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Overview 

In today's data-driven society, the ability to share data securely is essential for scientific 

discovery and innovation. However, sharing sensitive information with collaborators and 

service providers introduces privacy risks, especially when the trustworthiness of those 

providers is uncertain. While significant research has advanced privacy-preserving data 

sharing algorithms (PPDSA), many solutions remain immature for practical deployment at scale. 

This project aims to bridge that gap by maturing and deploying homomorphic encryption and 

related techniques for privacy-preserving vector search, with a focus on Retrieval Augmented 

Generation (RAG) applications. 

Motivation and Context 

The need for scalable, privacy-preserving data sharing is widely recognized, as highlighted in 

recent literature and industry reports. Traditional approaches to data security focus on 

protecting data at rest and in transit, but data in use-when actively processed-remains 

vulnerable. Confidential computing and homomorphic encryption offer promising solutions by 

enabling computations on encrypted data, closing a critical gap in the data lifecycle[1][2][3]. 

Project Goals and Approach 

Kwaai's project focuses on advancing privacy-preserving techniques for RAG systems. The 

central question is: How can a data owner (Bob) send private data to a service operator (Eve) 

for vector database storage and querying, without exposing the data, while allowing users 

(Alice) to query it naturally? 



 

Figure 1 Typical RAG Flow Diagram 

Security Roles and Trust Relationships 

● Data Owner (Bob): Wants to share knowledge without exposing raw data. 

● Service Operator (Eve): Provides compute infrastructure but may not be fully trusted. 

● User (Alice): Queries the data and expects privacy for her queries. 

This trust model reflects real-world scenarios where sensitive data must be processed by third 

parties, necessitating robust privacy guarantees[4][5][6]. 

Table 1 BOB EVE ALICE 

BOB Bob is the Data Owner who 
wants to offer a customer 
support, help desk, or Q&A 
bot informed by his 
knowledge base. 

Bob does not completely trust Eve but uses 
her service of necessity because he lacks 
the necessary compute power. Bob is 
concerned that Eve may harvest his data to 
train her own service. 

Bob has a defined 
relationship with Alice who 
may be his customer, 
patient or employee. 

EVE Eve would like to assure 
Bob that his data is safe 
with her and that she’ll meet 
the SLA to keep Alice 
happy. 

Eve is the Service Operator with the 
compute infrastructure to host vast 
databases and run a high-performance 
chatbot service. 

Eve would like to host a 
fast and secure service so 
that Alice has a good 
customer experience. 

ALICE Alice values Bob’s curated 
knowledge base and would 
like to query it in natural 
language. 

Alice would prefer it if Eve did not 
eavesdrop and resell her queries to 
advertisers that would bombard her with 
ads.  

Alice would like to query 
online knowledge bases of 
curated sources. 



Technical Focus 

Homomorphic Encryption (HE) 

Homomorphic encryption allows computations to be performed directly on encrypted data, 

ensuring that results remain encrypted and can be decrypted only by authorized parties. This is 

particularly valuable for outsourced computation in untrusted environments, such as 

commercial cloud services[7][8][9][2]. 

● Fully Homomorphic Encryption (FHE): Supports arbitrary computations but is currently 

impractical for large-scale, real-time applications due to high computational 

overhead[7][10][11][2]. 

● Partially/Additively Homomorphic Encryption (PHE/AHE): Supports limited operations 

(e.g., addition, scalar multiplication) and is more efficient for vector similarity search, as 

demonstrated in recent research[7][10][8][11]. 

Recent studies show that AHE can efficiently support inner product similarity search-a core 

operation in vector retrieval-without requiring expensive ciphertext-ciphertext multiplications or 

bootstrapping, making it practical for real-world applications[7][8][11]. 

 

Securing Vector Search 

Vector search is fundamental in RAG systems, powering applications like chatbots, 

recommendation engines, and federated learning. However, vector embeddings, while not 

directly revealing raw data, can be sensitive and vulnerable to reverse engineering[11][5]. 

Key Security Techniques: 

Dimensional Scrambling: Permutes vector dimensions using a secret mapping, preserving 

mathematical operations while obscuring the underlying data. This technique leverages the 

commutative property of vector addition and is inspired by methods from telecommunications 

and signal processing[11]. 



 

Noise Injection: Multiplies vectors by a secret noise vector, with a corresponding denoise 

operation applied to queries. This approach, rooted in classical signal processing, can further 

obscure data while maintaining search accuracy. 

Clustering, GraphRAG, LoRA, and Sharding: These methods introduce additional secrecy by 

transforming, partitioning, or distributing data, with secret mappings known only to the data 

owner. 

Recent advances, such as Cyborg's encrypted vector search engine and NVIDIA's cuVS library, 

demonstrate that end-to-end encrypted vector search is feasible with minimal performance 

overhead, making it suitable for regulated industries and IP-driven sectors[5]. 

Practical Deployment and Evaluation 

The project emphasizes practical deployment over theoretical advances. Key evaluation criteria 

include: 

● Security: Resistance to attack, key management, and compliance with frameworks like 

NIST and OWASP[1][4][9]. 

● Practicality: Performance (latency, throughput), ease of integration, and real-time 

responsiveness for chatbot applications[7][10][11]. 



● Scalability and Sustainability: Ability to scale with data size, minimize resource 

consumption, and reduce carbon footprint[12]. 

Kwaai's methodology includes agile development, continuous security audits, and open-source 

releases. The project leverages open-source libraries (e.g., LightPHE), vector databases 

(ChromaDB, Pinecone), and a large volunteer base for rapid prototyping and deployment. 

Broader Impacts 

Confidential Computing and Distributed AI 

Confidential computing, using hardware-based Trusted Execution Environments (TEEs), is 

emerging as a complementary technology, enabling secure computation on sensitive data even 

in untrusted environments[1][4][6][3]. TEEs protect data in use by isolating code and data from the 

rest of the system, ensuring confidentiality even if the infrastructure is compromised. 

Personal AI and Data Sovereignty 

Kwaai's mission aligns with the movement toward Personal AI: empowering individuals to own 

and control their data and AI models, running locally or in trusted environments. This approach 

counters the trend of centralized, cloud-based AI services that require users to surrender 

privacy[12]. 

Research and Industry Leadership 

Kwaai's team brings deep expertise from industry and open-source communities, focusing on 

pragmatic, deployable solutions. The project aims to bridge the gap between academic theory 

and industry needs, with an emphasis on ecological sustainability and democratization of AI. 

Conclusion 

Kwaai's project represents a significant advance in privacy-preserving AI, focusing on practical 

deployment of homomorphic encryption and related techniques for secure vector search in 

RAG systems. By integrating AHE, dimensional scrambling, noise injection, and confidential 

computing, the project aims to deliver scalable, secure, and sustainable solutions for real-world 

data sharing and AI applications. This work supports the broader vision of democratizing AI, 

protecting data sovereignty, and enabling secure, distributed intelligence for 

all[7][8][1][5][12][11][6][2][3]. 
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