (see Figure 1).

As COVID-19 spreads, healthcare cen-
ters around the world are becoming over-
whelmed and facing shortages of essential 
equipment that is necessary to manage the 
disease’s symptoms. Severe cases often 
require admission to the intensive care unit 
(ICU) and necessitate mechanical ventila-
tion, both of which have limited availabil-
ity. Rapid screening is crucial in diagnosing 
COVID-19 and slowing its spread, and 
effective tools are essential for prognostica-
tion in order to efficiently allocate increased 
care to those who need it most.

While reverse transcription polymerase 
chain reaction (RT-PCR) has thus far been 
the gold standard for COVID-19 screening 
in many countries, equipment shortages 
and strict requirements for testing environ-
ments limit this test’s utility in all settings. 
Furthermore, reports indicate that RT-PCR 
testing suffers from high false negative 
rates due to its relatively low sensitivity and 
high specificity [1]. Chest CT scans—which 
have demonstrated effectiveness in the diag-
nostic process, including follow-up assess-
ment and evaluation of disease evolution—
are an important complement to RT-PCR 
tests [7]. Recent work indicates that trained 
radiologists’ analyses of chest CT scans 
enable highly sensitive diagnosis [1].

In addition to providing complimenta-
ry diagnostic properties, CT scans have 
proven invaluable for the prognostication 
of COVID-19 patients. The percentage of 
well-aerated lung (WAL) has emerged as a 
predictive metric for determining prognosis, 
including admission to the ICU and death 
[3]. Practitioners often quantify the percent-

age of WAL by visually estimating volume 
of opacification relative to healthy lung; 
one can approximate this automatically 
via attenuation values within the lung. In 
addition to the percentage of WAL—which 
does not account for the various forms of 
opacification—expert interpretation of CT 

Figure 1. Visualization of an axial slice of a computed tomography (CT) scan, cropped to the left 
lung. 1a. Pulmonary opacification present in a patient with COVID-19. 1b. The corresponding 
annotation generated by a radiologist. Red indicates pure ground-glass opacity (GGO), purple 
designates GGO with intralobular lines (crazy paving), and black signifies consolidation.

See COVID-19 Diagnosis on page 4

See Population Recovery on page 3
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5  The Mathematics of Mass 
Testing for COVID-19

 David Donoho, Mahsa Lotfi, 
and Batu Ozturkler explore 
an emergent research front 
in which mathematical and 
statistical ideas can enable a 
rapid expansion of COVID-19 
testing capabilities worldwide. 
Donoho surveyed these find-
ings and presented several 
related research projects during 
a virtual invited presentation at 
the 2020 SIAM Conference on 
Mathematics of Data Science.

6  Chaos (and Dynamics)  
for All!

 The field of dynamical systems 
is ever-changing, and math-
ematicians continue to explore 
concepts that inspire a greater 
understanding of order and 
disorder. Lora Billings reviews 
David Feldman’s Chaos and 
Dynamical Systems, a new book 
that introduces the field and 
addresses models of both dis-
crete and continuous dynamical 
systems, ultimately engaging 
readers at a variety of levels.

7  swMATH: A Publication-
based Approach to 
Mathematical Software

 The growing importance of 
mathematical software in every-
day life necessitates advances 
in software documentation 
services. Wolfgang Dalitz, 
Wolfram Sperber, and Hagen 
Chrapary describe swMATH, 
which employs a publication-
based approach. This innovative 
information service provides 
users with an overview of a 
broad range of mathematical 
software and extends documen-
tation services for publications 
related to such software.

9  From Academia to Major 
League Baseball: The 
Journey of a Data Scientist

 Mike Dairyko, a data scientist 
for the Milwaukee Brewers 
Baseball Club, details the 
career trajectory and educa-
tional experiences that led 
him to his current position. 
Dairyko discusses his use of 
data science and machine learn-
ing to provide mathematical 
insights and calculated projec-
tions in relation to revenue, 
ticket sales, and other marketing 
endeavors for the Brewers.
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The video of Mr. George Floyd dying 
on the street in Minneapolis, Minn., 

is almost too difficult to watch, yet its 
impact has been profound. Academia 
must reflect on this incident. Seven 
decades ago, universities began ramping 
up the research component of mathemat-
ics departments. Every year since, meager 
handfuls of minorities have 
obtained doctorates from 
mathematical sciences and 
statistics (MSS) depart-
ments. The mathematical 
aspirations of countless minorities have 
died in silence. No video recorded these 
deaths. When was the last time that you 
advised a Native American undergraduate 
or discussed mathematics with a Native 
American mathematician? Such a glaring 
lack of contact with this one important 

Broken Social Contract
I call on our profession to recognize 

the professional privilege in which we 
live and reformulate departmental poli-
cies, attitudes, and programs of study 
with a view towards producing an equi-
table educational system for women, 
minorities, and all our citizens. How 
much longer must women and minorities 
call for change? Must we wait for calls 
to defund our MSS departments? On the 
other hand, will MSS departments take 
the lead in addressing reform?

This letter will also appear in MAA 
Focus, Notices of the AMS, the AWM 
Newsletter, and AMSTAT News.

— William Yslas Vélez, emeritus pro-
fessor of mathematics at the University 
of Arizona

minority group is evidence of the harm 
inflicted by MSS departments on the minor-
ity population in general.

The current unrest that we see on the 
streets is connected to white privilege. I 
earned a Ph.D. in mathematics, which led 
me out of poverty and granted me privileg-
es. I had a safe work environment, a regular 

paycheck, health insurance, 
and a retirement account. I 
traveled around the world and 
own a home. Few minorities 
have these privileges.

There is an implicit social contract 
between the minority community and MSS 
departments. The tax dollars of minorities 
support the research and privileges of fac-
ulty in MSS departments; in return, MSS 
departments educate minority children. 
That social contract has broken.

LETTER TO  
THE EDITOR 

Obituary: Bernard J. Matkowsky
By Alvin Bayliss, Michael J. Miksis, 
and Vladimir A. Volpert

On June 11, 2020, our friend and col-
league Bernard J. Matkowsky passed 

away. He was 80 years old. Bernie joined 
the faculty of Northwestern University’s 
McCormick School of Engineering in 
1977 and retired in 2018, having estab-
lished a prestigious reputation at both the 
university and within the greater applied 
mathematics community.

Bernie graduated 
from the City College 
of New York in 1960 
with a degree in elec-
trical engineering. He 
proceeded to earn two 
master’s degrees (in 
electrical engineering 
and mathematics) from 
New York University 
(NYU). Bernie received 
his Ph.D. in mathematics 
from NYU in 1966 under 
the direction of Joseph 
Keller. He then joined 
the faculty at Rensselaer 
Polytechnic Institute 
before eventually moving 
to Northwestern, where 
he remained for the rest of his career.

Bernie made numerous major contribu-
tions to the field of applied mathematics. 
These developments include advances in 
asymptotic analysis of singularly perturbed 
problems, dynamical systems, stochastic 
differential equations, and pattern forma-
tion and scientific computation — despite 
his oft-stated remark that “gentlemen don’t 
compute.” In terms of application areas, 
he contributed significantly to combustion 
science and solid and fluid mechanics, 
among other disciplines.

Bernie’s colleagues and peers regularly 
recognized him with honors too numerous 

to list in detail. These awards included a 
Fulbright-Hays Fellowship, a Guggenheim 
Fellowship,  two medals from the Russian 
Academy of Sciences, and recognition 
as an Institute for Scientific Information 
Highly Cited Researcher. He was a Fellow 
of SIAM, the American Association for the 
Advancement of Science, and the American 
Physical Society. Bernie published more 
than 250 papers during his career. Upon 
his retirement from Northwestern, the 
Department presented him with bound 

copies of his com-
plete papers, which 
extended to four 
thick volumes.

Bernie’s service 
to Northwestern’s 
Department of Engi-
neering Sciences 
and Applied Math-
ematics—as well as 
the applied math com-
munity at large—was 
legendary. He served 
as department chair 
for six years, guid-
ing the department 
through some chal-
lenging situations. 
Even after stepping 
down as chair, Bernie 

was an ever-present force, providing sound 
advice and support on a continuing basis.

Along with his colleagues Stephen Davis, 
Ed Olmstead, and the late Ed Reiss, Bernie 
helped build the department in the late 
1970s and early 1980s; his duties included 
recruiting and mentoring the current senior 
faculty. Even while in ill health during his 
later years, Bernie never lost his devotion 
to the department and its faculty, and was 
always willing to provide advice and global 
perspectives. His unwavering focus on the 
application of math to real-world problems 
in science and engineering inspired a depart-

ment that was unique for its time and has 
served—and continues to serve—as a model 
for other applied mathematics departments 
and programs around the country.

Outside of his department at Northwestern, 
Bernie remained an active member of 
SIAM. He served on the Editorial Board of 
the SIAM Journal on Applied Mathematics 
for 18 years (1977-1994), which includ-
ed a stint as associate managing editor 
(1978-1982). He also acted as vice chair 
of the SIAM Activity Group on Dynamical 
Systems (1988-1990). In 2017, Bernie 
received SIAM’s John von Neumann Prize 
and delivered the associated prize lecture at 
the 2017 SIAM Annual Meeting.1

Bernie was an outstanding advisor, men-
tor, and friend to his students, preparing 
them for successful careers in applied math-
ematics. He had a wide network of collabo-
rators that reached Israel, Europe, and the 
former Soviet Union. In particular, Bernie 
recognized the rich heritage of theoreti-
cal combustion that was developed in the 
USSR. He was instrumental in disseminat-
ing this heritage in the U.S. via published 
papers and collaborations with eminent 
Soviet combustion theorists.

Bernie is survived by his wife Fraydie 
of 55 years, three children—David, 
Daniel, and Devorah—and six grandchil-
dren. Those whose lives he touched will 
never forget him. His vision, energy, and 
devotion to applied mathematics, both at 
Northwestern and throughout the country, 
will remain a lasting legacy.

Alvin Bayliss, Michael J. Miksis, and 
Vladimir A. Volpert are professors in 
the Department of Engineering Sciences 
and Applied Mathematics at Northwestern 
University. All three interacted extensively 
with Bernard Matkowsky for many years.

1 https://sinews.siam.org/Details-Page/
singular-perturbations-in-noisy-dynamical-
systems

Bernard J. Matkowsky, 1939-2020. 
Photo courtesy of Alvin Bayliss.
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may be more effective [8]. And while live-
stock grazing is generally believed to nega-
tively impact some species’ environments, 
research has indicated that it can actually 
promote kangaroo rat recovery if it reduces 
vegetation coverage [6].

Mathematical modeling can serve as 
a complementary tool to experimental 
studies for understanding the implications 
of management or control strategies. It 
is both inexpensive and able to provide 
real-time management methods that do 
not require extended periods of data col-
lection. However, model predictions rely 
heavily on the data’s accuracy and the 
assumptions used in model development. 
Nevertheless, models can provide use-
ful insights—even when limited data is 
available—and help generate hypotheses 
that inform experimental designs. Here 
we present a general modeling approach 
for the study of population recovery. This 
approach is adaptable to various situations 
and may assist in the identification of 
effective control strategies.

How Can We Model Recovery?
Depending on the population under con-

sideration, a population’s recovery may 
take many forms. If we wish to mathemat-
ically model recovery, we must first define 
the way in which a population’s size 
changes over time. To do so, we describe 
a population using a matrix model that 
allows us to distinguish between individu-
als in different developmental stages.

Consider a female population that is 
divided into m  stages. Denote the den-
sities of these stages at time t  with 
n( ) : [ ( ), ( ), , ( )] ,t n t n t n tm= …1 2

  where  
signifies the transpose of a vector. Let 
A n[ ( ( ), ( )), ( )]q  t t t  be the projection 
matrix for the population at time t  that 
describes individuals’ transitions between 
the different stages. This matrix is depen-
dent on the environment at time t—as 
described by ( )t —as well as the vital rates 
that are realized by this environment and 
the current population density q( ( ), ( )). t tn  
The matrix model determines the popula-
tion at the next time step:

    n A n n( ) [ ( ( ), ( )), ( )] ( ),t t t t t+ =1 q  
     (1) 
           

t = …0 1 2, , , .

We use   to describe the proportional 
reductions in vital rates that result from an 
environmental disturbance.

We can define population recovery as 
occurring when the total population reaches a 
designated threshold Nrec ,  such as the popu-
lation’s carrying capacity or size prior to the 
disturbance. If we assume that a disturbance 
transpires at time t=0,  the recovery time 
will be the smallest integer solution to

     (2)
  

A n n
i

t

reci i i N
=
∏ ≥

0

0[ ( ( ), ( )), ( )] ( ) .q  

The simplest way to describe a distur-
bance is with a step function, which dictates 
that the effects of a disturbance are either 
“on,”  ( ) ,t = 0  or “off,” ( ) .t = 0  If we 
assume that the environment follows a step 
function and population growth is indepen-
dent of density (as may be appropriate for 
endangered populations), the recovery time 
becomes the solution to the equation

       1 A A nm
t T T

rec
C C Nᵀ

ε0 0
0− =( ) ,   (3)

where 1m  is a m´1  vector of ones.

How Sensitive are             
Recovery Predictions? 

Sensitivity analysis measures the way in 
which small perturbations in a model param-
eter affect model output. When examining a 
population’s recovery, the recovery time’s 
sensitivity to a model input can help identify 
the most effective management or control 
strategy. One can calculate sensitivity in its 
simplest form just by taking a derivative. 
Using (3) to model recovery, we can find the 
recovery time’s sensitivity by implicitly dif-
ferentiating this equation. For instance, the 
sensitivity of the recovery time with respect 
to the magnitude of impact is given by 

   
dT
d
rec m

T T
m

T
m m

T

rec C

C Cε

ᵀ ᵀ

ε
ᵀ ᵀ

0

0

0

0
0
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⊗
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0
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where the Ä operator denotes the 
Kronecker product and the vec operator 
converts a matrix into a column vector by 
stacking the matrix’s columns. In a simi-
lar manner, we can also use (3) to derive 
sensitivity formulas of the recovery time 
with respect to a vital rate or the initial 
population distribution [1].

To illustrate the utility of equations such 
as (4), we present an application that inves-
tigates the recovery of sperm whales, which 
are impacted by a variety of disturbances 
that include oil spills and noise pollution. 
We use a discrete-time stage-structured 
model to examine a sperm whale popula-
tion [3]. In Figure 1 (on page 1), we present 
the recovery time’s sensitivity for a sperm 
whale population with respect to changes in 
the magnitude of impact 0  and duration of 
impact TC . These graphs indicate that the 
recovery time is more sensitive to changes in 
0  than TC .  For instance, consider the effect 
of a 20 percent increase in these two param-
eters. If 0 0 20= . ,  a 20 percent increase 
in 0 heightens survival reductions from 20 
to 24 percent, resulting in an additional 53 
years of recovery time. In contrast, when we 
consider the recovery time’s sensitivity to 
changes in the duration of impact, this graph 
approaches a value close to six. Therefore, 
each additional year of impact increases the 
recovery time by approximately six years. 
If we thus increase TC  from 10 to 12 years 
(a 20 percent increase), the recovery time is 
only extended by 12 years.

Graphs such as Figure 1 (on page 1) pro-
vide important insights into a population’s 
recovery and management following a dis-
turbance. In the context of sperm whales, 
Figure 1 suggests that conservation efforts 
should focus on reducing the magnitude of 
impact rather than the duration. In the case 
of a contaminant spill such as oil, this type 
of mitigation might include strategies that 
focus on removing the contaminant from 
the water. Similar analysis also indicates 
that management should concentrate on 
the mature individuals. As illustrated by 
this example, our model framework may 
provide useful insights even when limited 
data is available.
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Solving Combinatorial Optimization
Problems on Quantum Computers
By Yuri Alexeev, Jeffrey Larson, 
Sven Leyffer, and Ruslan Shaydulin

The rapid solution of combinatorial 
optimization problems benefits numer-

ous applications. Quantum computing has 
recently attracted considerable attention 
due to numerous algorithms with expo-
nential speedup over state-of-the-art classi-
cal algorithms. However, no demonstrably 
faster quantum algorithm currently exists 
for combinatorial optimization. The quan-
tum approximation optimization algorithm 
(QAOA) is a candidate quantum algorithm 
for combinatorial optimization on gate-
model quantum computers, such as those 
developed by IBM, Google, and Rigetti 
Computing. Here we overview the funda-
mentals, advantages, disadvantages, and 
current state of QAOA.

Edward Farhi and collaborators first 
introduced QAOA in 2014 to improve 
the best-known approximation ratio for a 
specific maximum satisfiability problem 
(Max E3LIN2) [2], though researchers have 
since developed a better classical algo-
rithm. While QAOA has yet to theoretically 
improve upon the best classical algorithms 
for any problem class, it continues to attract 
interest within the quantum computing and 
optimization communities.

The reasons for this interest are twofold. 
QAOA is one of few algorithms that can 
reliably run on near-term quantum devices. 
QAOA and its generalization—the quantum 
alternating operator ansatz [4]—can also 
tackle a wide class of combinatorial opti-
mization problems that are computationally 
difficult and ubiquitous in applied mathe-
matics. To disentangle the hype from reality, 
we first recap the mathematics of quantum 
computation and QAOA. Consider the com-
binatorial optimization problem over the 
Boolean hypercube and its reformulation:

min ( ) min ( ) ( ),
{ , } { , }

{ , }
y y

w
wy w y

∈ ∈
∈

⇔ ∑
0 1 0 1

0 1
n n

n

f f 1

  (1)

where the second formulation is an equiva-
lent representation of f ( )y  and 1w y( )  is the 
indicator function that takes the value 1 if 
w y=  and 0 otherwise.1 Note that construc-
tion of such an indicator polynomial is sim-
ple but might require 2n  terms in the sum. 

This technique can convert the objective 
function f —which acts on the Boolean 
hypercube—into an operator f̂  that acts on 
the 2n-dimensional space 2n

 in the follow-

1 This representation is a version of the 
Fourier expansion of f . Further discussion 
of Fourier analysis of Boolean functions is 
available in [7].

ing way: ˆ ( ) ,f f i
i i
⋅ = ∀e y e  where ei

n

Î2  
is an element of an orthonormal basis 
{ }ei i

n

=1
2  of 2n

 that encodes a binary string 
y Î{ , } .0 1 n  Because dim( ) ,

2 2
n n=  one 

can use any basis of 


2n

 to encode all bina-
ry strings y Î{ , } .0 1 n  We can construct f̂  
by replacing the indicator function 1 yei

( ) 
with the projector operator e ei i

T( ) ,*  where 
ei

* denotes the complex conjugate of ei . 
Since { }ei i

n

=1
2  is an orthonormal basis, this 

projector behaves like the indicator func-
tion: e e e ei i

T
j j( )* =  if i j=  (operator acts 

as identity) and is otherwise 0. While 
illustrative, this view does not provide 
a recipe for efficient construction of f̂  
for a given f .  A comprehensive list 
of rules on constructing operators f̂  
is available in [3].

We now connect the combinatorial 
optimization problem to a quantum 
computer. We represent the state of 
an n-qubit quantum computer with 
a norm-1 vector in 2n

. By select-
ing the basis in 2n

 to embody all 
binary strings y Î{ , } ,0 1 n  we can 
convert our cost function into a quan-
tum operator that acts on a quantum 
computer’s state space. Note that this 
operator is simply a diagonal matrix. 
QAOA considers the following fam-
ily of parameterized vectors:

 
x( , ) ( ) ,ˆ ˆ
β γ β γ= ∈− −

=
∏ e ei m i f

i

p
i i

n
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where p Î,  β πÎ [ , ] ,0 p  γ π∈[ ]0 2, p
  are 

free parameters, and 1=
1

2n i iΣ e .  The mix-

ing operator m̂  is a nondiagonal matrix 
that “mixes together” terms that correspond 
to different basis vectors. Researchers typi-
cally employ a “transverse field” operator 
as the mixing operator [4]. 

Figure 1. Optimization landscape for MAXCUT on an 
8-node graph (brighter is better). The landscape is non-

convex with two low-quality local optima,
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γ π∈[ ]0, .  Figure courtesy of Ruslan Shaydulin. 
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scans provides insight into an infection’s 
severity by identifying numerous patterns 
of opacification (see Figure 2).

The prevalence of these patterns, which 
correlate with the severity of infection, are 
associated with different stages of COVID-
19. Quantification of both the WAL per-
centage and the opacification composition 
enables efficient estimation of the disease’s 
stage and potential patient outcome.

Radiologists typically analyze three-
dimensional (3D) images. However, 3D 
quantitative assessment is both difficult and 
time consuming. Computerized techniques—
particularly machine learning methods that 
are based on deep convolutional neural net-
works (CNNs)—can aid in this endeavor.

Researchers have widely applied deep 
learning-based methods in vision. These 
methods are based on a simple model:

 
   

Y Y
j j j

F j n+ = = …1 1( , ), , , ,q

where Y
j
 specifies hidden layers, Y

1 is 
the original 3D image, and the function 
F  (which depends on the parameters q) 
is typically composed of convolutions and 
a nonlinear activation function. One of 
the most successful architectures in recent 
years employed a function of the form 
F G

j j j j j
( , ) ( , ).Y Y Yq q= +  This archi-

tecture, called a residual method, is linked 
to the discretization of the ordinary differ-
ential equation (ODE) [4]:

       
Y Y
.

=G( , ).q

In recent years, scientists have used 
such networks in medical imaging; several 
groups are now utilizing them to combat 
COVID-19. Although researchers have pro-
posed plenty of artificial intelligence (AI) 
systems to provide assistance with the diag-
nosis of COVID-19 in clinical practice, AI 
has not yet shown any significant impact in 
improving clinical outcomes.

As part of a project that is spearheaded 
by Vancouver General Hospital, we aim to 
improve the clinical diagnosis—and par-
ticularly the prognosis—of COVID-19. We 
are combining advanced machine learning 
algorithms with annotated CT scans to 
develop a quantitative diagnostic tool that 
can help physicians diagnose and man-
age COVID-19 patients. Similar to other 
undertakings, the basic idea involves using 
annotated images and then training a deep 
learning network that can automatically 
classify areas on the 3D CT scan based on 
their type. Assuming that this can be done 
successfully, one can estimate the different 
labels’ volumes—in addition to the per-
cent WAL—and correlate them to clinical 
outcomes. This approach thus allows prac-
titioners to not only diagnose COVID-19 
patients (which radiologists can do rela-
tively easily), but also provide quantitative 
analyses that predict outcomes.

Data is one of the most important aspects 
of such a project. We were fortunate to 
obtain nearly 5,000 CT images from Iran; 
China; South Korea; Italy; Saudi Arabia; 
and Vancouver, Canada. Volunteer physi-
cians in Vancouver then annotated this data, 
obtaining a large and diverse dataset for 
training, validating, and testing.

Although we initially imagined working 
with fairly standard networks and optimiza-

tion routines for segmentation, we quickly 
encountered two main problems. The first 
issue is the variability between physicians 
in terms of the “correct” segmentation. 
Our images are very different from classi-
cal machine learning applications — such 
as the segmentation of objects on a street, 
wherein a nonexpert can easily identify 
the classes. In one of our first studies, 12 
physicians segmented the same image. The 
results varied significantly (see Figure 3).

This variability implies that it is mis-
guided to use simple objective functions 
(like cross entropy) that are common in 
deep learning to guide the optimization 
process. It also indicates that utilization of 
well-known metrics, such as Intersection 
Over Unions, to check the segmentation’s 
quality is misguided as well. To handle the 
variability, we developed a noise model 
and included it in the optimization process. 
Creation of this model and its subsequent 
involvement in training procedures was a 
main goal in our effort to ensure that the 
results were meaningful for clinical use.

The size and dimension of the prob-
lem presented a second bottleneck. Unlike 
most image analysis problems, CT is typi-
cally collected in three dimensions and 
presents 3D targets. True comprehen-
sion of a CT image’s clinical implication 
requires a 3D understanding of structures. 
Previous researchers have employed 3D 
CNNs, mainly for video. However, these 
networks—especially when deep—tend to 
require a large amount of memory. This 
complication makes it impossible to train 
a deep network in three dimensions with-
out special hardware. In response, and 
inspired by hyperbolic partial differential 
equations, we developed hyperbolic neural 
networks that necessitate a fixed amount 
of storage — a fraction of the storage 
required when training typical networks 
[2, 5]. These hyperbolic networks allow us 
to train deep networks on high-resolution 
3D images. They are based on the leapfrog 
discretization of the second-order ODE,

       Y Y
..

=G( , ),q
 

and rely on the properties of hyperbolic 
systems that move forward and backward 
in time. This permits us to train deep neural 
networks on modest hardware.

Vancouver General Hospital is current-
ly validating the results of our research, 
which will soon be released as open 
software.1 Ultimately, we hope to provide 
radiologists around the world with better 

1 https://github.com/UBC-CIC/COVID19-
L3-Net

tools for the diagnosis and prognosis of 
COVID-19 patients.

This work is based on Eldad Haber’s 
minitutorial presentation as part of the 2020 
SIAM Conference on Mathematics of Data 
Science (MDS20), which occurred virtually 
in May and June. Haber’s presentation is 
availabe on SIAM’s YouTube channel.2

The figures in this article were generated 
by the authors.
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Figure 2. Classes annotated in the dataset, as well as the class groupings we utilized in 
our experiments.

Figure 3. Variability between 12 physicians who segmented the same image slices.
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By David Donoho, Mahsa        
Lotfi, and Batu Ozturkler

Nobel Prize-winning economist Paul 
Romer views the global COVID-19 

shutdown as an economic calamity. Trillions 
of dollars of economic losses fell on indi-
viduals, businesses, and governments; these 
losses will become permanent if society does 
not soon resume pre-virus activities. Romer, 
who previously served as Chief Economist 
of the World Bank, proposes a confidence-
inspiring path out of the shutdown based 
on dramatically expanded COVID-19 test-
ing. He indicates that everyone in the U.S. 
should get tested every two weeks. Those 
who test positive should self-isolate while 
the rest of the economy reopens, enabling 
new jobs and investments.1 Romer’s simula-
tions reveal that this technique will keep the 
population’s active infection rate below five 
percent, ensure that most people do not get 
infected, and spur rapid economic recovery.

Unfortunately, we currently cannot possi-
bly test at the levels Romer envisions, which 
involves screening seven percent of the pop-
ulation every day. For context, only about 
four percent of U.S. residents were tested for 
COVID-19 from March through May.

Inspired by the call for a dramatic scale-
up of testing, statistician David Donoho 
reviewed a recently emergent research front 
in which mathematical and statistical ideas—
implemented through data science—can 
enable a rapid expansion of testing capabili-
ties worldwide. He surveyed this new front 
during an invited presentation at the inaugu-
ral 2020 SIAM Conference on Mathematics 
of Data Science (MDS20),2 which occurred 
virtually in May and June, in hopes that the 
SIAM community would contribute to novel 
research trends related to COVID-19.

Such trends continue to come together in 
part due to the new medRxiv preprint server 
for health sciences. Mathematical scientists 
have enjoyed the arXiv preprint service 
for nearly 30 years and are accustomed 
to sharing information universally, rapidly, 
and freely. However, medical literature was 
always restricted and paywalled. In 2019, 
medRxiv was founded as an offshoot of 
bioRxiv to provide the capability for globally 
visible medical research preprint literature.

The COVID-19 crisis brought medRxiv to 
life. A stream of COVID-19 postings began 
in January 2020; by March, hundreds of items 
were flooding in daily. Submissions covered 

1 https://paulromer.net/roadmap-to-reopen-
america

2 https://www.siam.org/conferences/cm/
conference/mds20

Multiplexing involves pooling samples 
from several patients, wherein each patient’s 
sample appears in multiple pools and 
each pool contains samples from multiple 
patients (see Figure 2). The total viral load 
in each test sample is roughly the sum of 
the viral loads contributed by every sample 
in that pool. One can collect the viral loads 
that underly T  tests into a T  by 1 vector 
y. The tested viral loads y  are related to 
the original viral loads x  via matrix multi-
plication y x,=A  where A  is a T  by N  
binary matrix that indicates which patients’ 
samples contribute to which test pools. Now 
the problem involves inferring the sparse 
vector x  from (noisy, partial, binary, and 
linear) information about y.  Researchers 
sometimes employ multiple rounds of mea-
surement y x

r r
A= ,  r R= …1, , ,  with round 

r 's  pooling matrix A
r
 dependent on the 

last round’s test results y
r -
.1  One can then 

infer x  from y y y y= …[ , , , ],1 2 R
 once again 

obeying y x=A  — now with block matrix 
A A

r
R

r
=⊕ =1 . Scientists can build matrix 

A with appropriate use of randomness or 
delicate constructions that involve special 
bipartite graphs, special structured matrices, 
or even information-theoretic codes.

Eventually, one deciphers the test results 
y  to determine which samples must contain 
the COVID-19 virus. The key point is that 
the total number of tests T N< ,  so practi-
tioners are using T   test kits to evaluate the 
disease status of N  patients.

Deciphering the medRxiv proposals 
exploits knowledge of the instance data 
( , )A y  and assumed sparsity of x. These 
papers are motivated by many techniques 
with which the SIAM community is 
familiar, including sequential approaches 
such as group testing or combinatorial 
group testing and one-round approaches 
inspired by compressed sensing and one-
bit compressed sensing.

Donoho overviewed the basic RT-qPCR 
test—the gold standard of COVID-19 test-
ing efforts—and explained why this tech-
nology could pair well with multiplexed 
samples. He also highlighted several addi-
tional research efforts that explicitly made 
the connection to mathematical sciences. 
For example, one team utilized combi-
natorial group testing [3, 5] and another 
employed compressed sensing [4]. Both 
techniques propose one-round-only meth-
ods and show—as in [6]—that they can 
successfully infer the disease status of 
N  patients from T  tests at low levels of 
population prevalence, where

         N T»10 .    (1)

When successful, this marks a tenfold 
expansion in the number N  of patients 
whose disease states can be determined for 
the same number T  of units of RT-qPCR 
machine time and test kits (N  patient sam-
ples and the associated per-patient pro-
cessing are of course still required). This 
approach would naturally require a very 
low prevalence of infection; however, N  
can be significantly larger than T  even at 
a higher prevalence. A nice benefit of these 
two methods is that they are one-round-only 
( ),R=1  so they experience less processing 

delay than multi-round procedures — a fact 
that patients will certainly appreciate.

Donoho was floored by the rapidity with 
which this research front developed, pro-
ducing in mere weeks not only fascinating 
proposals and ideas but actual protocols 
for daily use. To close his MDS20 talk, he 
looked beyond today’s RT-qPCR standard 
for COVID-19 testing and discussed some 
new technologies that may soon arrive. The 
need to dramatically increase global test-
ing is clear, and the exuberant growth of 
new research fronts—combined with key 
mathematics-based enabling technology—
inspires hope for future testing endeavors.

This article is based on David Donoho’s 
invited presentation as part of the 2020 
SIAM Conference on Mathematics of Data 
Science (MDS20), which occurred virtually 
in May and June. Donoho’s presentation is 
availabe on SIAM’s YouTube channel.3
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everything from individual 
case reports and documen-
tation of care protocols to 
fully-developed articles 
about therapeutic interven-
tions intended for major 
journals. Contributors in-
cluded doctors sharing 
patient data, medical teams 
conducting clinical trials, 
public health officials ana-
lyzing national databanks, 
medical device engineers 
discussing new technolo-
gies, and citizen scientists 
focusing on COVID-19 
during lockdown.

Several of these articles 
addressed the need to scale up testing 
efforts. Many papers sought to show that 
one could repurpose existing COVID-19 
test kits in a multiplexed fashion, result-
ing in a substantial expansion of the total 
patient caseload under screening without 
increasing the number of testing stations or 
utilizing extra test kits.

During his talk, Donoho spotlighted two 
early papers in this burgeoning literature. 
One paper multiplexed patient samples up 
to five at a time in an organized protocol 
that immediately expanded effective test-
ing capacity—the number of patients whose 
disease status can be determined—by more 
than a factor of two [1, 2]. Another submis-
sion suggested that much more was possible 
[7]. This paper documented the ability to 
multiplex up to 64 patient samples at a time 
and still detect the presence of COVID-19 in 
one individual patient. In principle, a single 
quantitative reverse transcription polymerase 
chain reaction (RT-qPCR) run on a pooled 
sample thus determines whether anyone 
among a group of 64 patients has the disease.

One principle is common to papers in 
this emergent research front: most people 
are not actually infected during population-
level testing, so they will not have the active 
virus in their test samples. Intuitively, we 
do not really need to consume one test kit 
per patient if so few patients are actually 
infected. Instead, we need both multiplex-
ing and math (see Figure 1).

Formally speaking, a test measures a 
sample’s viral load. If we consider a group 
of N  patients, the vector x  of N  viral 
loads will be sparse (mostly zeros) because 
the majority of people are not infected. 
Mathematically, the problem thus seeks 
to most efficiently—i.e., with fewest test 
kits and the least possible wall-clock-time 
delay—determine which entries are nonze-
ro in a large, sparse vector of viral counts.

The Mathematics of Mass Testing for COVID-19 

Figure 1. An overview of the pooling scheme proposed in [4]. A total of n patient samples 
are pooled into m  tests in a combinatorial manner. Each patient sample is included in multiple 
tests and each test contains multiple patient samples. Figure courtesy of [4].

Figure 2. A binary matrix of size 16 x 40 that tests 40 patient samples in 16 tests. Each row indicates which 
samples must be pooled together in each test. Figure courtesy of [4].
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We use a classical optimizer to vary the 
free parameters β γ,  and bring x( , )β γ  as 
close as possible to the basis vector ei  that 
encodes the binary string y Î{ , } ,0 1 n  which 
is the original problem’s solution. We have 
thus replaced the combinatorial optimiza-
tion over y  with a nonconvex optimization 
over β γ, .  Figure 1 (on page 3) illustrates 
the objective landscape. One can read the 
optimization result from the quantum com-
puter by performing a measurement, which 
is equivalent to sampling from a proba-
bility distribution; when measuring vector 
x( , ),β γ  the result is ei  with the probability 
|( ) ( , )| .*e xi

T β γ 2  If x e( , ) ,β γ = i  the mea-
surement result will be ei  with probability 1.

Research has shown that one cannot 
efficiently sample from the output of 
QAOA under reasonable complexity the-
ory assumptions, even with only one step 
( ).p=1  However, the fact that QAOA 
is classically hard to simulate does not 
speak to its potential for solving optimiza-
tion problems. Nevertheless, a number of 
obstacles prevent people from understand-
ing and realizing its potential, defined as 
the approximation ratios that it can achieve.

First, the following elements impede the 
ability to understand QAOA’s potential:

(i) the lack of analytical results about QAOA 
behavior in depths other than p=1 or p=∞

(ii) the lack of empirical results about 
QAOA scaling with problem size and QAOA 
performance on problems of realistic size.

Second, the subsequent factors hinder 
the realization of QAOA’s potential (i.e., 
achieving quantum advantage through 
optimization):

(i) the need for parameter optimization 
(i.e., optimizing over β γ, )

(ii) the mismatch between the capabilities 
of available hardware and QAOA’s hard-
ware requirements, in terms of the number 
of qubits, speed, and fidelity of gates.

QAOA’s potential is difficult to analyze 
in general, but two recent results provide 
analytical upper bounds on QAOA per-
formance. Matthew Hastings demonstrated 
that classical local one-step algorithms 
achieve the same (or better) performance 
for p=1 as one-step QAOA [5]. Another 
group analyzed QAOA’s locality and sym-

metry—with the practical corollary that the 
classical Goemans-Williamson algorithm 
for MAXCUT outperforms it in constant 
depth (i.e., constant p)—and provided an 
upper bound for arbitrary p  [1]. While these 
results are interesting, a near-term potential 
of QAOA is its use as a heuristic. In this 
case, the worst-case QAOA performance 
may not predict its average-case perfor-
mance. Unfortunately, QAOA’s average-
case analysis is impeded by its analytical 
complexity and the impossibility of numeri-
cal experiments for problems of nontrivial 
size, due to the lack of appropriately capa-
ble hardware and the computational cost of 
classical simulation. The greatest potential 
for better understanding lies at this point.

The dearth of methods to reliably and 
efficiently solve the parameter optimiza-
tion within each QAOA iteration severely 
limits the realization of its potential. Any 
given problem and depth has no a priori 
knowledge of the parameter values b  and 
g  that result in the distribution x( , )β γ  that 
maximizes f . We must therefore search for 
these values, often with classical numerical 
optimization routines. While the optimiza-
tion appears to be simple in higher depths 
( )p n>  and is trivial in the limit p→∞, 
QAOA’s most promising regime is shallow 
(small constant) depth because it can run on 
near-term hardware. For small depth, the 
objective over b and g  is often noncon-
vex and contains many poor local optima. 
Figure 1 (on page 3) is an example objective 
landscape in the p=1 case.

QAOA’s performance depends critically 
on the quality of the parameters b  and g. 
However, a single local optimization run is 
the current default in multiple QAOA pack-
ages, even though the objective has many 
suboptimal local optima. One can gain 
considerable improvement via multistart 
optimization methods [9] or machine learn-
ing approaches [6], yet these techniques 
also struggle when p  is a moderate size. 
The best numerical optimization routine 
for identifying parameters within QAOA is 
largely an open question.

The second limiting consideration is the 
required large number of qubits and fast, 
high-fidelity gates to execute QAOA circuits 
with p1. Classical algorithms can achieve 
excellent approximation ratios in minutes—
if not seconds—for most practically interest-

ing binary optimization problems with less 
than a few hundred variables. Therefore, 
until quantum hardware with hundreds of 
qubits is accessible, QAOA will not be able 
to compete with classical state-of-the-art 
methods under the current approach. Such 
devices may become available in the next 
several years. Hardware size is growing 
steadily, but simply increasing the qubit 
count is not enough. As QAOA gate count 
requirements grow linearly with the problem 
description and depth p,  they quickly sur-
pass current hardware’s capabilities.

For example, QAOA requires execution 
of d n p´ ´  2-qubit gates for MAXCUT on 
a d -regular graph on n  nodes with depth p 
(assuming full connectivity between qubits 
and “controlled NOT” as the native 2-qubit 
gate). This in turn necessitates the execution 
of hundreds of 2-qubit gates for moderate-
sized problems, which is beyond the capac-
ity of existing hardware.

In our opinion, ion-trap architectures 
are one of the most promising near-term 
quantum computers for faithful execution 
of QAOA circuits due to the high fidelity 
of gates — albeit at low frequency. Several 
researchers have demonstrated QAOA 
simulations with 40 qubits and depth p=1 
and p= 2  [8]. They found that increasing 
p= 2  did not improve the solution’s qual-
ity because the error that resulted from 
the execution of extra gates negated any 
benefits. These results underpin the impor-
tance of high-fidelity quantum hardware to 
make significant progress. We hope that 
the ion trap and other technologies will 
improve in the midterm. Such advances 
will allow for large-scale evaluations of 
quantum optimization in realistic settings, 
paving the way for a better understanding 
of quantum optimization heuristics and 
the development of improved versions for 
near-term applications.

Acknowledgments: This material is 
based on work that is supported by the U.S. 
Department of Energy, Office of Science, 
Office of Advanced Scientific Computing 
Research under contract DE-AC02-
06CH11357.
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Chaos and Dynamical Systems. By David 
P. Feldman. In Primers in Complex Systems. 
Princeton University Press, Princeton, NJ, 
August 2019. 264 pages, $35.00.

While the field of dynamical systems 
continues to evolve, thus remaining 

true to its inherent definition, mathemati-
cians’ efforts to utilize these concepts to 
understand order and disorder are unwav-
ering. David P. Feldman’s new book, 
Chaos and Dynamical Systems, serves 
as an introduction to the field and falls 
somewhere between popular overviews on 
chaos theory and high-level textbooks on 
dynamics. His thoughtful approach engag-
es readers at a variety of levels and draws 
them into the subject’s distinct beauty.

Feldman offers simple, clear explana-
tions that give meaning to his equations and 
figures and provide deeper insight for those 
in search of more detail. The book expects 
readers to be comfortable with algebra and 
functions, but goes light on calculus. Its 
readability and careful build-up to more 
advanced topics avoids an abstract leap 
that befalls many other texts in this field. 
Chaos and Dynamical Systems is therefore 
appropriate for an both undergraduate sur-
vey course or a graduate course that covers 
the broader theme of applied mathematics. 
Even experts would likely find it to be a 
nice addition to their libraries.

Feldman addresses modeling in both dis-
crete and continuous dynamical systems, 
more commonly known as iterated func-

Chaos (and Dynamics) for All!
Feldman’s discussion of bifurcations in 

chapter six is a fascinating journey that 
“connects the dots” for the reader, so to 

speak. Using an example 
that pertains to population 
dynamics, he demonstrates 
a bifurcation with discourse, 
equations, and figures. The 

end of the chapter explores a broader his-
tory of bifurcation theory and its connection 

to the popular concept 
of tipping points, com-
plete with numerous 
suggestions for further 
reading.

Chapter seven tack-
les universality in 
chaos, which Feldman 
describes as “one of the 
most amazing results 
to emerge from the 
study of dynamical sys-
tems.” Appropriately, 
researchers can employ 
the logistic function to 
introduce orbits, state 
diagrams, and bifurca-
tion diagrams (which 
provide endless struc-
ture for investigation). 
Feldman then uses 
Feigenbaum’s constant 
and period doubling to 

extend abstract concepts to real-world exper-
imental observations. This process yields 
a general overview that touches on opera-

tors, critical transitions, renormalization, and 
applications in other physical systems.

Chapter eight turns to the classic Lotka-
Volterra predator-prey model and the 
Rössler equations to introduce phase space 
and the chaos-related phenomena that are 
only visible in higher dimensional continu-
ous systems. Feldman then utilizes Poincaré 
sections and delay coordinates to explore 
strange attractors in chapter nine. Although 
he only briefly touches on this incredibly rich 
subject, the suggestions for further reading in 
synchronization are excellent.

It is worth noting that Chaos and 
Dynamical Systems includes a few less tra-
ditional topics in dynamics, such as power 
laws and universality. Feldman concludes 
with a discussion of the spectrum of opin-
ions on complex systems and emergence. 
He admits that the fields of complex and 
dynamical systems are inherently interdis-
ciplinary, and believes that the different 
approaches keep them vibrant and appeal-
ing. Feldman’s enthusiasm for the subject 
is contagious, and anyone who picks up 
his book will surely be engaged. After all, 
how many math books actually describe 
the discovery of emergent phenomena as 
exciting and fun?

Lora Billings is dean of the College of 
Science and Mathematics at Montclair State 
University. Her research focuses on applied 
deterministic and stochastic dynamical sys-
tems that model applications in epidemiol-
ogy, physics, and ecology.

tions and ordinary differential equations. 
The models are openly motivated as qualita-
tive and intended to be descriptive or empir-
ical, and he evidently chooses 
each chapter’s classic exam-
ples based on their lucidity in 
standard analysis techniques. 
Not all simple models behave 
simply, and Feldman uses chapter three—
entitled “Interlude: Mathematical Models 
and the Newtonian 
Worldview”—to philo-
sophically discuss why 
researchers should opti-
mistically continue to 
believe that the world 
is understandable. The 
subsequent two chap-
ters introduce the 
concept of chaos, and 
Feldman writes that 
“Mathematical chaos 
is exquisitely lawful; a 
chaotic dynamical sys-
tem obediently follows a 
deterministic rule in per-
petuity.” He also admits 
that students are often 
disappointed by this 
notion, as they frequent-
ly expect something 
weirder or stranger. 
Nevertheless, Feldman 
continues with interesting analyses of the 
butterfly effect, Lyapunov exponents, and 
symbolic dynamics, among other topics.

Chaos and Dynamical Systems. By 
David P. Feldman. Courtesy of Princeton 
University Press.

BOOK REVIEW
By Lora Billings

Quantum Computers
Continued from page 3
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swMATH: A Publication-based 
Approach to Mathematical Software
By Wolfgang Dalitz, Wolfram 
Sperber, and Hagen Chrapary

The growing importance of mathemati-
cal software in everyday life—in 

applications such as internet communica-
tion, traffic, and artificial intelligence—
necessitates advances in software docu-
mentation services to raise awareness of 
existing packages and their usage. Such 
information helps potential software devel-
opers and users make informed choices 
about packages that could advance their 
work in modeling, simulation, and analy-
sis. At the same time, software presents 
novel challenges to information services 
that require the development of new meth-
ods and means of processing.

swMATH1 provides users with an over-
view of a broad range of mathematical soft-
ware and extends documentation services 
for publications related to such software 
(see Figure 1). It acts as a counterpart to 
the established abstracting and reviewing 
services for mathematical publications and 
has nearly 30,000 entries, making it one 
of the most comprehensive documentation 
services in mathematics.

A Publication-based Approach
swMATH employs a so-called pub-

lication-based approach that essentially 
extracts information about software from 
existing mathematical literature for doc-
umentation purposes (see Figure 2, on 
page 8). Publications tend to feature two 
types of software information. On one 
hand, they contain descriptions of software 

1 https://swmath.org

and provide details about the problem 
classes, algorithms, and test results. On 
the other hand, they offer data on soft-
ware usage and its appli-
cation areas and findings. 
swMATH conducts analysis 
by differentiating between 
publications that focus on 
software descriptions (stan-
dard publications) and uses 
(user publications). For example, a search 
for “integer programming” yields a list of 
software that includes SCIP, Gurobi, and 
CPLEX (see Figure 1).

The publication-based approach is suc-
cessful because a growing number of scien-
tific articles describe or cite mathematical 
software; for example, swMATH currently 
has 382,778 software references in 205,487 
different articles. Many publications spe-
cialize in algorithms and mathematical soft-
ware, and their analyses yield a great deal of 
information. As indicated by the aforemen-
tioned use of heuristic procedures, the pub-
lication-based method is largely automatic. 
However, accessing the mathematical lit-
erature continues to be a major challenge. 
Large bibliographic databases in mathemat-
ics—such as Mathematical Reviews2 and 
zbMATH3—offer nearly complete and sys-
tematic overviews of mathematical publica-
tions, beginning in 1868 and 1940 respec-
tively. These databases include reviews, 
abstracts, keywords, citation lists, and/or 
mathematical classifications. The data is 
available in structured form and thus allows 
for a field-based evaluation.

2 https://www.ams.org/mr-database
3 https://zbmath.org

swMATH adopts heuristic methods—in 
particular, analysis of characteristic word 
patterns and art words that are often used 

as software names—to 
evaluate zbMATH entries 
(which will be open access 
as of 2021). Searching 
titles and citations is par-
ticularly effective. One of 
swMATH’s main features 

is its ability to link software with the citing 
literature. Publication metadata in zbMATH 
entries helps derive a variety of directly and 
indirectly extracted software metadata.

In the case of directly derived metadata, 
software descriptions entail a review or 
abstract of standard publications. Keywords 
in standard publications characterize the 
mathematical area, background, and key-
words of the referenced user publications. 
The Mathematics Subject Classification 
code of standard or user publications uni-
formly assigns mathematical and applica-
tion areas. After all, publications that cite 
software comprise metadata that deliver 
contextual references and contact persons.

Figure 1. swMATH aims to provide a broad overview of existing mathematical software. 
For instance, a search for “integer programming” produces a list of software that includes 
SCIP, Gurobi, and CPLEX.

SOFTWARE  AND 
PROGRAMMING

See swMATH on page 8
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For indirectly derived metadata, the rela-
tionship between swMATH entries and 
citations indicates that a software is quoted 
more than 10 times on average, but the cita-
tion numbers are very different. High cita-
tion numbers indicate software acceptance 
and can be considered a metric of quality. 
Publication data provide information about 
the software’s developmental state. Finally, 
common citations in zbMATH entries point 
to similarity or dependency relationships 
between software artifacts.

Development of Software 
Documentation Services

Software documentation services must 
address the needs of both developers and 
users. Developers often wish to leverage 
existing software for collaboration or extend 
its capabilities with further development. 
And users require software to solve prob-
lems of interest, which necessitates the 
availability of source code, application pro-
gramming interfaces (APIs), documentation, 
and user experience information. Users must 
also have the ability to discover existing 
software that addresses particular problem 
classes (integer programming, for example).

A variety of mathematical software infor-
mation services meet these various needs, 
including services like GitHub that provide 
software development environments, espe-
cially code development; software archives 
such as Software Heritage4 that permanent-
ly archive software artifacts; and software 
documentation services like Wikipedia or 
software catalogs of user groups.

Accepting Mathematical   
Software in swMATH

The evaluation of software quality 
depends on many factors—including cor-
rectness, development level, user interface, 
support, hardware and software dependen-
cies, and licenses—that are also influenced 
by user perspectives. The swMATH data-
base is limited to entries from distinguished 
sources that help to ensure software quality:

• Entries extracted from zbMATH 
citations: The publication-based approach 
ensures that swMATH includes software 
artifacts cited in the zbMATH database. 
zbMATH evaluates only peer-reviewed 
publications, which particularly applies 
to publication results that are achieved 
using software. The citation is an indirect 
indicator of the software’s acceptance and 
subsequent quality. The same applies in 
principle to entries that result from evalua-
tion of the arXiv repository.

• Entries obtained from software 
journals: Journals specializing in scien-
tific software, like ACM Transactions on 
Mathematical Software5 or Mathematical 

4 https://www.softwareheritage.org
5 https://dl.acm.org/journal/toms

Programming Computation,6 also increas-
ingly include verification of reported results.

• Entries from software reposito-
ries: Software repositories, such as the 
Comprehensive R Archive Network7 repos-
itory for statistical software, have special 
requirements for inclusion. These stipula-
tions in turn provide indirect statements 
about an entry’s quality.

Enrichment
One can utilize swMATH entries to 

link software with related detailed infor-
mation, including the website, code, or 
API. Popular software often have their own 
URLs, though these links are not always 
permanent. Therefore, swMATH entries 
link to websites as well as scans of websites 
that are available in the Internet Archive.

Developer platforms like GitHub are fre-
quently used in the academic sector for dis-
tributed creation and further development. 
These platforms typically provide access 
to the latest versions of software but do 
not permanently secure previous software 
artifacts. Software Heritage has built an 
archive of software artifacts in recent years 
that periodically mirror, store, and share 
all freely available information from key 
developer platforms. swMATH cooperates 
with Software Heritage and connects entries 
to the available software artifacts.

By linking to software websites, the 
Internet Archive, and Software Heritage, 
swMATH offers much more than a list 
of existing mathematical software. Rather, 
it is a portal for mathematical software 
that accommodates the needs of various 
user groups. Nevertheless, the swMATH 
resource must be further expanded and 
developed. The publication-based approach 
means that swMATH entries are subject to 
delays caused by the publishing process. 
As a result, other sources—such as the 
arXiv and mathematical software publica-
tions—are included in the evaluation. Data 
analysis should thus be extended to as many 
journals as possible. The user interface also 
enables manual entry of additional informa-
tion. Furthermore, the portal allows one to 
embed software in its mathematical context, 
e.g., by connecting algorithms with possible 
software implementations. Researchers are 
currently discussing an extension of the 
approach that involves linking with algo-
rithms and test data, which seems realistic.

Wolfgang Dalitz is a scientist at Zuse 
Institute Berlin who works in the field of 
scientific information systems. He has been 
involved in building mathematical software 
libraries since the late 1980s. Wolfram 
Sperber has been editor of Zentralblatt für 
Mathematik since 2006. He retired from 
his position as a senior researcher at FIZ 
Karlsruhe in 2019. Hagen Chrapary is 
a software developer at Zentralblatt and 
Zuse Institute Berlin.

6 http://mpc.zib.de
7 https://cran.r-project.org

Figure 2. swMATH is a freely accessible information service for mathematical software. It 
provides access to an extensive database of information on mathematical software and also 
includes a systematic linking of software packages with relevant mathematical publications. 
Figure courtesy of Wolfgang Dalitz.

swMATH
Continued from page 7
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From Academia to Major League 
Baseball: The Journey of a Data Scientist
By Mike Dairyko

My love for mathematics blossomed in a 
linear algebra course during my soph-

omore year at Pomona College. I felt truly 
challenged in the subject for the first time, 
and I enjoyed the sense of accomplishment 
that came with grasping complex topics. A 
certain beauty exists within mathematics, 
inherent in the way that one can prove some-
thing given only a few base assumptions and 
a series of logical statements.

One day, my professor suggested that 
I apply to the Research Experiences for 
Undergraduates (REU) program to gain 
experience in mathematical research. REUs 
expose undergraduate students to research in 
their respective disciplines, provide opportu-
nities for networking, and offer a taste of the 
graduate school experience. REU projects 
receive funding from the National Science 
Foundation, which helps support participat-
ing undergraduates as they work on research 
projects at host institutions. During an REU, 
faculty or researchers from the student’s 
field mentor and teach him/her. I would 
strongly urge any undergraduate SIAM News 
reader who is interested in graduate school 
to apply for an REU. Due to encouragement 
from my professor, I ended up participating 
in two REU programs during my remaining 
collegiate summers. The mathematics with 
which I engaged during the REUs was well 
beyond the scope of classroom instruction, 
and both of my REU research groups pub-
lished our results; I was hooked! My partici-
pation in these programs altered my career 
path and ultimately inspired me to pursue 
a doctoral degree in applied mathematics at 
Iowa State University.

In my early years of graduate school, 
I was convinced that I was going to be 
a mathematics professor at a small lib-
eral arts college. My vision changed after 
I took “Introduction to Machine Learning” 
to complete a cognate course requirement 
for my degree. Machine 
learning piqued my interest 
because it was a combina-
tion of mathematics, statis-
tics, and computer science. 
As the course progressed, 
I found myself studying 
machine learning during the time I had set 
aside for research. Then I discovered data 
science and knew it was the area in which 
I wanted to pursue a career.

After earning my Ph.D., I began to look 
for jobs in the data science community. In 
my opinion, networking is an essential skill 
that is worth developing before the job search 
begins. Throughout my job search, I utilized 
the professional network that I had built over 
the course of my undergraduate and graduate 
years. As a result, I received an invitation to 
interview for a data science position with the 
Milwaukee Brewers Baseball Club.

I am currently the Senior Manager of 
Data Science for the Milwaukee Brewers. I 
lead the data science portion of the Strategy 
and Analytics Department for Business 
Operations and manage another data scien-
tist. My group acts as an internal consultant 
to support various departments within the 
Brewers, including Ticket Sales, Stadium 
Operations, and Marketing. My job scope is 
broad, but at the core I use machine learn-
ing to provide mathematical insights in 
relation to ticket sales and revenue. I have 
helped develop models to project game-by-

game ticket sales, turnstile, and revenue; 
likelihood of ticket purchase; marketing 
impact on ticket sales; and much more. I 
employ a combination of the programming 
language Python, database manager SQL, 
and dashboard tool Tableau to build my 

models, access and manipu-
late data, and create visual-
izations of my outputs.

During the season, one of 
my main priorities is to pro-
duce game-by-game ticket 
and revenue 

projections. To do so, my 
group incorporates his-
torical data—such as team 
performance, weather, and 
schedules—into multiple 
regression-based models 
and then consolidates 
the outputs in an easily-
digestible format. A large 
codebase both automates 
and maintains this process; 
the codebase is regularly 
tweaked to ensure that it 
is agile enough to handle 
the constant usage and 
flow of new information. 
While I take a quantita-
tive approach to creat-
ing these projections, the 
Ticket Sales Department 
relies on a more qualita-
tive approach with institu-
tional knowledge. A few 
days before each game, 
we meet to align the game 
forecast before distributing 
it throughout the organiza-

tion. Most of the time, the delta between 
the two projections is relatively close. 
Whenever major discrepancies are present 
in the numbers, we either find minor bugs 
in the code or a need to update institutional 
knowledge. Our projections are most accu-
rate when we utilize both qualitative and 
quantitative forecasts. These projections are 
then used for a variety of internal purposes, 
like concession and usher staffing, season-
wide budgeting, and marketing.

CAREERS IN 
MATHEMATICAL 

SCIENCES   

Mike Dairyko, Senior Manager of Data Science for the Milwaukee 
Brewers Baseball Club, at Miller Park on opening day in 2019. 
Photo courtesy of Danny Henken. 

See Major League Baseball on page 11
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Balancing a Knife, Euler’s Elastica, 
and the Mathematical Pendulum
While putting dishes in the sink, I tried 

to balance a knife on the edge of a 
pot and noticed an interesting effect: the 
knife balanced, and stably so, if the blade 
touched the water (see Figure 1). But noth-
ing worked when the pot was empty; the 
blade was too light.

The Mechanism
Before looking at the photo, one might 

think that the blade’s buoyancy would make 
the balancing act even more 
impossible, thus giving the 
handle further advantage. So 
what is responsible for the bal-
ance and stability? In Figure 1, 
the blade lifts some water up 
above the level of the remain-
ing surface; this creates suction that pulls 
the blade down. The lifted water is then 
added to the blade’s weight, and the equi-
librium is automatically stable because the 
restoring suctional torque is an increasing 
function of the outward tilt 
(up to a point). Surface ten-
sion also pulls the blade down, 
but this force is negligible. 
However, the role of surface 
tension is indispensable in 
another way — namely in pre-
venting air from entering the 
space underneath the blade. 
To test this role, I added dish 
soap to the water to see if 
the decreased tension would 
cause the knife to tip out. At 
first nothing happened, but I realized that 
was because the soap simply dropped to the 
bottom of the pot. When I mixed the soap 
with some water and then put it in, the knife 
tipped out. Soap can decrease water’s sur-
face tension by more than half, down from 
approximately 72 dyn/cm.

A Surprisingly Large Force
To estimate the magnitude of the force 

that is required to break the knife’s contact 
with the water, let us consider a slightly 
simpler case: a horizonal plate of area A  
touching the water’s surface (our knife is 
slightly tilted, hence the difference). The 
force required to break contact with the 
water turns out to be approximately

    F A g= 2 ρ σ ,    (1)

where r  is the water’s density and s  is the 
surface tension; I derive this formula at the 
end. The force is surprisingly large: for the 
area A m=1 2,  it is about 5 kg, i.e., roughly 
10 pounds. In contrast, the surface tension 
results in the force f  approximately pro-
portional to the plate’s perimeter P:

     f P»s ,

which is a much smaller quan-
tity than F  for the areas that 
are the size of our knife.

Euler’s Elastica
Consider the shape of the water’s surface 

along the straight edge of the knife in Figure 
1, assuming that this edge is also parallel 
to the surface. Figure 2 depicts the two-
dimensional section of this shape, which 
is governed by the equilibrium condition: 

Curvature k is caused by the pressure 
difference p  between the two sides of the 
water’s surface1 and is inverse proportional 
to the surface tension κ σ=p / .  Since the 
hydrostatic p gy=r  (the excess of the air 
pressure over water pressure), we have

                   k=cy,    (2)
 

where  The exact same equation 
describes Euler’s elastica: equilibrium 
shapes of elastic rods, except that c  can 
also be negative.

The Pendulum
By differentiating (2) with respect to the arc 
length s along the curve and recalling that 

κ θ= ′ and y ′= sinq  (here, 
′=d ds/ ), we get

             q q′′=c sin .

This is precisely the equa-
tion of the pendulum, with 
q=0 corresponding to the 
upside-down (unstable) 
equilibrium. In other words, 

1 Actually, one could call 
it the air’s surface with almost 
equal justification.

Figure 1. A knife balances stably on the edge of a full pot if 
the blade touches the water.

Figure 2. The shape of the water’s surface along the straight 
edge is an Euler’s elastica.

MATHEMATICAL 
CURIOSITIES
By Mark Levi

See Euler’s Elastica on page 11
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T he following is a short excerpt from 
Phylogeny: Discrete and Random 

Processes in Evolution by Mike Steel, 
which was published by SIAM in 2016. 
This text comes from chapter three, “Tree 
Shape and Random Discrete Phylogenies,” 
and is modified slightly for clarity.

This excerpt is the first installment of 
a new SIAM News feature called “From 
the SIAM Bookshelf,” which will periodi-
cally spotlight SIAM texts in areas of wide 
appeal to the greater applied mathematics 
and computational science community.

The Shape of Evolving Trees
[Extinction has] played a major role in 

the history of life; after all, most species 
are extinct.1 Suppose we sample some 
subset X  of species that are present today 
(species a-e  in Figure 1a) and then con-
sider the minimal tree linking these spe-
cies. This results in the so-called “recon-
structed tree” illustrated in Figure 1b. Let 
us view this as a rooted phylogenetic X -
tree (ignoring the length of the edges). It 
turns out that under very general assump-
tions concerning the speciation-extinction 
process, many models predict an identical 
and simple discrete probability distribution 
on RB X( ). Moreover, this discrete prob-
ability distribution can be easily described 
and is called the Yule-Harding (YH) model 
(or distribution).

To obtain a binary tree shape under the 
YH model, we start with a tree shape on 
two leaves and sequentially attach leaves, 
attaching a new leaf at each step to one 
of the leaf edges chosen uniformly at ran-

1 It is estimated that current plant and 
animal diversity preserves at most one to two 
percent of the species that have existed over 
the past 600 million years.

Predicting the Shape of Evolutionary Trees
with another ball of the same color. In our 
setting, a b= =1  and “blue” corresponds 
to the left-hand subtree and “red” to the 
right-hand subtree in the YH tree. At each 
step, the uniform process of leaf attachment 
ensures that Z

n
 has exactly the same prob-

ability distribution as the number of blue 
balls in the urn after n-2  steps. It is well 
known, and easily shown by induction, that 
in Pólya’s urn with a b= =1,  the propor-
tion of blue balls has a uniform distribution.

Lemma 1 provides the 
key to computing the YH 
probability of a tree.

Proposition 1. For any 
particular tree T RB nÎ ( ), 
the probability YH( )T  of 

generating T  under the YH model is given by

 
      

where V T
°
( ) is the set of interior vertices of 

T  and lv  is number of leaves of T  that are 
descendants of v,  minus 1.

Proof: Suppose that the two maximal 
subtrees T1  and T2  of T  are of size k  and 
n k- , where we may assume that 2k n£ . 
By Lemma 1, the probability of such a 
size distribution is 2 1/( )n-  if 2k n<  and 
1 1/( )n-  if 2k n= . Conditional on this 
division, the number of ways to select leaf 

sets for T1  and T2  that partition [ ]n  is
  

when  2k n<  and  when 2k n=  (the 

the factor of 
1

2
 recognizes that the order of 

T1  and T2  is interchangeable in T  when 
they have the same number of leaves). By 
the Markovian nature of the YH process, 
each of these two subtrees also follows the 
YH distribution. This leads to the recursion

 

from which Proposition 1 now follows by 
induction.

To illustrate Proposition 1, consid-
er the tree in Figure 2. Then we have 

YH( ) !
,T = =

× × ×

2
5 4 3 1

1
90

4

2  while the 

tree in Figure 1b gives YH( ) .T =
1

60

  

  

Exercise: Find a general formula for 
the probability that a random tree   in 
RB n( ) generated by the YH model has 
the shape of a rooted caterpillar tree. 
What is the probability that  =T  for 
a particular caterpillar tree T RB nÎ ( )?

 

Curiously, a quite different process that 
arises in population genetics, and which 
proceeds backward in time (rather than for-
ward, as in Figure 1c), also leads to the YH 
distribution when we ignore the length of the 
edges and the associated ranking of interior 
vertices. This is the celebrated coalescent 
process most usually associated with Sir 
John Kingman and developed in the early 
1980s. As a discrete process, the coalescent 
starts with the set X  and selects uniformly 
at random a pair of elements to join (these 
form the “cherry” of the tree that is closest 
to the leaves). These two leaves are then 
regarded as a single element in a set of 
size | | ,X -1  and the process is repeated. 
This discrete coalescent process generates 
a ranked binary phylogeny, which is often 
referred to as a labeled history. This con-
sists of a pair ( , ),T r  where T RB XÎ ( ) 
and r  is a ranking of the interior verti-
ces of T  — that is, a bijective function 

 with 
the property that if u  is a descendant of v, 
then r u r v( ) ( )>  (thus the root is the ver-
tex assigned an r  value of - -( )).n 1  The 
function r  describes the order in which the 
coalescent events occur, so the first cherry to 
form in the process has rank -1, for instance.

Enjoy this passage? Visit the SIAM 
bookstore at https://my.siam.org/Store to 
learn more about Phylogeny: Discrete 
and Random Processes in Evolution and 
browse other SIAM titles.

Mike Steel is director of the 
Biomathematics Research Centre at the 
University of Canterbury in New Zealand. 
He works on mathematical modelling of 
processes in evolution and related areas.

dom from the tree constructed so far. For 
example, the probabilities of generating the 

fork and caterpillar tree shapes are 
1

3
 and 

2

3
 

respectively, since from the (unique) tree 
shape on three leaves, we can attach a new 
leaf to exactly one of the three leaf edges 
to obtain a fork tree shape, or to any two of 
these leaf edges to obtain a caterpillar tree 
shape (see Figure 1c).

Once we have built up a tree with n 
leaves in this way, we obtain 
a random tree shape on n 
leaves and can now label 
the leaves of this tree shape 
according to a permutation 
on { , , , },1 2 ¼ n  chosen uni-
formly at random. This is 
the YH probability distribution on RB n( ).

We now explain how to compute the 
probability of a YH tree shape and that 
of any rooted phylogenetic tree with this 
shape. First, let us grow a tree under the 
YH process until it has n leaves, and then 
randomly select one of the two subtrees 
incident with the root (say, the “left-hand 
one” since the orientation in the plane plays 
no role) and let Z

n
 denote the number of 

leaves in this tree. Remarkably, Zn  has a 
completely flat distribution.

Lemma 1. Z
n

 has a uniform distribution 
between 1 and n-1,  so

 ( ) , , , .Z i i n
n n
= = = … −

−

1
1

1 1 for 

Proof: The random process Z Z1 2, ,¼ 
can be exactly described as a special case 
of a classical process in probability called 
Pólya’s urn. This consists of an urn that 
initially has a  blue balls and b  red balls. 
At each step, a ball is sampled uniformly 
at random and returned to the urn along 

Figure 1. 1a. A birth-death tree showing speciation and extinction. 1b. The associated 
discrete “reconstructed tree.” 1c. Growing a tree by the Yule-Harding (YH) process.

FROM THE SIAM 
BOOKSHELF

Figure 2. A rooted phylogenetic tree with root r.

A typical day at Miller Park, home of 
the Milwaukee Brewers, tends to involve 
a balance of individual and group work. 
I usually begin with a team meeting to 
provide status updates on various projects 
and offer assistance for any problems that 
arise within the group. I then spend most 
of my time developing SQL queries and 
Python scripts to assist with larger projects 
or answer various questions for upper man-
agement. I also handle administrative tasks 
that aid in the distribution of various model 
outputs to individuals within the organiza-
tion. Sometimes I meet with personnel from 
other departments to discuss and interpret 
model projections. And whenever there is a 
game during work hours, I take a break and 
watch an inning or two in the ballpark!

Mathematicians are ultimately trained to 
develop problem-solving skills and apply 
them with persistence and creativity. For 
example, they will likely face many failed 
attempts when completing a problem set 
or conducting research. Carefully review-
ing the work—and perhaps redoing it a 
different way or approaching the issue 
from another angle—eventually leads to 
success. I liken my position’s level of dif-
ficulty to that of conducting research for 
my dissertation. With that said, I do not 

apply the same high-level proof techniques 
from graduate school to my current work. 
However, I do use the problem-solving 
strategies, persistence, and creativity that 
I have honed throughout my mathematical 
journey every single day.

Although my path to becoming a data 
scientist was not necessarily linear, I have 
learned a great deal on the way and can 
share a few recommendations for those 
interested in a career in data science. I would 
encourage students to become comfortable 
with navigating a programming language 
such as R or Python. These languages are 
extremely powerful and indispensable for 
advanced modeling. Note that a lot of free 
online content is available to assist with 
broadening programing skills. Briefly step-
ping outside of mathematics and establish-
ing computer science and statistics expertise 
is also useful. In retrospect, doing so would 
have greatly benefited me. Finally, partici-
pating in conferences with data science con-
tent is an excellent way to gain exposure to 
more advanced topics in the field and build 
a network within the community.

Mike Dairyko is currently the Senior 
Manager of Data Science for the Milwaukee 
Brewers Baseball Club. He also is an adjunct 
professor in the Lubar School of Business at 
the University of Wisconsin-Milwaukee.

if we travel along the curve in Figure 2 
(on page 10) with unit speed, the tangent’s 
direction swings exactly as if it were a 
pendulum (with gravity pointing to the 
left in Figure 2). The curve in Figure 2 
satisfies q® 0  as s→−∞ and θ π®2  
as s→+∞. This corresponds to hetero-
clinic solution of the pendulum equation, 
with the pendulum approaching the unsta-
ble equilibrium in both future and past.

Derivation of (1)
The force F  is the weight of the lifted 

water of volume »AH ,  where H  is the 
maximal possible height, so that

                
                      F gAH»r .      (3)
  
We must find the maximal possible H  for 
which the surface tension can still keep the 
air from under the plate.

According to Figure 3, the equilibrium 
condition is

                     
                  2sL p HL= ⋅average .   (4)

After simple algebra, substituting 

p gHaverage=
1

2
r  into (4) yields

        
H

g
=

4σ
ρ

.

Substituting this value into (3) gives the 
lifting force (1). This is the 
theoretical maximum; the true 
value may be less because the 
angle q  near the top need not 
be p,  as it is in Figure 3.

The figures in this article were 
provided by the author.

Mark Levi (levi@math.psu.
edu) is a professor of mathemat-
ics at the Pennsylvania State 
University.

Figure 3. The surface tension 2sL  must be able 
to compensate the suction whose average pressure 

between y=0  and y H=  is p gHaverage =
1

2
r ,  thus pro-

ducing the force p HLaverage .

Major League Baseball
Continued from page 9

Euler’s Elastica
Continued from page 10
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Peters, and Donald R. Sheehy 

While computational topology enjoys 
considerable contemporary promi-

nence, it is certainly not an overnight suc-
cess story. The field’s prosperity relies 
heavily upon classical foundations from 
general, geometric, algebraic, and low-
dimensional topology. Here we explore 
applications that range from manifolds for 
airfoils to molecules for pharmaceuticals.

Introduction, History, and Manifolds
The first usage of the term computational 

topology likely occurred within a 1983 doc-
toral dissertation on computer aided geo-
metric design (CAGD) [10]. Two decades 
later, pioneers in topological data analysis 
(TDA) greatly popularized the term [5, 7]. 
This article emphasizes geometric topol-
ogy for analysis of point clouds, suggesting 
promise for the integration of CAGD and 
TDA techniques under the broad abstrac-
tions of applied topology [8].

Within geometric design, boundary sur-
faces of solids frequently form from the 
intersection of two surfaces, which then 
join along this intersection (see Figure 1a). 
Practical complications arise, as numeri-
cal computations yield deviations from 
this abstract theory [9]. Researchers often 
assume that the intersected surfaces are 
manifolds, so algorithmic detection of self-
intersections is an important focus [2]. 
Figure 1b depicts numerical errors between 
two manifolds that are joined along their 
intersection curves [4]. We model the sur-
faces as splines and compute two pre-
images of the intersection curve (one in 
each surface’s parametric domain); these 
actions lead to the indicated numerical dif-
ferences since the curves are instantiated on 
each surface. Considerations in aeronautical 
design and engineering for modeling fuse-
lages and wings inspired Figure 1.

CAGD’s success revolutionized engi-
neering design and manufacturing. 
Boundary representation (B-rep) models 
became a dominant approach to topological 
representations [9, 11], and general topol-
ogy, combinatorial topology, low-dimen-
sional topology, and knot theory for isotopic 
equivalence provided supporting ideas [1]. 
Researchers focused heavily on the adapta-
tion of “pure topology” concepts to finite 
precision data [9, 11].

Computational Topology in Geometric 
Design: Manifolds to Molecules

non-convex, simply connected shape, but 
its skeleton is not homeomorphic to a line 
segment. Chemists visually identified the 
thin bridging (near the center of Figure 4) 
as structurally important.

Researchers developed special purpose 
algorithms to create responsive branched 
skeletons. They first computed discrete 
Laplacians and the Fiedler gap to generate 
clusters in point clouds [3], then connected 
the centroids to form an initial piecewise 
linear (PL) approximation of the skeleton. 
Further refinements extended line segments 
to the extreme points of the topological 
boundaries. Next, scientists calculated the 
skeleton’s total length as a sum of the 
lengths of the segments in the PL skeleton, 
and estimated an average value of the cross-
sectional radius around the skeleton. They 
used these two parameters for computational 
chemical analyses [6], which strongly cor-
roborated postulated theories about micelles.

Concluding Thoughts
Here we share some of topology’s rich 

interaction with geometric modeling and 
design. A similarly robust synergy is simul-
taneously occurring between topology and 
data analysis. The former relies more heav-
ily on geometric and differential topology, 
while the latter depends on algebraic topol-
ogy. As big data is also a prominent com-
ponent of design, we invite read-
ers to consider synergy between 
these two facets of computational 
topology, as expressed here and 
in the January/February 2020 
issue of SIAM News.1
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Data for Molecules
Here we apply geometric topology to 

data pertaining to molecules’ point clouds, 
which we generated from supercomputer 
simulations of dissipative particle dynamics. 
This adaptation of computational topology 
from CAGD to computational chemistry 
and chemical engineering extends the rich 
history of topological modeling in chemis-
try [12]. The corresponding examples are 
micelles, which are optimized for indus-
trial applications of controlled drug release, 
household cleaning products, and friction 

modifiers in vehicle engines [6]. The anno-
tations of Figure 2 distinguish micelles that 
are “approximately convex” from “worms,” 
which are the focus of current research.

While convexity is solely a geomet-
ric property, extraction of the topological 
boundary accelerated the algorithmic iden-
tifications. This was based upon a heuristic 
that any point having six or more adjacent 
points was an interior point (all pairwise 
Euclidean distances were pre-computed, 
with unit distance as the upper bound for 
adjacency since no exterior points existed). 
The approach typically reduced the data 
by an order of magnitude, whereas the 
resulting image is representative of one 
video frame. This data reduction permitted 
algorithmic shape identification to run syn-
chronously with the simulation.

In its simplest form, a worm is like a 
twisted garden hose (see Figure 3). A central 
axis to approximate the length is of particu-
lar interest for chemical analysis. In simpli-
fied worms, one can extract such a skeleton 
with adaptations of the medial axis (MA), 
which is topologically unstable. Empirical 
algorithmic refinements attained topological 
stability for the given data. Piecewise linear 
approximations to the MA were especially 
appropriate, as is also often true in CAGD.

Figure 4 depicts a worm’s additional 
topological complexities. This worm is a 

Figure 1. Surface intersection for boundary. Figure courtesy of Thomas Peters.

Figure 2. Approximations of convexity. Figure courtesy of Michael Johnston and Vassilis Vassiliadis.

Figure 3. Worm. Figure courtesy of Kirk Gardner.

Figure 4. Bridging and branched skeleton. Figure cour-
tesy of Kirk Gardner.


