

Maturing Homomorphic Encryption to Enable Privacy Preserving Vector Search

Reza Rassool, Chair Kwaai

Kwaai Non-Profit Personal AI Lab

Overview

In today's data-driven society, the ability to share data securely is essential for scientific

discovery and innovation. However, sharing sensitive information with collaborators and

service providers introduces privacy risks, especially when the trustworthiness of those

providers is uncertain. While significant research has advanced privacy-preserving data

sharing algorithms (PPDSA), many solutions remain immature for practical deployment at scale.

This project aims to bridge that gap by maturing and deploying homomorphic encryption and

related techniques for privacy-preserving vector search, with a focus on Retrieval Augmented

Generation (RAG) applications.

Motivation and Context

The need for scalable, privacy-preserving data sharing is widely recognized, as highlighted in

recent literature and industry reports. Traditional approaches to data security focus on

protecting data at rest and in transit, but data in use-when actively processed-remains

vulnerable. Confidential computing and homomorphic encryption offer promising solutions by

enabling computations on encrypted data, closing a critical gap in the data lifecycle[1][2][3].

Project Goals and Approach

Kwaai's project focuses on advancing privacy-preserving techniques for RAG systems. The

central question is: How can a data owner (Bob) send private data to a service operator (Eve)

for vector database storage and querying, without exposing the data, while allowing users

(Alice) to query it naturally?

Figure 1 Typical RAG Flow Diagram

Security Roles and Trust Relationships

● Data Owner (Bob): Wants to share knowledge without exposing raw data.

● Service Operator (Eve): Provides compute infrastructure but may not be fully trusted.

● User (Alice): Queries the data and expects privacy for her queries.

This trust model reflects real-world scenarios where sensitive data must be processed by third

parties, necessitating robust privacy guarantees[4][5][6].

Table 1 BOB EVE ALICE

BOB Bob is the Data Owner who
wants to offer a customer
support, help desk, or Q&A
bot informed by his
knowledge base.

Bob does not completely trust Eve but uses
her service of necessity because he lacks
the necessary compute power. Bob is
concerned that Eve may harvest his data to
train her own service.

Bob has a defined
relationship with Alice who
may be his customer,
patient or employee.

EVE Eve would like to assure
Bob that his data is safe
with her and that she’ll meet
the SLA to keep Alice
happy.

Eve is the Service Operator with the
compute infrastructure to host vast
databases and run a high-performance
chatbot service.

Eve would like to host a
fast and secure service so
that Alice has a good
customer experience.

ALICE Alice values Bob’s curated
knowledge base and would
like to query it in natural
language.

Alice would prefer it if Eve did not
eavesdrop and resell her queries to
advertisers that would bombard her with
ads.

Alice would like to query
online knowledge bases of
curated sources.

Technical Focus

Homomorphic Encryption (HE)

Homomorphic encryption allows computations to be performed directly on encrypted data,

ensuring that results remain encrypted and can be decrypted only by authorized parties. This is

particularly valuable for outsourced computation in untrusted environments, such as

commercial cloud services[7][8][9][2].

● Fully Homomorphic Encryption (FHE): Supports arbitrary computations but is currently

impractical for large-scale, real-time applications due to high computational

overhead[7][10][11][2].

● Partially/Additively Homomorphic Encryption (PHE/AHE): Supports limited operations

(e.g., addition, scalar multiplication) and is more efficient for vector similarity search, as

demonstrated in recent research[7][10][8][11].

Recent studies show that AHE can efficiently support inner product similarity search-a core

operation in vector retrieval-without requiring expensive ciphertext-ciphertext multiplications or

bootstrapping, making it practical for real-world applications[7][8][11].

Securing Vector Search

Vector search is fundamental in RAG systems, powering applications like chatbots,

recommendation engines, and federated learning. However, vector embeddings, while not

directly revealing raw data, can be sensitive and vulnerable to reverse engineering[11][5].

Key Security Techniques:

Dimensional Scrambling: Permutes vector dimensions using a secret mapping, preserving

mathematical operations while obscuring the underlying data. This technique leverages the

commutative property of vector addition and is inspired by methods from telecommunications

and signal processing[11].

Noise Injection: Multiplies vectors by a secret noise vector, with a corresponding denoise

operation applied to queries. This approach, rooted in classical signal processing, can further

obscure data while maintaining search accuracy.

Clustering, GraphRAG, LoRA, and Sharding: These methods introduce additional secrecy by

transforming, partitioning, or distributing data, with secret mappings known only to the data

owner.

Recent advances, such as Cyborg's encrypted vector search engine and NVIDIA's cuVS library,

demonstrate that end-to-end encrypted vector search is feasible with minimal performance

overhead, making it suitable for regulated industries and IP-driven sectors[5].

Practical Deployment and Evaluation

The project emphasizes practical deployment over theoretical advances. Key evaluation criteria

include:

● Security: Resistance to attack, key management, and compliance with frameworks like

NIST and OWASP[1][4][9].

● Practicality: Performance (latency, throughput), ease of integration, and real-time

responsiveness for chatbot applications[7][10][11].

● Scalability and Sustainability: Ability to scale with data size, minimize resource

consumption, and reduce carbon footprint[12].

Kwaai's methodology includes agile development, continuous security audits, and open-source

releases. The project leverages open-source libraries (e.g., LightPHE), vector databases

(ChromaDB, Pinecone), and a large volunteer base for rapid prototyping and deployment.

Broader Impacts

Confidential Computing and Distributed AI

Confidential computing, using hardware-based Trusted Execution Environments (TEEs), is

emerging as a complementary technology, enabling secure computation on sensitive data even

in untrusted environments[1][4][6][3]. TEEs protect data in use by isolating code and data from the

rest of the system, ensuring confidentiality even if the infrastructure is compromised.

Personal AI and Data Sovereignty

Kwaai's mission aligns with the movement toward Personal AI: empowering individuals to own

and control their data and AI models, running locally or in trusted environments. This approach

counters the trend of centralized, cloud-based AI services that require users to surrender

privacy[12].

Research and Industry Leadership

Kwaai's team brings deep expertise from industry and open-source communities, focusing on

pragmatic, deployable solutions. The project aims to bridge the gap between academic theory

and industry needs, with an emphasis on ecological sustainability and democratization of AI.

Conclusion

Kwaai's project represents a significant advance in privacy-preserving AI, focusing on practical

deployment of homomorphic encryption and related techniques for secure vector search in

RAG systems. By integrating AHE, dimensional scrambling, noise injection, and confidential

computing, the project aims to deliver scalable, secure, and sustainable solutions for real-world

data sharing and AI applications. This work supports the broader vision of democratizing AI,

protecting data sovereignty, and enabling secure, distributed intelligence for

all[7][8][1][5][12][11][6][2][3].

References:

-[7] arXiv: A Note on Efficient Privacy-Preserving Similarity Search for Encrypted Vectors

-[10] arXiv: Encrypted Vector Similarity Computations Using Partially Homomorphic Encryption

-[8] arXiv: A Note on Efficient Privacy-Preserving Similarity Search for Encrypted Vectors

-[1] Google Cloud: Confidential computing for data analytics, AI, and federated learning

-[4] arXiv: C-FedRAG: A Confidential Federated Retrieval-Augmented Generation System

-[5] NVIDIA: Bringing Confidentiality to Vector Search with Cyborg and NVIDIA cuVS

-[9] Red Hat: Preserving privacy in the cloud: speeding up homomorphic encryption with FPGAs

-[12] Kwaai: About - Kwaai

-[11] Sefik Serengil: Vector Similarity Search with Partially Homomorphic Encryption in Python

-[6] arXiv: Privacy-Preserving Decentralized AI with Confidential Computing

-[2] AHIMA Journal: Moving Beyond Traditional Data Protection: Homomorphic Encryption

-[3] TechUK: Power of Confidential Computing - Fortifying Generative AI Adoption

⁂

1. https://cloud.google.com/architecture/confidential-computing-analytics-ai

2. https://journal.ahima.org/page/moving-beyond-traditional-data-protection-homomorphic-encryption-

could-provide-what-is-needed-for-artificial-intelligence

3. https://www.techuk.org/resource/power-of-confidential-computing-fortifying-generative-ai-

adoption.html

4. https://arxiv.org/abs/2412.13163

5. https://developer.nvidia.com/blog/bringing-confidentiality-to-vector-search-with-cyborg-and-nvidia-

cuvs/

6. https://arxiv.org/html/2410.13752v1

7. https://arxiv.org/html/2502.14291v1

8. https://arxiv.org/abs/2502.14291

9. https://research.redhat.com/blog/article/privacy-in-the-cloud-speeding-up-homomorphic-encryption-

with-fpgas/

10. https://arxiv.org/abs/2503.05850

11. https://sefiks.com/2025/03/04/vector-similarity-search-with-partially-homomorphic-encryption-in-

python/

12. https://www.kwaai.ai/about

13. Refined with

