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Cotranscriptional Folding: 
A Frontier in Molecular Engineering
A Challenge for Computer Scientists
By Shinnosuke Seki

Transcription is a process that synthesizes 
a temporal copy of a gene—called a 

transcript—out of an RNA molecule. The 
transcript acts as an intermediary to express 
a protein or non-coding RNA encoded in 
the gene. A gene is a chemically-direct-
ed chain of deoxyribonucleotides A, C, G, 
and T. The synthesis proceeds sequentially. 
An enzyme called RNA polymerase scans 
a gene unidirectionally and binds one ribo-
nucleotide of the type (A, C, G, or U) 
most energetically preferred by what is read 
to the growing transcript; the preference is 
A® ® ®U C G G C, , ,  and T A® .  
Upon further modification, the transcript may 
adopt a precise tertiary structure (conforma-
tion), thus allowing it to perform its function.

Some modifications, such as the removal 
of introns (splicing) from a transcript, are 
cotranscriptional: as transcription occurs, 
introns fold into a loop and are excised. 
Cotranscriptional folding occurs when a tran-
script folds upon itself during synthesis. Such 
folding is possible because transcripts fold 
considerably faster than they synthesize. The 
relative speed of folding to synthesis seems 
to be predetermined in nature, but the reason 
for this is unknown. Indeed, computation of 
thermodynamics indicates that polymerase 
deceleration could save energy [3]. The spe-

cific transcription rate and directionality of 
synthesis enable nature to “program” a gene’s 
biological function [8], with polymerase as a 
compiler from the genetic “source code” back 
to the executable program, that is, biological 
function. The source code offers inheritability 
to nature and readability to us.

In 2014, Cody Geary, Paul Rothemund, 
and Ebbe Andersen exhibited a command of 
this programming language as RNA origami 
[5], fabricating complicated shapes—such 
as rectangular tiles—from RNA molecules 
(see Figure 1). The tile hinges its left and 
right halves—each of which is a stratus of 
hairpins, i.e., strong double-helical stems 
ending in a loop—at the bottom. First, the 
left half cotranscriptionally folds through a 
pathway of events to form the hairpins, then 
the right half folds as such and is stapled 
cotranscriptionally to the folded left half. 
The two halves are held together weakly via 
paranemic “kissing” loops (see Figure 2, on 
page 4). By the time the right half begins 
undergoing synthesis, the left has already 
been constrained too strictly to form a strong 
double-helical segment with the right.

RNA origami will likely be the “Hello, 
World!” of future educational materials on 
the programming of cotranscriptional fold-
ing: a symbolic and static code that always 
behaves consistently. Readers will then move 
to chapters on more dynamic codes for infor-

mation processing. The oritatami system 
is a mathematical model recently proposed 
by Geary, Pierre-Étienne Meunier, Nicolas 
Schabanel, and myself to establish theoreti-
cal grounds for these chapters [4]. As shown 
in Figure 2 (on page 4), the oritatami system 
abstracts a conformation as a directed, ver-
tex-labeled path (transcript) on the triangular 
grid with bonds between adjacent vertices. 
Vertices on the path are called beads. A bead 
may represent one nucleotide or a region of 
consecutive nucleotides depending on the 
abstraction level, and its label is taken from 
an alphabet S  of bead types. For x, y ∈Σ,  
an x-bead can bind with a y-bead only if the 
pair ( , )x y  belongs to a rule set ,  a sym-
metric relation in S2. Two other parameters 
exist: the delay d abstracts the transcription 
rate and the arity a bounds the number of 
bonds that one bead can form. An oritatami 
system is a tuple ( , , , , , ).S w  δ α σ Upon 
its initial “seed” conformation s,  the system 
transcribes the first d  beads of its transcript 
w ∈ Σ*  and repeats the following instruc-
tions until the end of w :  

1. Fold the fragment of nascent beads to 
elongate the current conformation with as 
many new bonds as possible.

2. Stabilize the eldest nascent bead with 
all its bonds accordingly.

3. Transcribe the next bead, if any.

Figure 1. RNA origami. The transcript (blue) folds into a rectangular tile while being synthesized by the RNA polymerase (orange). Image courtesy of [5].

See Cotranscriptional Folding on page 4

CSE Achievements 
in Aircraft Design
By Paul Davis

The aeronautics industry is a sophisti-
cated user of computational science 

and engineering (CSE), and a source of 
some of the field’s most difficult chal-
lenges. Bruno Stoufflet, Chief Technology 
Officer at Dassault Aviation and a recog-
nized CSE expert, brought that message 
home with an insider’s detailed account of 
the field’s expanding role to attendees of the 
2017 SIAM Conference on Computational 
Science and Engineering (CSE17), held this 
February in Atlanta, Ga.

Dassault Aviation designs and manufac-
tures business jets, military fighters, and 
unmanned aerial vehicles (commonly called 
drones). It develops most of its simulation 
codes in-house, with assistance from external 
collaborators. Embodying the firm’s wide 
scientific awareness, Stoufflet cited the value 
of the finite element work of Thomas Hughes, 
who was in the audience and had just received 
the SIAM/ACM Prize in Computational 
Science and Engineering (see page 4).

At Dassault, CSE plays a role in three 
phases of an aircraft’s life cycle: design, 
development, and post-delivery support. 
Design commands by far the largest share 

of Dassault’s CSE efforts, most of which 
promote a traditional engineering perspec-
tive (although newer stochastic approach-
es are emerging). Stoufflet’s long list of 
design-centered challenges included indus-
trial-scale computational fluid dynamics 
(CFD), automatic shape optimization, 
multi-physics analyses, computational elec-
trodynamics, surrogate modeling, uncer-
tainty quantification for robust design, and 
the movement of all these computational 
tasks to exascale environments.

A typical computational task during the 
development phase is evaluation of the 
probability of rare events, such as a colli-
sion during the release of a store from an 
aircraft. While some of the variables are 
under the pilot’s control, others are not. 
Brute-force estimates are not feasible, so 
importance sampling is the primary tool. In 
a somewhat different direction, computa-
tion’s role in support following delivery typ-
ically involves data analytics that add value 
by justifying reliability estimates or guiding 
predictive maintenance, for example.

Stoufflet emphasized the multidisci-
plinary character of the design loop, which 
consumes the lion’s share of Dassault’s 

See Aircraft Design on page 3

Figure 1. One of the successes of astrophysical computation via adaptive methods: 
isodensity and isothermal profiles at three levels of spatial resolution during the evo-
lution of the very first stars. “Pc” abbreviates parsec, an astronomical unit of length 
equivalent to about 3.25 light-years, or 31 × 1012 km. Image credit: Matthew Turk and 
Tom Abel (KIPAC/Stanford).

Special Issue on Computational 
Science and Engineering

Check out articles from the 2017 SIAM Conference on Computational         
Science and Engineering—and more—in this month’s special issue!

In an article on page 6, Paul Davis reports on various applications of adaptive 
mesh refinement and looks towards the next generation of the method’s use.
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5  Climate Prediction, 
Exascale Computing, and 
Time Parallelism

 New computing architectures 
can help deliver accurate 
weather forecasts at unprec-
edented speeds. Paul Davis 
recaps Beth Wingate’s talk from 
the 2017 SIAM Conference 
on Computational Science and 
Engineering about parallel-in-
time algorithms and their appli-
cation to climate predictions.

6  A Model for an Applied 
Mathematics Internship 
Program

 Nadia Benakli and Jonathan 
Natov chronicle the success-
ful experiences of students in 
the City University of New 
York’s applied mathemat-
ics internship program.

8  Broader Engagement 
Program Returns to 
CSE17 with a Focus on 
Community Engagement

 The Sustainable Horizons 
Institute’s Broader Engagement 
program returned to this 
year’s SIAM Conference on 
Computational Science and 
Engineering. Debbie McCoy 
and Mary Ann Leung describe 
the program’s importance in 
fostering diversity and inclu-
sion among the community.

10  When Big Data    
Algorithms Discriminate

 Jim Case reviews Cathy 
O’Neil’s Weapons of Math 
Destruction: How Big Data 
Increases Inequality and 
Threatens Democracy, which 
explores whether supposedly-
objective computer programs 
actually encode damaging 
biases and misconceptions.

12  Deep, Deep Trouble
 Michael Elad describes the pro-

found impact of deep learning 
technology on image processing, 
mathematics, and present-day 
society. He reviews deep learn-
ing’s history, and questions 
whether such rapid advance-
ment should give us pause.

11  Professional Opportunities 
and Announcements
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Errata and Clarifications
In the article “Explaining the East/

West Asymmetry of Jet Lag,” which 
appeared in the March Dynamical 
Systems Special Issue of SIAM 
News, the suprachiasmatic nucleus 
(SCN) was mistakenly referred to as “a 
tiny region of the brain’s hippocampus.” 
The SCN is part of the brain’s hypo-
thalamus, not the hippocampus.

Florin Diacu (University of Victoria) 
replaced Evelyn Sander (George Mason 
University) as the liason for the SIAM 
Activity Group on Dynamical Systems. 
We neglected to note this change in 
several past issues.

In Search of the Perfect 
Numerical Analysis Textbook
My bookshelf contains a lot of numeri-

cal analysis textbooks. The oldest 
is Douglas Hartree’s Numerical Analysis 
(Oxford University Press, 1958), and the 
newest is Robert Corless and Nicolas 
Fillion’s A Graduate Introduction to 
Numerical Methods: From the Viewpoint of 
Backward Error Analysis (Springer, 2013).1 

The variety is wondrous, ranging from 
books at an introductory level to those 
aimed at an advanced graduate audience; 
from formal treatments with numerous 
theorems to more computationally-orient-
ed presentations; and from books tied to a 
particular programming language to those 
that are language-independent. Why do 
I keep acquiring them? Why do authors 
keep writing them?

I am not the first to ask the latter ques-
tion in SIAM News. In a lighthearted 1984 
article titled “On Therapy and Numerical 
Analysis Texts,” Paul Davis called writ-
ing a numerical analysis textbook “the 
leading case of overwork among academic 
mathematicians,” and asked, “Why are we 
driven to this insanity?”

These questions are certainly relevant 
since SIAM publishes many textbooks in 
numerical analysis — both general and 
in specific areas of the subject. Many of 
us have at some time struggled to find 
a completely satisfying textbook for a 
course we need to teach, an experience 
that seems particularly common among 
numerical analysts. Given that there is a 
fairly standard body of core material on 
the subject, why should we 
have this problem? I can 
see several reasons.

First, numerical analysis 
continues to evolve. The 
introduction of the IEEE 
arithmetic standard in 1985 
made it easier to describe floating point 
arithmetic (removing the requirement to 
discuss guard digits, for example), but also 
harder in that it introduced features such 
as NaNs and subnormal numbers that may 
need to be covered.  Polynomial interpola-
tion is a classic topic and it might appear 
that nothing has changed for over half a 
century, but in the last decade the bary-
centric representation of the interpolant 
has become the representation of choice in 
many contexts, and hardly any textbooks 
treat it. The evolution of computer archi-
tectures may have little effect on a first 
course, but it certainly can influence the 
state of the art in more advanced courses: 
method A might require more flops than 
method B, but A could be faster if it is more 
parallelizable or requires less communica-
tion. Authors of books that make use of a 
programming language (C, Python, etc.) or 

1 Reviewed in the December 2016 issue 
of SIAM Review.

a problem-solving environment (MATLAB, 
Maple, Jupyter Notebook, etc.) face a con-
stant battle to keep up with changes in the 
language and software, while few, if any, 
textbooks use newer languages (I am not 
aware of any textbook that uses Julia).

A second reason for dissatisfaction with 
numerical analysis textbooks may be that 
the material does not have the right balance 
of theory, algorithms, and computation. 
For example, on the topic of Runge-Kutta 
methods, should a general class of methods 
be derived, or one particular method stated? 
What types of error and stability should be 
analyzed? And to what extent should algo-
rithmic practicalities be discussed?

Another reason is that the field of numer-
ical analysis is big enough 
that no book can treat all the 
topics covered in courses: 
divided differences, multi-
dimensional interpolation 
and integration, stationary 
iterative methods for lin-

ear systems, and stiff ordinary differential 
equations are not found in every book. And 
with the growing importance of stochastic 
computation and uncertainty quantification, 
there is an argument for including some 
relevant aspects of probability and statistics.

Application areas influence the exam-
ples included in a textbook. While the 
computation of PageRank is now com-
monly presented as a practical use of 
the power method, future textbooks may 
emphasize the relevance of the subject to 
machine learning, or some area that is as 
yet in its infancy.

As well as the choice of topics, there 
is no agreement on the order in which 
to present them. The first chapter of a 
numerical analysis textbook has tradition-
ally been about errors and floating point 
arithmetic, but some argue that this chap-
ter should appear later because numerical 
analysis is not principally about floating 
point arithmetic.

As an instructor looking to develop a 
course, if you ask yourself, “Which book 
has the best treatment of topic X?” then you 
may well find that your answer has almost 
as many books as topics, and this feeds the 
desire—to which Paul Davis referred—to 
produce your own text. He also noted that 
“The drive to write yet another numerical 
analysis text may arise from computation’s 
curious mix of science and art,” reasoning 
that everyone “is anxious to share yet anoth-
er insight into the art, but none dares skimp 
on explaining the science.” Davis observed 
that “the best books seem to come from the 
people who do the best work…apparently, 
there is no substitute for being there.”

For all of these reasons, the perfect 
numerical analysis textbook does not yet 
exist and probably never will. Authors will 
continue to write their own versions of what 
a numerical analysis textbook should be, 
and SIAM will continue to publish them, 
at least when the usual criteria—which 
include correctness, distinctiveness, market 
size, and lack of duplication of existing 
SIAM books—are met.

If you have an idea for a new textbook or 
research monograph—in numerical analy-
sis or any subject that fits SIAM’s pur-
view—please contact the SIAM acquisition 
editors,2 who will be happy to discuss the 
idea with you.

Nicholas Higham is the Richardson 
Professor of Applied Mathematics at the 
University of Manchester. He is the current 
president of SIAM.

2 http://www.siam.org/books/authors/
proposal_info.php

FROM  THE  SIAM 
PRESIDENT

By Nicholas Higham

Cartoon created by mathematician John de Pillis.
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contributions to this Special Issue 
on Computational Science and 
Engineering.
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Obituaries
By Fred Krogh

Richard J. Hanson passed away on 
December 4, 2016, at his home in 

Albuquerque, N.M., after battling brain 
cancer for a year and a half.

Richard was born in Portland, Ore., in 
1938 and received his B.S. and M.S. in 
mathematics from Oregon State University. 
We met as undergraduates at Oregon State 
and remained close friends since. He went 
on to earn his Ph.D. from the University of 
Wisconsin under Wolfgang Wasow, with 
a dissertation on turning point theory for 
ordinary differential equations.

Richard began his professional life as 
a faculty member at the University of 
Southern California. In the mid-1960s, he 
joined Charles Lawson’s computational 
mathematics group at the Jet Propulsion 
Laboratory (JPL). Due to his encourage-
ment, I joined him at JPL in 1968, only to 
stay on for 30 years. We were both involved 
with preliminary work on mathematical 
libraries at JPL, which led to the MATH77/
mathc90 libraries.1 Richard cowrote the 
first Basic Linear Algebra Subprograms 
(BLAS)2 paper, and coauthored Solving 

1 http://netlib.org/math/
2 http://www.netlib.org/blas/

Least Squares Problems with Lawson, pub-
lished by Prentice Hall in 1974 and repub-
lished as part of SIAM’s Classics in Applied 
Mathematics series in 1995.

After his time at 
JPL, Richard reentered 
academia with a joint 
position in mathematics 
and computer science 
at Washington State 
University. In 1976, he 
joined Sandia National 
Laboratories’ Applied 
Mathematics Group, 
where he remained 
until 1987. During this 
time, Richard served 
as Algorithms Editor 
of the Association for 
Computing Machinery’s 
(ACM) Transactions on 
Mathematical Software 
(TOMS) for eight 
years. This was followed by a short stint 
at Applied Dynamics International in Ann 
Arbor, Mich., where he developed software 
modules efficient enough for use in real-
time-in-the-loop software.

In 1989, Richard joined the International 
Mathematics and Statistics Library (later 
Visual Numerics) in Houston, Texas. There 

he continued his work on numerical soft-
ware. He also spent several years as a 
member of the research faculty in Ken 
Kennedy’s Center for High Performance 

Software Research at 
Rice University.

Richard rejoined 
Visual Numerics (later 
acquired by Rogue 
Wave Software) in 
2005, where he con-
tinued to work until 
leaving Rogue Wave 
in 2013. He remained 
professionally active 
up to the onset of his 
illness in late 2015.

Richard published 
numerous papers, 
including a few joint 
papers with me. He 
wrote almost all of his 
software in Fortran, 

keeping up with the language’s standards 
as it evolved. This resulted in Numerical 
Computing with Modern Fortran, which 
Richard coauthored with Tim Hopkins. It 
was published by SIAM in 2013. His later 
work also involved issues related to taking 
advantage of multiple processors in math-
ematical software.

Richard was a longtime member of SIAM, 
the ACM, and the International Federation 
for Information Processing Working Group 
2.5 on Numerical Software.

He had a lifelong enjoyment of the out-
doors, and backpacked, camped, and hiked 
throughout the U.S. and the world. For the 
last ten years, Richard particularly enjoyed 
walking in the foothills and mountains near 
his home in Albuquerque. He leaves behind 
Karen Haskell, his wife of 39 years and 
enthusiastic travel companion, with whom 
he has also published a few papers. Richard 
passed along his scientific interests and 
abilities to his sons Eric, Joe, and Fred, and 
his daughter Christina. He is also survived 
by four talented granddaughters, two broth-
ers, a sister, and numerous friends.

Richard was always there to listen to my 
strange ideas and offer good advice. And I 
miss him.

The author acknowledges much helpful 
input from Karen Haskell.

Fred Krogh (fkrogh@mathalacarte.com) 
is president of Math à la Carte, prior to 
which he worked in the Jet Propulsion 
Laboratory at the California Institute of 
Technology.

Richard J. Hanson, 1938-2016. 

CSE efforts (see Figure 1). The design 
loop begins with every available option for 
architecture and technology on the table.  
Analysis and optimization in the design 
phase are driven by such specific disciplines 
as aerodynamics, structures, acoustics, pro-
pulsion, and aircraft systems. Formulating 
parametric models enables engineers’ 
exploration of the design space and their 
evaluation of sensitivities and risks. Each 
lap of the design loop ends with consid-
erations of market and regulatory require-
ments like range, comfort, environmental 
restrictions, and cost.

Dassault’s bread-and-butter computational 
fluid dynamics tools have evolved from vari-
ous finite element formulations with 10,000 
nodes in the early and mid-1980s to the 
current operational CFD code that handles 
upwards of 20 million grid points in less 
than 15 minutes on 2048-core class machines 
(see Figure 2). Its steady Navier-Stokes 
solutions and unsteady eddy simulations are 
used during all stages of design. “We design 
for cruise conditions with the CFD code,” 
Stoufflet said. “A wind tunnel is used only 
for intermediate and final check-out.”

In the future, design teams hope to use 
their Reynolds-averaged Navier-Stokes 
steady solver to predict drag at cruising 
speed to within 0.5% accuracy in a typi-
cal compute time of 30 seconds. They also 
wish to improve models and better under-

stand local flow physics 
to determine maximum 
lift and explore airframe 
acoustics more precise-
ly. For example, predic-
tions of noise generated 
by a landing gear bay are 
greatly influenced by the 
level of geometric detail 
included—local flow 
physics is at work—but 
a detailed computation 
on a 2048-core machine 
can require 15 days!

Developing automat-
ic shape optimization 
codes requires broad 
collaborations with the 
scientific community 
and “strong interaction 
with the design team 
to define and model 
the significant pieces,” 
Stoufflet said. The external collaborations 
have contributed automatic differentiation 
software, feasible direction sequential qua-
dratic programming code, and a feasible 
arc interior point algorithm. These tools 
are integrated into a gradient-computation 
formulation that draws on partial differen-
tial equation control ideas of Jacques-Louis 
Lions, who also shares credit for inventing 
the parareal parallel-in-time algorithm.1 

1 Read more about the latest developments 
in parareal algorithms in a report of another 
invited lecture from CSE17, on page 5.

When employed within the design loop, 
these tools have enabled a significant 
increase in the area of laminar flow on an 
aircraft wing near its fuselage, a reduction 
to nearly zero of an area of recirculation 
near an aircraft’s tail, an optimum balance 
between low-speed lift and high-speed drag 
in the shape of wingtip winglets, and opti-
mization of separated flows in curved air 
ducts for unmanned aerial vehicles.

Dassault’s “total in-house control of tool-
ing enables development of an optimization 
chain” that is in daily use, Stoufflet said. 
Shape optimization accelerates the early 
design cycle and offers wider options, while 
engineering analysis remains an essential 
step within the design loop.

Stoufflet’s list of sophisticated, engi-
neering-focused computational challenges 
included a multi-physics computational 
challenge in aero-elasticity to correctly 
predict the influence of a missile carried 
on a fighter, varied approaches to computa-
tional electromagnetics involving complex 
materials and geometries, and surrogate 
models to facilitate interactive exploration 
of design alternatives.

As Chief Technology Officer, Stoufflet 
also faces a broader, computationally-
based challenge in Dassault’s approach to 
the design process; the trade-off is robust 
design versus reliability-based design, or 
seeking to “manage uncertainties instead 
of adding margins.” He suggests that a 
designer “needs a new mindset” to think 
in terms of the “probability of not reaching 
a (design) objective,” rather than adding 
some arbitrary margins to a minimum drag Figure 1. Dassault Aviation’s multidisciplinary design loop. Image credit: Dassault Aviation.

requirement — for example, in hopes of 
accounting for the effects of possible twist-
ing of the wing, changes in trailing edge 
camber, and the like.

As mindsets change, designers will need 
ways to propagate uncertainty through a 
system and access to computed response 
surfaces that incorporate second-derivative 
data, which in turn require fast CFD solvers 
and automatic differentiation tools.

At Dassault, Stoufflet anticipates “an 
unceasing effort to increase the efficiency 
of the design process,” continued exploita-
tion of the benefits of quantifying uncer-
tainty, increased confidence of engineers 
in stochastic approaches, and the explo-
ration of “applications of data analytics 
that bring added value, e.g., justifying 
the correctness and reliability of machine 
learning” algorithms.

Addressing his audience directly, 
Stoufflet re-emphasized the importance of 
the CSE community’s rigorous approach 
while acknowledging that industry is more 
ad hoc. He requested that his listeners 
guide their own work by asking themselves, 
“What can we put into our framework that 
is rigorous and helps industry?”

Stoufflet’s CSE17 presentation is avail-
able from SIAM either as slides with syn-
chronized audio, or as a PDF of slides only.2

Paul Davis is professor emeritus of math-
ematical sciences at Worcester Polytechnic 
Institute.

2 https://www.pathlms.com/siam/courses/ 
4150/sections/5839

Figure 2. The evolution over 30 years of the capabilities of computational fluid dynamics for aircraft design. Image 
credit: Dassault Aviation. 

Aircraft Design
Continued from page 1
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The oritatami system thus folds its tran-
script w  cotranscriptionally. Figure 3 
depicts a delay-3 oritatami system folding a 
rigid directional structure motif nicknamed 
glider.1 Any bead or its absence outside the 
circle of radius d+1  centered at the last 
bead stabilized cannot affect the fragment 
of nascent beads. In this sense, the circle is 
called the event horizon or context.

In computing, it seems essential for ori-
tatami systems to refer to some kind of 
“memory.” Random access is one of the 
most essential capabilities for computation, 
and most computational models are either 
equipped with a random-access memory 
or capable of readily implementing it. The 
former is not the case for oritatami systems. 
Regardless of the transcript’s prior folding, 
subsequent transcription is predetermined 
by w  and does not change. Oritatamists 
have therefore speculated that the only plau-
sible way for oritatami systems to “remem-
ber” is to equip a transcript with the capa-
bility of sensitively folding into more than 
one conformation to multiple possible event 
horizons. Two possible event horizons and 
corresponding conformations may carry 
1-bit information.

This turned out to be the central prin-
ciple in designing an oritatami binary 
counter [4]. Its transcript is periodic as 

 
of period 60, where integers represent bead 
types. The periodically-occurring factor 

 along the transcript is 
called a half-adder module. The transcript 
folds cotranscriptionally upon the seed 
shown in Figure 4 (top). The event horizons 
that the first two occurrences of the factor 

encounter are distinct enough to favor dif-
ferent conformations, (see Figure 4, middle 
and bottom). The rule set of the system is 
designed carefully so as to equip the half-
adder module with the capability of fold-
ing into four conformations, depending on 
the sequence of the four bead types above, 
which encodes a 1-bit input, and on whether 
a module starts folding at the top (carry = 0) 
or bottom (carry = 1). These four conforma-
tions expose different sequences of bead 
types distinguishable enough to encode a 
1-bit output, and place its last bead (of type 
11) at the top or bottom to represent a carry. 
For instance, the event horizon encountered 
by the first half-adder module feeds 0 with 
carry to the module and causes the module to 
fold so as to output 1 without carry, while the 
event horizon for the second feeds 0 without 
carry and folds the module so as to output 0 

1 View an animation of the delay-3 ori-
tatami system at http://www.dailymotion.com/
video/x3cdj35

without carry. Two event horizons encoding 
1 with or without carry fold a half-adder 
module into one of the other two possible 
conformations, respectively. The system is 
designed such that half-adders never encoun-
ter any other unexpected event horizon.

Due to further developments, an ori-
tatami system to simulate a cyclic tag sys-
tem is now nearly complete. The cyclic tag 
system is capable of simulating a Turing 
machine [2], and the cyclic tag system 
simulator would prove that the oritatami 
system is Turing-universal, that is, capable 
of computing all computable functions. 

Innovative features of the simulator include 
cyclically-accessible memory, transcrip-
tion-halting machinery, geometrical “hill-
and-dale” encoding, and the glider. Turing-
universality marks the first key milestone, 
suggesting implementability of artificial 
inheritable stored-program computers.

With hope and the meager tools invented 
thus far, oritatamists venture into the fron-
tier of cotranscriptional folding. The next 
milestone is intrinsic universality, the capa-
bility of one oritatami system to mimic the 
behavior of an arbitrary other. An intrin-
sically-universal oritatami system would 
offer a prototype of a universal program-
ming language for RNA cotranscriptional 
folding. It seems quite distant, though, and 
there are many problems to be settled. The 
oritatami system discards some kinetic and 
topological details of RNA cotranscription-
al folding to shed light on its computational 
aspects. Expertise and insights from diverse 
fields such as RNA kinetics, molecular 

dynamics, and topology would complement 
the oritatami system and consolidate theory 
and experiments into an in-vivo execu-
tion of basic computational steps by RNA 
cotranscriptional folding.
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Figure 2. Abstraction of the RNA tile structure as a conformation in an oritatami system. The dashed lines indicate bonds. Left image courtesy 
of Cody Geary, right image courtesy of Shinnosuke Seki.

Figure 4. An oritatami binary counter. Image courtesy of [4].

Figure 3. Glider, a delay-3 oritatami system folding a rigid directional structure motif. View the 
complete animation at http://www.dailymotion.com/video/x3cdj35.

Cotranscriptional Folding
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Thomas J.R. Hughes Receives 
the SIAM/ACM Prize in CSE

Thomas J.R. Hughes was awarded the 2017 
SIAM/ACM Prize in Computational Science 
and Engineering on March 2 at the 2017 SIAM 
Conference on Computational Science and 
Engineering (CSE17) in Atlanta, Ga. 

Hughes is the Peter O’Donnell Jr. Chair in 
Computational and Applied Mathematics and a 
professor of aerospace engineering and engineer-
ing mechanics at the Institute for Computational 
Engineering and Sciences at the University of 
Texas at Austin.

The prize honors Hughes for his pioneering work 
on finite element methods for partial differential 
equations. His work is used worldwide in engineer-
ing design and simulation, and has impacted every 
field of science that uses finite element methods. 
Hughes has also made pioneering contributions to 
the seamless integration of modeling methodolo-
gies with design representations. He has created entirely new fields of research, includ-
ing stabilized methods, variational multiscale methods, and isogeometric analysis, and 
continues to lead their development.

“Almost my entire research career has been devoted to the development of com-
putational methods used in engineering and science, so the SIAM/ACM Prize in 
Computational Science and Engineering, which is the major distinction in the field, rep-
resents in many ways the culmination of my life’s work,” Hughes said. “It means a great 
deal to me to be selected by my peers from among numerous outstanding candidates. I 
am truly honored and humbled to receive this award.” 

Thomas J.R. Hughes of the 
University of Texas at Austin.
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Climate Prediction, Exascale 
Computing, and Time Parallelism
By Paul Davis

New computing architectures promise to 
deliver more accurate weather predic-

tions faster than ever before. But achieving 
dramatic reductions in wall-clock time using 
these new machines demands “disruptive 
algorithms,” according to Beth Wingate 
of the University of Exeter, who gave an 
invited talk at the 2017 SIAM Conference 
on Computational Science and Engineering 
(CSE17), held in Atlanta, Ga., this February.

Wingate and her colleagues are among the 
vanguard of computational scientists devel-
oping parallel-in-time algorithms. These 
algorithms augment the classic paradigm 
of spatially parallel computing—assigning 
each of a multitude of processors to com-
pute simultaneously the governing model 
equations at one or more distinct nodes of 
the spatial grid—with the intuitively disrup-
tive idea of simultaneous computation at 
multiple points in time. How indeed could 
time evolve in any manner but serially, one 
moment after another?

Suppose each point of a temporal grid 
were the starting time for a distinct ini-
tial-value problem with its own dedicated 
processor(s). One could solve that ensemble 
of problems simultaneously—parallel in 
time—matching the solutions sequentially at 
the temporal grid points by adjusting the ini-
tial value of the outgoing solution to match 
the final value of its incoming predecessor.

Although there could be some fearful 
devils hiding in the details of such match-
ing (more about them later), real run times 
might be cut dramatically. A long sequence 
of tiny time steps could be folded over on 
itself many times, potentially reducing the 
wall-clock time required for the computa-

tion. Of course, the overhead of matching 
at the temporal folds and other particulars 
could eat up those real-time savings if they 
were handled carelessly.

But thoughtfully constructed algorithms 
that are parallel in time do have the power to 
cope with the multiple time scales inherent in 
models for climate and weather prediction; 
indeed, multiple time scales are a challenge 
common to many large-scale computation-
al models. Phenomena that oscillate rap-
idly, such as ocean vortices, demand small 
time steps to accurately track their motion. 
Dissipative phenomena, like cooling, may 
need a small time step to track an initial rapid 
decline in temperature but a much larger step 
as the rate of cooling decreases.

Although these disparate time scales may 
only present themselves at a few locations 
within the geographic region being mod-
eled, the constraint of the smallest time step 
can impose itself much more widely. In a 
further twist of the tiny-time-step dagger, 
finer spatial resolutions necessitate even 
smaller time steps in order to maintain 
numerical stability.

The practical outcome is discouraging. 
As Wingate observed, despite the promise 
in the newest machines of vastly increased 
numbers of processors with more concur-
rency—the potential to do millions of cal-
culations at the same time—total clock time 
needed to compute current weather and cli-
mate models may not decline significantly; 
finer spatial grids and better resolution 
of oscillatory phenomena will force more 
smaller time steps to model the same period 
of time. While the results may offer better 
spatial and temporal accuracy, they might 
not reach an investigator’s desk any sooner 
— or demand less energy to compute.

Mathematical and computational ingenu-
ity are essential to realizing the promise 
that parallel-in-time algorithms will reduce 
overall execution time by simultaneously 
taking many small time steps.

In 1964, Jürg Nievergelt suggested the 
first explicitly parallel approach to solving an 
initial-value problem for an ordinary differ-
ential equation [1], though he was obviously 
unaware of the challenges and opportunities 
posed by today’s most advanced architec-
tures. He divided the required time interval 
into a series of coarse subintervals to permit 
a parallel, then a serial step: first compute 
in parallel a family of solutions for different 
initial values at the beginning of each subin-
terval, then sequentially interpolate solutions 
from one subinterval to the next to construct 
the solution over the original time interval.

The short time steps necessary for either 
numerical stability or accurate resolution 
of oscillations are still required to solve 
the coarse grid problems. Solving them 
simultaneously—in parallel—can save sig-
nificant time if sequential matching at the 
grid points is not too costly.

The modern parallel-in-time paradigms 
developed by Wingate and her collabora-
tors are rooted in a method called parar-
eal, introduced in 2001 by Jacques-Louis 
Lions, Yvon Maday, and Gabriel Turinici. 
In simplest form, the parareal method also 
coarsely subdivides the original time inter-
val, but it begins with an approximate solu-
tion computed on the coarse grid using the 
backward Euler method. These backward 
Euler values are the initial values for solu-
tion in parallel of each coarse grid initial-
value problem. The backward Euler method 
propagates the discrepancy between the 
initial and final values at each subinterval 
interface. The coarse grid initial values are 
corrected accordingly, and these initial-
value problems are solved again in parallel 
[1], as illustrated schematically in Figure 1.  
Ultimately, the iterative process of implicit 
solution and updating of initial values on 
the coarse grid can be reformulated as an 
incomplete Newton’s method.

These parallel-in-time approaches are not 
just intuitively clever. They are provably 
accurate; e.g., each repetition of the propa-
gate-and-solve cycle of the parareal method 
increases its order of accuracy by one. A 
firm analytic foundation for these parar-
eal-type methods is key to the approach 
that Wingate and colleagues such as Terry 
Haut of Lawrence Livermore National 
Laboratory [2] use to reduce overall run 
time for a set of one-dimensional shallow 
water equations, a standard test problem for 
potential weather and climate algorithms.

Asymptotically, as the ratio of slow to fast 
frequencies approaches zero, the fast frequen-
cies can be swept out of the problem. Wingate 
represents that process with a time average of 
a version of the underlying nonlinear opera-
tor; she emphasizes that the operator, not 

the solution, is averaged. Roughly speaking, 
her team’s version of parareal uses the time-
averaged operator/asymptotic approximation 
to provide the coarse time grid solution and 
an exponential integrator for the fine grid 
solution that corrects the coarse grid values. 
This algorithm can use coarse time steps 
that are as much as 50 times greater than the 
explicit time step limitation — and 10 times 
larger than the next best parallel method. 
More importantly, this approach incorporates 
the dynamic variations in time scales that are 
common in climate models; the ratio of slow 
to fast frequencies is not always small. A 
moving, variable-width time average window 
accommodates these situations.

Wingate’s student Adam Peddle has both 
analytic and computational evidence (pre-
sented in a minisymposium1 at CSE17) of 
a “Goldilocks sweet spot” in the number 
of parareal iterations versus the ratio of 
the width of the time-averaging window to 
the coarse grid spacing. When frequency 
ratios are not small, Peddle’s results show 
an optimum number of parareal iterations, 
a point where “the averaging mitigates the 
oscillatory stiffness.”

Wingate envisions an evolutionary inte-
gration of time parallelism into new machine 
architectures. “The immediate need is to 
get current models running on the new 
machines,” she said. “Time parallelism will 
be in the background.” Then new models, 
relatively simple at first, will become avail-
able to scientists studying simple, more fun-
damental problems. Today’s young research-
ers will carry forward those models with 
novel algorithms on new machines, thereby 
advancing the methods that underpin our 
most important applications.

Wingate’s CSE17 presentation is avail-
able from SIAM either as slides with syn-
chronized audio, or as a PDF of slides only.2

Acknowledgments: SIAM News would 
like to acknowledge Beth Wingate for her 
review of this article.
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Figure 1. A schematic of the parareal parallel-in-time process. The initial approximation to 
the solution of an initial-value problem on the coarse 

T  time grid is traced in pink. The sub-
sequent corrections computed in parallel using the fine steps t  are in blue. The improved 
coarse grid approximation is in black. Image adapted from [2].
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Adaptive Mesh Refinement: An Essential 
Ingredient in Computational Science
By Paul Davis

Adaptive mesh refinement may be to 
computational science and engineering 

(CSE) what Bolognese sauce is to Italian 
cooking: part of many meals and integral to the 
repertoire of most cooks, nearly all of whom 
are happy to share and serve their special reci-
pes. In that spirit, adaptive mesh refinement 
was widely served at invited presentations, 
minisymposia, and poster sessions at the 2017 
SIAM Conference on Computational Science 
and Engineering (CSE17) in Atlanta, Ga., this 
February; “adaptive mesh refinement” and 
“AMR” are mentioned on 52 distinct occa-
sions in the meeting’s abstracts!

Like Bolognese, AMR has but a few simple 
ingredients. The trick is managing them well 
— across many, many pots on a very large 
stove. AMR aims to efficiently accommodate 
the vast variations in scale inherent in most 
physical phenomena by using smaller scales 
only when and where required.

As the components of a set of partial 
differential equations’ approximate solution 
advance in time, AMR refines selected por-
tions of the spatial grid to meet predetermined 
error bounds (and perhaps takes smaller time 
steps, too.) The mesh refinement is dictated 
adaptively by a local estimate of the error in 
the computed solution; the sous-chef de pré-
cision is automated — embedded in the code. 
Clever bookkeeping tracks the mesh hierar-
chy and the approximate solution values as 
mesh points appear and disappear.

Abel, Adaptive Methods,           
and Astrophysics

Tom Abel of Stanford University began 
his invited presentation, “Making Sense of 
the Universe with Supercomputers,” with a 
cosmological problem that incorporates the 
“mother of all scales:” tracing the formation 
“via ab initio modeling” of the very first stars 
from the soup of hydrogen, helium, dark 
matter, etc. that constituted the universe a 
mere 400,000 years after the Big Bang.

“We can’t experiment,” Abel remarked 
dryly, because “there are no black holes in the 
laboratory.” But, he suggested, we do know 
what that soup looked like 400,000 years post-
Big Bang because we can measure now the 
background radiation it emitted then. “Think 

initial conditions,” Abel said. Of course, the 
point of the computational modeling is deter-
mining what transpired in the “dark ages” 
between the time of that discordant brew and 
the nearby universe we observe today.

The scales in this computation are cer-
tainly daunting. Spatial variations on the 
order of 1012 and a dynamic range up to 
1015 require AMR in both space and time. 
The model itself is another soup, with 
multi-physics ingredients such as gravity, 
gas dynamics, gas chemistry, radiation, and 
magneto-hydrodynamics.

Abel and his colleagues’ computational 
package of choice is Enzo, “a community-
developed AMR simulation code designed 
for rich, multi-physics hydrodynamic astro-
physical calculations.”1 With 300,000 lines 
of C++ and Fortan77, the code itself is a 
massive undertaking of computational engi-
neering, never mind the computational sci-
ence underlying core algorithms (like AMR) 
that it implements, or the astrophysics of the 
daunting questions it seeks to answer.

Figure 1 (on page 1) illustrates one of the 
successes of these efforts: isodensity and 
isothermal profiles computed at three levels 
of spatial resolution during the evolution of 
the very first stars. Abel noted that while 
average properties like mass and temperature 
converge reasonably well in these computa-
tions, measures of vorticity, turbulence, and 
magnetic field generation are less accurate.

Moving from the birth of the first stars 
to the evolution of the second generation 
adds the computational complexity of ray-
tracing. Further up the scientific mountain 
being scaled by Abel and his colleagues—and 
even more spectacular—are predictions of the 
distribution of dark matter in the universe. 
These suggest that “galaxies are arranged 
in a cosmic web of voids, sheets, filaments, 
and holes,” none of which can be predicted 
analytically. Public television programs often 
use visualizations of aspects of the universe’s 
evolution contributed by Abel and his col-
leagues, some of which he included in his talk.

“Few problems of astrophysics can be 
addressed in the lab,” Abel said, emphasiz-
ing the field’s reliance on computation. Since 
complex solutions require more memory, effi-

1  www.enzo-project.org

cient adaptive tools like AMR are essential, 
although AMR is but one tool among many 
that his teams employ. In its development of 
Enzo, the astrophysics community was also an 
early adopter of many of the ground rules of 
distributed code development—like version 
control—which are now commonplace.

Almgren and the Next   
Generation of AMR

Ann Almgren of Lawrence Berkeley 
National Laboratory focused her invited pre-
sentation exclusively on the development of 
the next generation of AMR algorithms. Her 
core message, aimed at a CSE17 audience of 
AMR cognoscenti, is that block-structured 
AMR provides natural opportunities for par-
allelism because it manages data efficiently. 

In principle, AMR could arbitrarily 
subdivide parts of individual coarse grid 
cells higgledy-piggledy—one here, another 
there—so that the refined grid presents no 
discernable regular pattern within the origi-
nal coarse grid. Block-structured (or tile-
based) AMR regards the individual grid cells 
as a set of non-overlapping tiles of fixed size. 
An individual tile is refined by subdividing it 

uniformly and by appending so-called ghost 
cells to store solution values from neigh-
boring tiles that the algorithm will need to 
advance the refined tile’s solution in time.

Almgren argued that block-structured 
AMR offers “a natural framework for 
reducing memory use,” and that its “infra-
structure naturally supports hierarchical 
parallelism.” Put crudely, if the code can 
track the grid refinements of AMR and the 
coders know enough about the machine and 
the model being solved, then code and cod-
ers can together make efficient decisions 
about using storage and assigning tasks to 
nodes of the machine.  Of course, the code’s 
“decisions” are adaptive algorithms, which 
coders decide to incorporate during design 
and development.

Almgren comprehensively addressed six 
aspects facing next-generation AMR: sin-
gle-core versus single-node performance, 
programming models, load balancing, syn-
chronicity, the possibility of new equations 
and corresponding new algorithms, and 
the trade-offs between in situ and in transit 
visualization and analysis.

Figure 2. Simulation of flooding resulting from the 1976 Teton Dam failure in eastern Idaho, 
done using ForestClaw, a parallel adaptive quadtree code for patch-based adaptive mesh refine-
ment. The flood waters reached Sugar City (shown on figure) with a 15 foot wall of water 
inundating the city. The thicker red line is a digitized flood boundary, taken from historical 
records, and shows good agreement between the ForestClaw results and the historical record. 
The simulated flood arrival times (not shown) at Sugar City, Rexburg, and beyond also show 
excellent agreement with historical data. © Google, Digital Globe. Image credit: Donna Calhoun.

A Model for an Applied Mathematics Internship Program
By Nadia Benakli and        
Jonathan Natov

The Department of Mathematics at the 
City University of New York’s New 

York City College of Technology (City 
Tech) began offering an applied mathemat-
ics major in 2004. The program has since 
found much success, with enrollment grow-
ing from only seven majors at its onset to 
approximately 100 in 2016. Our internship 
requirement is a key part of this success.

City Tech’s students come from more 
than 100 different countries. Many are 

first-generation college-goers, and often 
need employment immediately after gradu-
ation. While some of the 
internships are paid, it is 
more essential that the work 
experience helps students 
reach their career objectives. 
Six of the 12 interns in our 
spring 2016 cohort remained 
at the institution where they completed 
their internships, and 10 of the 12 intern 
supervisors indicated that their agency, or 
a similar organization, would likely hire 
the intern. This suggests that even more 

interns could have found employment at 
their internship sites, but decided to go on 

to graduate school or look for 
another position.

In the following sections, 
we discuss our manage-
ment and assessment of the 
internship program. We also 
provide some case studies, 

which highlight the utility of mathematics 
in atypical settings.

Finding Internships
Students in City Tech’s applied math pro-

gram are required to complete two intern-
ships. Students submit statements of career 
objectives at the beginning of the process, 
which help determine appropriate intern-
ship opportunities. They are responsible for 
finding appropriate positions, with some 
help from faculty, and can also access City 
Tech’s Professional Development Center 
for possible opportunities and on-campus 
recruiting events.

While some students complete their 
internships in “conventional” host organi-
zations, such as financial institutions, edu-
cational foundations, or research labs, many 
internship opportunities come as a surprise, 
as evidenced in the following case studies. 
Figure 1 presents a breakdown of students’ 
internship types, based on 139 internships 
over the last 12 years.

Case Studies
Many of our interns have discovered 

interesting opportunities for mathematics 
and consequently broadened our perspec-
tive of what an internship might look like. 
Their successes reinforce our belief that 
mathematics has a role to play in almost 
every industry. 

Transportation. One applied math-
ematics major obtained a paid job work-
ing on signal repairs for the New York 
City Metropolitan Transportation Authority 
(MTA). Many of our students work part 
time or full time while pursuing their 
degrees, and City Tech has an established 
relationship with the MTA. 

The opportunity arose during the perfor-
mance of a mandated test to determine the 
condition of batteries, which identify the 
position of trains in the event of a power out-
age. By collecting data and using a simple 
regression analysis, the student estimated 
the longevity of battery life. This work 
became the basis for his first internship.

Given the vast amounts of data that 
have been collected but not yet analyzed, 
the intern believes that his data analysis 
skills will yield many opportunities to 
improve the system.

Transportation: Railroad. Another 
transportation-related example involves a 

CAREERS IN 
MATHEMATICAL 

SCIENCES   

Figure 1. Breakdown of internship types for students in the Department of Mathematics at 
City Tech. The data is based on 139 internships over the past 12 years. Figure credit: Nadia 
Benakli and Jonathan Natov.

See Internship Program on page 7

See Adaptive Mesh Refinement on page 8
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student who worked at a leading railroad 
company to support his family. Though his 
job focused on routine tasks, he astutely 
noticed that a certain switch often broke 
down during system failures, causing sig-
nificant problems and passenger delays. He 
downloaded a student version of a statistical 
application, taught himself the necessary 
commands, collected data, and presented 
the analysis to his supervisor. 

By replacing an inexpensive switch, the 
railroad significantly reduced the system 
failures. In response, the railroad manage-
ment hired the student as a systems analyst 
and supported him while he completed a 
graduate program.

Call Center. Yet another student wished 
to ultimately find employment with a finan-
cial institution. Her internship experience 
began while working for a city agency, 
answering calls and directing callers to 
the appropriate department. While this did 
not qualify as an internship, she took the 
initiative to keep track of the approximate 
number of calls the center received. She 
then created a statistical model to determine 
a confidence interval that estimated the 
likely number of callers within an hour. Her 
work showcased inferential statistics and 
impressed her supervisor. 

This intern then moved on to a position 
as a budget analyst for a car rental agency, 
which led to a job as an analyst at a presti-
gious financial institution.

Pharmacy. When one of our majors 
began working for a pharmaceutical com-
pany, his job essentially involved running 
errands. However, he looked for oppor-
tunities to use his skills. He noticed that 
the company tended to purchase relatively 
small amounts of chemicals, and wondered 
if purchasing in bulk could save money. But 
price fluctuations cause uncertainty, and the 
company was unfamiliar with the cost of 
larger quantities of chemicals. 

The student produced a price estimate 
using a regression analysis, which close-
ly matched the actual price the company 
would have to pay. His applied mathematics 
skills promoted him from running errands to 
running budget analyses.

Teachers’ Union. While a teachers’ 
union might not seem like an obvious place 
for an applied math student, one of our 
interns found unexpected success. The union 
in question is part of an umbrella organiza-
tion to which it must pay dues. At the start 
of a new billing cycle, the union can choose 
from a few different payment formulas. 

Formulas are based on the number of 
full- and part-time faculty members, higher 
education officers, and their corresponding 
ranks. Computing the cost involved a large 
data set (in the tens of thousands);  unpre-
dictable fluctuation of the numbers was 
an added complication. Our intern helped 
create a pricing model to accurately deter-
mine the cost of each payment option. In so 
doing, he helped the union save hundreds of 
thousands of dollars each year.

 Data Science. A student found a position 
at a company that analyzes television view-
ership data. The company developed both a 
proprietary application to quantify qualita-
tive data and a benchmarking application 
to test the proprietary application’s success.

After graduation, the student landed a 
full-time job with the company, which subse-
quently took on two more interns. As a result 
of our students’ many successes, companies 
are beginning to approach us for interns. 
With time, we expect growing demand for 
our applied math majors.

Assessing the Internships
We assess internships based on a supervi-

sor’s evaluation, a log of the intern’s activi-
ties, a final written report, an oral presenta-
tion, the student’s professionalism, and the 
significance and relevance of their work to 
the overall goals of the organization. 

Interns are expected to behave as profes-
sionals, which involves using terminology 

appropriate for industry, writing profession-
al documents, respecting deadlines, keeping 
scheduled appointments, and conducting 
themselves with integrity and respect.

 Written reports submitted by interns 
include information on the host organiza-
tion; an overview of the intern’s responsi-
bilities, duties, and overall experience; and 
insights as to how the intern’s contributions 
benefited the company. Keeping a work 
log helps interns evaluate their work and 
monitor their progress while recording their 
weekly tasks and new skills. 

Towards the end of the semester, interns 
present their work. They focus on essen-
tials, respond to audience questions, and are 
expected to use their limited time wisely.

Finally, we also consider the significance 
of internship work for overall evaluation. 
By the end of their second internship, 
students should be prepared to meet their 
career objectives.

Ensuring a Strong Curriculum
The internship experience is the heart 

of City Tech’s applied mathematics pro-
gram, and serves three essential functions. 
First, it helps graduates find meaningful 
employment. A successful internship pro-
vides strong evidence of future success in 
industry, which assists our graduates as 
they compete against candidates from more 
prestigious institutions.

Secondly, it ensures that our curricu-
lum meets industry’s current demands 
and incorporates current applications of 
mathematics that are of interest and rel-
evant to industry.

Ultimately, internships provide a way 
to assess the strengths and weaknesses of 
our program. For example, supervisors 
have generally been impressed with our 
interns’ mathematical skills. However, 
ratings of their communication skills were 
typically lower. In response, we modified 
our math modeling courses to include 
more written reports and oral presenta-
tions. This change has correlated with 
improved ratings.

We strongly recommend that applied 
math programs require internships, in order 
to foster strong mathematical training and 
keep students competitive. Our experience 
has shown that internships are manageable 
and crucial for a career-oriented program.

Further Reading
[1] ACT, Inc. (2000). Workplace 

Essential Skills: Resources Related to the 
SCANS Competencies and Foundation 
Skills. Presented to the U.S. Department 
of Labor, Employment and Training 
Administration & the U.S. Department of 
Education National Center for Education 
Statistics. Retrieved from https://wdr.dole-
ta.gov/opr/fulltext/00-wes.pdf.

[2] Fregosi, D. (2012). Should My Salary 
Be Higher After Graduation If I Have An 
Internship? EzineArticles.com. Retrieved 
from http://EzineArticles.com/7074831.

[3] Korkki, P. (2011, March 25). The 
Internship as Inside Track. The New York 
Times. Retrieved from http://www.nytimes.
com/2011/03/27/jobs/27searches.html?_r=0.

[4] Long Island Press. (2010). Why 
Internships Are Essential. Long Island 
Press. Retrieved from http://archive.lon-
gislandpress.com/2010/01/07/why-intern-
ships-are-essential/.

[5] National Association of Colleges 
and Employers. (2013). 2013 Internship 
and Co-op Survey. Retrieved from https://
www.naceweb.org/uploadedfiles/con-
tent/static-assets/downloads/executive-
summary/2013-internship-co-op-survey-
executive-summary.pdf.

[6] Sterrett, A. (Ed.). (1996). 101 
Careers in Mathematics. Washington, D.C.: 
Mathematical Association of America. 

Nadia Benakli is an associate pro-
fessor of mathematics at New York 
City College of Technology of the City 
University of New York (CUNY). She 
is the coordinator of the applied math-
ematics internship program. Jonathan 
Natov is a professor of mathematics at 
NYC College of Technology. He coordi-
nated the applied mathematics program 
from 2004 to 2014.

Internship Program
Continued from page 6
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Broader Engagement Program Returns to 
CSE17 with a Focus on Community Engagement
By Debbie McCoy and             
Mary Ann Leung

The Sustainable Horizons Institute’s 
Broader Engagement (BE) program1 

aims to provide a rich scientific agenda, 
mentoring, and career and professional 
development opportunities to students, fac-
ulty, and professionals aspiring to widen 
their experience in research-based profes-
sional activities. Computational science and 
engineering (CSE) is at the forefront of 
investigation and engineering design in 
areas ranging from aerospace and auto-
motive industries to biological, chemical, 
and semiconductor technologies. CSE’s 
prevalence in these fields and reliance on 
advanced modeling and simulation make it 
the ideal backdrop for projects such as BE.

The program therefore returned to the 
2017 SIAM Conference on Computational 
Science and Engineering (CSE17) in Atlanta, 
Ga., this February, having made its debut 
at the 2015 CSE conference.2 This venture 
brings a diverse group of students, faculty, 
and professionals to the conference, thus 
involving them in conference activities and 
increasing the CSE community’s knowledge 
and support of diversity and inclusion.

“The unique aspect offered by the BE pro-
gram is that it allows individual researchers 
or academics to contribute to the goals of 
diversity at the grassroots level,” said Hans 

1 http://shinstitute.org/siam_cse17_be/
2 https://sinews.siam.org/Details-Page/life-

is-a-tensor-pilot-program-aims-at-expanding-
siam-impact

De Sterck, professor of computational and 
applied mathematics at Monash University 
and chair of the SIAM Activity Group on 
Computational Science and Engineering. 
“I volunteered because I felt it is important 
to try to directly and personally contribute 
to making SIAM events like CSE17 more 
accessible to early career and underrepre-
sented groups. Increasing diversity benefits 
both individuals and the profession.”

At CSE17, the BE program focused on 
engaging the computational science and 
engineering professional communities with 
students and early career scientists. “I always 
wanted to help and engage with people, but 
BE finally provides an actual mechanism to 
do this, and that’s great!” De Sterck said. “I 
was also curious about how BE activities are 
set up and how they work, just to know what 
kinds of things can be done and perhaps used 
at other events; I believe this kind of initia-
tive can be valuable in many settings.”

During CSE17 registration, over 270 mem-
bers of the CSE community indicated an inter-
est in learning about BE volunteer opportuni-
ties. More than 50 CSE community members 
helped out as mentors, leaders for guided 
affinity groups, and volunteers for the Student 
Opportunities Lab (informal roundtable dis-
cussions about career/professional develop-
ment topics). In addition, Google employees 
served as ambassadors for BE participants and 
accompanied them on a site visit to Google’s 
Atlanta-based Fiber Academy.

“I volunteered to lead a guided affinity 
group because I appreciate the opportuni-
ties I’ve had to attend beginners’ forums 

and tutorials,” said Stephen Wood, postdoc-
toral researcher in computational engineer-
ing at the University of Tennessee’s (UT) 
Innovative Computing Laboratory and the 
UT-Oak Ridge National Laboratory Joint 
Institute for Computational Sciences. Wood 
led a guided affinity group on uncertainty 
quantification (UQ) for computational fluid 
dynamics in sustainable energy applica-
tions. “I saw the opportunity as a moment 
to pay forward the sage guidance I’ve 
received from more experienced practitio-
ners,” he said. “It was a pleasure to interact 
with inquisitive students from a variety of 

disciplines. The best part of the experience 
was listening to students discuss how they 
could apply UQ to their work; the openness 
of their questions and helpful responses to 
each other continue to inspire me.”

While 33 BE participants were sponsored 
by the Sustainable Horizons Institute, 23 
others paid their own way to be part of 
the program. Sponsored participants—11 
undergraduates, 16 graduate students, and 
six early career professionals—were repre-
sentative of 30 institutions, 10 of which are 
historically black colleges and universities 
and minority-serving institutions.

“I would not be where I am today without 
the amazing mentors who have encouraged, 
advised, and inspired me along the way,” 
said Julianne Chung, assistant professor 
in the Department of Mathematics and the 
Computational Modeling and Data Analytics 
Division at Virginia Tech. “Broader engage-
ment programs provide opportunities for me 
to give back to the community.” 

The BE program at CSE17 matched stu-
dents and early career participants with men-
tors to create and foster networks between 
students, early career scientists, established 
researchers, and leaders in scientific com-
munities. “BE’s mentorship program, where 
mentors are paired with BE protégés based 
on background, interests, and needs, is an 
excellent way to develop and encourage a 
strong and diverse workforce of computa-
tional scientists,” Chung said. “Navigating 

Participants of the Broader Engagement (BE) program at the 2017 SIAM Conference on Computational Science and Engineering, held in Atlanta, 
Ga., this February. Photo credit: Nitin Sukhija.

Broader Engagement (BE) participants toured Google’s Atlanta-based Fiber Academy during the 
2017 SIAM Conference on Computational Science and Engineering. Photo credit: Mary Ann Leung.

See Broader Engagement on page 11

Load balancing, for example, is usually 
based on the number of cells. But if the 
particles in the simulation are unevenly 
distributed on the grid, then redistributing 
work by particle might be more efficient, 
depending on the relative costs of computa-
tion and data transfer.

Although Almgren acknowledges that 
“‘Synchronicity’ means different things to 
different people,” she uses it to label a range 
of coordination trade-offs that might be pro-
ductive. Some could take place at a very low 
level, entirely invisible to the application, 
e.g., floating point computations on some 
cells while doing simple bookkeeping on 
others. Other coordination strategies might 
be quite brazen—say, changing the order of 
high-level tasks within the algorithm—pro-
vided one tile doesn’t step far ahead of others 
in time, a situation that would postpone solu-
tion updates and inflate memory demands.

New algorithms might be implemented 
differently to remove synchronization points 
like norm calculations. Or new algorithms 
might solve different equations, perhaps per-
mitting asynchronous combustion or a par-
ticle description of a fluid embedded within 
a continuum model. In the face of so many 

possibilities, Almgren encouraged computa-
tional scientists to “Keep the options open!”

AMR Elsewhere
AMR appeared throughout CSE17 in a 

myriad of sessions. As but one example, 
it was often part of simulations of surface 
flooding using AMR-based tools from the 
Conservation Laws Package (Clawpack), 
a community-supported collection original-
ly developed by Randall LeVeque of the 
University of Washington. LeVeque orga-
nized a six-poster session describing some of 
the Claw packages’ applications at CSE17.

Donna Calhoun2 of Boise State University; 
Yu-Hsuan Melody Shih, then at Columbia 
University, now at Boise State; Kyle Mandli 
of Columbia; Carsten Burstedde of the 
University of Bonn; and collaborators from 
Idaho National Laboratory used the GeoClaw3 
extension of ForestClaw,4 a parallel adaptive 
quadtree code for patch-based AMR, to simu-
late the June 1976 flooding that ensued from 
the catastrophic failure of Idaho’s Teton Dam. 
Eleven people were killed and approximately 
2 billion dollars of property destroyed as the 

2 Calhoun maintains an extensive list 
of adaptive mesh resources at http://math.
boisestate.edu/~calhoun/www_personal/
research/amr_software/

3 www.geoclaw.org
4 www.forestclaw.org

flood spread 88 kilometers downstream in the 
eight hours following the dam’s collapse. 

One of the investigators’ goals was 
assessing the suitability of these tools “for a 
potential study of flooding of nuclear power 
plants.” In their simulation, they sought to 
match records of the crest’s arrival times 
and the flood’s geographic spread, though 
not the dynamics of the dam’s actual failure.

Calhoun, Shih, and Mandli found that 
they needed a better model of the dam’s 
burst to accurately modulate the water’s 
initial flow and volume. Changes in these 
initial conditions affected the agreement 
between simulated and actual arrival times 
and between the predicted and actual spread 
of flood waters (see Figure 2, on page 6). 
Despite the uncertain initial data, the algo-
rithm performed well; the team could see 
the grid refinement as the water advanced. 
About 50-70% of CPU time was spent actu-
ally solving the problem.

In a related study, Mandli, working with 
Colton Conroy and Jiao Li of Columbia, 
used patch-based AMR to solve the shallow 
water equations with added terms in order 
to assess the risk of storm-surge flooding 
in coastal cities. The trio sought efficient, 
reliable answers to some of the fundamental 
questions of flood management design and 
forecasting: How high should we build surge 
protection barriers? Will the water deflected 

by the barriers cause flooding elsewhere? 
They found partial answers by solving a 
Riemann problem over a region where bar-
riers were modeled as thin walls at cell 
boundaries, although much work remains.

A Large Cast
Of course, AMR is but one among many 

arms that CSE has built for itself and 
repeatedly flexed in the service of other 
areas of human endeavor, ranging from the 
astronomic to the atomic. AMR’s frequent 
appearances in so many settings at CSE17 
make it a compelling lead character—but 
only one among a very large cast—in this 
story about computational science and engi-
neering as a fruitful and rapidly-growing 
part of applied mathematics.

Abel’s5 and Almgren’s6 CSE17 presen-
tations are available from SIAM either as 
slides with synchronized audio, or as PDFs 
of slides only.

Paul Davis is professor emeritus of math-
ematical sciences at Worcester Polytechnic 
Institute.

5 https://www.pathlms.com/siam/courses/ 
4150/sections/5827

6 https://www.pathlms.com/siam/courses/ 
4150/sections/5833

Adaptive Mesh Refinement
Continued from page 6
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When Big Data Algorithms Discriminate
Weapons of Math Destruction: 

How Big Data Increases Inequality 
and Threatens Democracy. By Cathy 
O’Neil. Crown Publishing, New York, NY, 
September 2016. 272 pages, $26.00.

Cathy O’Neil discovered prime num-
bers on her own, at an early age. At 

14 years old, she mastered the Rubik’s 
Cube while attending summer math 
camp. Following undergraduate work at 
the University of California, Berkeley, 
O’Neil earned a Ph.D. from Harvard 
University in 1999, with a thesis in alge-
braic geometry. Next came a postdoctoral 
position at the Massachusetts Institute 
of Technology, followed by a tenure-
track professorship at Barnard College/
Columbia University. In 2007, seeking 
excitement, she elected to try her hand at 
finance with hedge fund D.E. Shaw.

After four of the most tumultuous years 
in Wall Street history, O’Neil became con-
vinced that the computer programs used to 
scour the global economy for promising 
investment opportunities were partly to 
blame for the housing crisis, the collapse 
of major financial institutions, the rise of 
unemployment, and other societal plights. 
Moreover, she began to suspect that data-
driven finance was but a small part of an 
emerging “big data economy,” with limit-
less potential for good or ill.

A computer program can speed through 
thousands of résumés or loan applications in 
a second or two. Not only do the machines 
save time and money, they also treat every-
body the same way — meaning they appear 
fair and objective in court.

Regrettably, programs written by humans 
nearly always encode at least a few of the 
biases, prejudices, and misconceptions har-

bored—consciously or unconsciously—by 
their creators. Moreover, the verdicts they 
render are all but impossible to appeal, since 
nobody really knows what makes the pro-
grams work the way they do. O’Neil main-
tains that, whether by accident 
or design, too many of these 
electronic decision-makers 
punish the poor and oppressed 
while further rewarding the 
already-rich. For ease of reference, she took 
to describing the more dangerous decision-
making programs as 
“weapons of math 
destruction,” or 
WMDs for short.

O’Neil’s opening 
example involves 
a procedure 
meant to improve 
Washington D.C.’s 
school system. 
In 2007, the new 
mayor set out to 
reform the district’s 
underperforming 
schools. Only eight 
percent of the sys-
tem’s eighth grad-
ers were perform-
ing at grade level 
in math, and barely 
half of those enter-
ing high school 
were soldiering 
on to graduation. 
Choosing to blame 
the teachers, the 
mayor decided that the solution was to 
identify and remove those that were incom-
petent. To that end, he created a powerful 
new post—chancellor of D.C. schools—

and hired Michelle Rhee, a young but 
highly-regarded reformer, to fill it.

Rhee engaged a Princeton, N.J.-based 
consulting firm called Mathematica Policy 
Research to construct a “value added” pro-

gram known as IMPACT to 
measure each student’s year-
to-year learning progress. 
Teachers were then rated by 
their students’ progress. At 

the end of the 2009-2010 school year, 
all teachers with IMPACT scores in the 

bottom two percent 
were fired. A year 
later, another five 
percent—206 teach-
ers total—were ter-
minated. Everything 
seemed to be going 
according to plan, 
including collateral 
damage.

Sarah Wysocki, a 
fifth grade teacher 
with two years of 
experience, had 
received nothing but 
positive feedback 
from her superiors 
and students’ par-
ents. One evaluation 
praised her atten-
tiveness to the chil-
dren, while another 
called her “One of 
the best teachers 
I’ve ever come in 
contact with.” Yet 

her IMPACT score was dismal, obliging 
the district to fire her. How, she wondered, 
could this have happened?

Upon inquiry, Wysocki learned that her 
students’ test papers from the previous 
year, which weighed heavily in their prior 
IMPACT scores, contained an unusual 
number of erasures. Had prior teachers 
changed answers to improve scores? Had 
they protected their own jobs, while cost-
ing Wysocki hers? Fortunately, Wysocki 
quickly landed another job in Virginia, 
where teachers are evaluated differently. 
She arrived with glowing letters of recom-
mendation, while D.C. retained a possibly 
dishonest (and/or incompetent) teacher.

Wysocki’s firing was an obvious miscar-
riage of justice, quickly recognized and soon 
corrected. But what of the other mishaps, 
the ones that went undetected? Wysocki 
could hardly have been the only qualified 
teacher to be fired. What, one wonders, do 
value-added assessments actually measure? 
Do they measure a teacher’s ability to 
teach? Do they measure his or her impact 
on students? Or do they measure nothing at 
all? The Tim Clifford case suggests that the 
latter possibility is entirely too real.

Clifford was a middle school English 
teacher in New York City with 26 years 
of experience. When the city adopted a 
rating system similar to the one that cost 
Wysocki her job, he was shocked to learn 
that his initial rating was an appalling six 
out of 100. Clifford worried that with a few 
more such scores, even his tenured position 
might be in jeopardy. It also concerned 
him that poor scores for tenured teachers 
call into question the validity of the tenure 
system, already under fire from would-be 
reformers. So imagine his relief when, a 
year later—with no discernable change in 
his teaching methods—his rating rose to 
an enviable 96! How can one trust such a 
volatile performance index?

“In fact, misinterpreted statistics run 
through the history of teacher evaluation,” 
O’Neil writes. She offers an imposing list of 
difficulties to overcome, and a litany of mis-
takes commonly made during the process.

Electronic decision-makers are, of 
course, by no means restricted to the 
education system. They are often used 

to decide which internet shoppers should 
see certain ads. Advertisers test different 
versions on (disjoint) samples drawn from 
a target demographic to learn which gen-
erate the greatest response. The winning 
version is shown to the entire audience 
of presumed “susceptibles” only after a 
number of these small-scale trials. Every 
purchaser of western garb, get-rich-quick 
schemes, weight-loss programs, exercise 
equipment, or exotic vacations is sure to 
be rewarded with “opportunities” to buy 
more such products.

Men and women in the armed services 
nearing completion of their tours of duty 
are routinely swamped with offers from 
for-profit universities, mainly because 
government loans are more easily obtained 
on their behalf. This, says O’Neil, is a par-
ticularly grievous use of electronic rating 
techniques because it encourages primarily 
poor, often poorly-educated, and easily-
misled individuals to assume unrepayable 
quantities of debt in return for all-but-
worthless credentials.

Many of O’Neil’s complaints involve 
fairness and accuracy. Judges, she notes, 
often hand down more severe sentences 
to convicts deemed likely to become 
repeat offenders. They do so even though 
the likelihood in question is typically 
assessed electronically, and may be due 
to the offender’s broken family or resi-
dence in a high-crime neighborhood. 
Although such information would be 
inadmissible in court due to its propensity 
to result in a verdict of guilt by associa-
tion, it still counts against the defendant 
at sentencing time.

Similarly, loans are frequently denied 
to applicants considered liable to default, 
despite the fact that electronic credit rating 
algorithms often predicate their evalua-
tions on applicants’ residence in neigh-
borhoods where jobs are likely to be 
temporary and/or loan defaults are unusu-
ally common. This also invites an unfair 
finding of guilt by association.

Finally, O’Neil laments the lack of con-
cern regarding the accuracy of electronic 
rating schemes, despite the fact that their 
main purpose is to fairly narrow down the 
field of job seekers, loan applicants, or 
potential parolees at low cost. The fact that 
more labor-intensive evaluation schemes 
might result in slightly better workers, 
slightly fewer loan defaults, or slightly 
more law-abiding parolees counts for lit-
tle beside the indisputable cost savings 
obtained with electronic screening.

O’Neil points out that this cavalier atti-
tude toward accuracy is in marked contrast 
to the player evaluation schemes employed 
in professional sports, where even slightly 
better players can mean the difference 
between (profitable) winning and (unprof-
itable) losing records. Those electronic 
rating systems—like those that determine 
which ads will pop up on your computer 
screen—are continually monitored and 
improved. Too often, the ones applied to 
teachers, job seekers, loan applicants, and 
convicted criminals are not. Though easily 
available for the purchase of packages like 
IMPACT, funds for testing their accuracy 
are regrettably scarce.

O’Neil’s important and fact-filled book 
will win no awards for suspense. One 
chapter tends to resemble another, since 
many of the same pitfalls await the use 
of electronic rating schemes in differ-
ent fields of application. But by expos-
ing the shortcomings of existing methods, 
Weapons of Math Destruction gives reason 
to hope that demonstrably better systems 
may yet be developed.

James Case writes from Baltimore, 
Maryland.

BOOK REVIEW
By James Case

Weapons of Math Destruction: How Big Data 
Increases Inequality and Threatens Democracy. 
By Cathy O’Neil. Courtesy of Crown Publishing.
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The University of North Carolina    
at Greensboro
Department of Mathematics and Statistics

The University of North Carolina at Greensboro 
(UNCG), Department of Mathematics and 
Statistics seeks applications for a tenure-track 
assistant professor or tenured associate profes-
sor position in computational partial differential 
equations with a preferred start date of August 
1, 2017. Tenure at the associate professor rank 
may be offered depending on the selected can-
didate’s qualifications. Candidates must hold a 
Ph.D. in mathematics or a closely related disci-
pline. Competitive applicants will have research 
expertise that strengthens our Ph.D. program in 
computational mathematics. Successful appli-
cants will be expected to excel in teaching, main-
tain a vigorous research program, seek external 
research funding, contribute to the interdisciplin-

ary mission at UNCG, and educate a diverse 
group of undergraduate and graduate students 
from various backgrounds. Application materi-
als should be submitted electronically at http://
jobsearch.uncg.edu by clicking on “Faculty” and 
going to position #999153. Alternately, go direct-
ly to https://jobsearch.uncg.edu/postings/8297. 
Review of applications will begin on April 26, 
2017, and will continue until the position is filled. 
UNCG is especially proud of the diversity of its 
43% ethnic minority student body (http://admis-
sions.uncg.edu/discover-about.php). UNCG has 
been designated as a Minority Serving Institution 
by the U.S. Department of Education. We seek 
to attract a diverse applicant pool for this posi-
tion, especially women and members of minor-
ity groups, and we are strongly committed to 
increasing faculty diversity. UNCG is an EOE 
AA/M/F/D/V employer.

Send copy for classified advertisements and announcements to: marketing@siam.org; 
For rates, deadlines, and ad specifications visit www.siam.org/advertising.

Students (and others) in search of information about careers in the mathematical sciences 
can click on “Careers and Jobs” at the SIAM website (www.siam.org) or proceed directly 

to www.siam.org/careers.

Professional Opportunities 
and Announcements

An Electrician’s (or a Plumber’s) 
Proof of Euler’s Polyhedral Formula
Euler’s famous polyhedral formula, 

   V E F− + =2,   (1)

describes the numbers of vertices, edges, 
and faces of a polyhedron “without holes,” 
i.e., one that is sphere-like and in three 
dimensions. If the polyhedron has one 
hole, as in Figure 2, then we subtract 2 
from the right-hand side of the formu-

la, which becomes V E F− + = 0.  The 
same thing happens for each additional 
hole (or, putting it differently, 
“handle on the sphere”). I will 
describe an argument based 
on electric circuits, leading to 
Euler’s formula. I learned this 
beautiful idea from Peter Lax, 
and I therefore lay no claim to originality, 
except for any errors.

Imagine our poly-
hedron as a wire 
frame, the edges 
being conduct-
ing wires, each of 
resistance 1 ohm, 
welded together at 
the vertices. Let us 
connect two vertices 
(chosen arbitrarily) 
to a battery, adjust-

ing the voltage so as to drive the current of 
exactly 1 ampere.  Now, nature will pick a 

specific value for each edge’s 
current. In doing so, she obeys 
Kirchhoff’s laws: the currents 
satisfy some equations that 
determine the currents. Let us 
take it for granted that

   the number of unknown currents =  
   the number of independent equations.

This sentence is already Euler’s for-
mula in disguise! Indeed, the left-
hand side is E, one unknown current 
per wire. For the right-hand side, 
Kirchhoff’s laws state the following:

(i) The sum of currents entering 
each vertex is zero, giving V equa-
tions. But one of these equations 
is redundant, since it results from 
adding up all the others (I leave out 
the simple verification), yielding 
V -1  equations.

(ii) The sum of voltage drops 
around each face is zero. This gives F 
equations, one of which is the sum of the 
remaining ones and thus redundant, for the 
total of F -1  equations.

Summarizing,

            E V F= − + −( ) ( ),1 1

which amounts to (1). For a polyhedron 
with a hole, as illustrated in Figure 2, we 
must add two more equations, expressing 
the fact that the voltage drop over each of 

two non-contractible circuits is zero, result-
ing in E V F= − + − +( ) ( ) ,1 1 2  or

   V E F− + = 0.

Admittedly the proof is not rigorous as 
given, since, for instance, I did not eliminate 
the possibility of more redundant equations.

Although this proof would have sounded 
strange in Euler’s pre-electricity days, it 
could be reformulated in plumber’s terms 

by treating the polyhedron as a network of 
tubes (with porous blockages playing the 
role of resistors), currents as the mass flow 
per second, and voltages as pressures.

The figures in this article were provided by 
the author.

Mark Levi (levi@math.psu.edu) is a pro-
fessor of mathematics at the Pennsylvania 
State University.

MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 1. V, E, and F are the numbers of vertices, edges, and faces 
of a polyhedron.

Figure 2. A polyhedron with a hole; two non-contract-
ible circuits are indicated.

Broader Engagement
Continued from page 8

the ranks of academia or figuring out how 
to juggle family priorities with graduate 
studies can leave many feeling isolated. The 
mentorship program provides ample oppor-
tunities for discussions that may continue 
after the conference, where often times it 
is not just the mentees but also the mentors 
who walk away thinking, ‘Wow, I’m not the 
only one who feels this way!’”

Participants presented posters and gave 
oral presentations on their research during 
the conference. The BE program won an 
award for best minisymposterium. 

“I have gotten more out of this week than I 
have from all of the other conferences I have 
attended combined,” a student participant 

wrote of the BE program. “It helps fill the 
gaps in my career preparation that one cannot 
get from usual graduate program activities. I 
especially appreciated the opportunity to be 
paired with a mentor, who helped me polish 
my résumé. It was fantastic!”

“The BE program as a microcosm of diver-
sity in a larger, more homogeneous group 
was fantastic in that it provided a community 
for those of us who would have otherwise not 
been able to participate in the conference,” 
another student shared. “It’s a wonderful 
opportunity to combat impostor syndrome in 
those of us who tend to question whether we 
belong in academia/research careers.”

Debbie McCoy is the director of pro-
grams at Sustainable Horizons Institute. 
Mary Ann Leung is president of the 
Sustainable Horizons Institute.
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Deep, Deep Trouble
Deep Learning’s Impact on Image Processing, Mathematics, and Humanity
By Michael Elad

I am really confused. I keep changing my 
opinion on a daily basis, and I cannot 

seem to settle on one solid view of this 
puzzle. No, I am not talking about world 
politics or the current U.S. president, but 
rather something far more critical to human-
kind, and more specifically to our existence 
and work as engineers and researchers. I am 
talking about…deep learning.

While you might find the above state-
ment rather bombastic and overstated, deep 
learning indeed raises several critical ques-
tions we must address. In the following 
paragraphs, I hope to expose one key con-
flict related to the emergence of this field, 
which is relevant to researchers in the image 
processing community.

First, a few words about deep learning to 
put our discussion into perspective. Neural 
networks have been around for decades, 
proposing a universal learning mechanism 
that could, in principle, fit to any learnable 
data source. In its feed-forward architecture, 
layers of perceptrons—also referred to as 
neurons—first perform weighted averaging 
of their inputs, followed by nonlinearities 
such as a sigmoid or rectified-linear curves. 
One can train this surprisingly simple sys-
tem to fit a given input set to its desired 
output, serving various supervised regres-
sion and classification problems.

All of this may sound great, but unfor-
tunately this concept did not take off in the 
1980s and 90s — it simply did not provide 
a sufficiently competitive performance. In 
addition, the emergence of support vector 
machines for learning tasks, accompanied 
by solid theoretical foundations and a con-
vex optimization formulation, seemed to 
be the last nail in the coffin. Eventually, 
neural networks entered a long hiberna-
tion period. Only a few persistent research-
ers—Yann LeCun (New York Univerity 
and Facebook), Geoffrey Hinton (University 
of Toronto), Yoshua Bengio (University of 
Montreal), and Jürgen Schmidhuber (Dalle 
Molle Institute for Artificial Intelligence 
Research)—stayed in this arena, insisting on 
trying to convince this seemingly doomed 
method to behave better. Several important 
architectures, such as convolutional and long 
short-term memory networks, resulted from 
their efforts; yet they were still confined to a 
niche. Then neural networks suddenly came 
back, and with a vengeance.

A series of papers during the early 2000s 
suggested the successful application of 
this architecture, leading to state-of-the-art 
results in practically any assigned task. 
Key aspects in these contributions included 
the following: the use of many network 
layers, which explains the term “deep 
learning;” a huge amount of data on which 
to train; massive computations typically 
run on computer clusters or graphic pro-
cessing units; and wise optimization algo-
rithms that employ effective initializations 
and gradual stochastic gradient learning. 
Unfortunately, all of these great empirical 
achievements were obtained with hardly 
any theoretical understanding of the under-
lying paradigm. Moreover, the optimiza-
tion employed in the learning process is 

highly non-convex and intractable from a 
theoretical viewpoint.

This application effort began with writ-
ten digit recognition (see Figure 1), mov-
ing slowly and carefully to more chal-
lenging visual and speech recognition and 
natural language processing tasks, and 
from there on to practically anything that 
could be cast as a supervised learning task. 
Companies such as Google, Facebook, and 
Microsoft quickly realized the potential in 
this field and invested massive manpower 
and budget in order to master these tools 
and exploit them in their products. On 
the academic front, conferences in signal 
processing, image processing, and com-
puter vision have become deep learning 
playgrounds, contributing to a growing 
dominance of this bread of work.

This history brings us to present day. 
For the sake of brevity, consider the clas-
sic image processing task of denoising — 
removing noise from an image (see Figure 
2). Thousands of papers addressing this 
fundamental task were written over the 
years. Researchers developed beautiful 
and deep mathematical ideas with tools 
from partial differential equations, such as 
anisotropic diffusion and total variation, 
energy minimization viewpoint, adoption 
of a geometric interpretation of images as 
manifolds, use of the Beltrami flow, and 
more. Harmonic analysis and approxima-
tion theory have also served the denoising 
task, leading to major breakthroughs with 
wavelet theory and sparse representa-
tions. Other brilliant ideas included low-
rank approximation, non-local means, 
Bayesian estimation, and robust statistics. 
We have hence gained vast knowledge 
in image processing over the past three 
decades, impacting many other image 
processing tasks and effectively upgrad-
ing this field to be mathematically well-
founded.

In 2012, Harold Burger, Christian 
Schuler, and Stefan Harmeling decided to 
throw deep learning into this problem. The 
idea was conceptually quite simple: take 
a huge set of clean images, add synthetic 
noise, and then feed them to the learning 
process that aims to turn a noisy image into 
its clean version. While the process was 
tedious, frustrating, and lengthy—tweak-
ing the method’s parameters in a search for 
good performance likely took a long time—
the end result was a network that performed 

better than any known image denoising 
algorithm at that time.

The above is not an isolated story. 
Today, deep learning treats many other 
image processing needs, with unsurpassed 
results. This is true for single image super-
resolution, demosaicing, deblurring, seg-
mentation, image annotation, and face rec-
ognition, among others.

Should we be happy about this trend? 
Well, if we are in the business of solving 
practical problems such as noise remov-
al, the answer must be positive. Right? 
Therefore, a company seeking such a solu-
tion should be satisfied. But what about 
us scientists? What is the true objective 
behind the vast effort that we invested in 
the image denoising problem? Yes, we do 
aim for effective noise-removal algorithms, 

but this constitutes a small fraction of our 
motivation, as we have a much wider and 
deeper agenda. Researchers in our field aim 
to understand the data on which we operate. 
This is done by modeling information in 
order to decipher its true dimensionality and 
manifested phenomena. Such models serve 
denoising and other problems in image pro-
cessing, but far more than that, they allow 
identifying new ways to extract knowledge 
from the data and enable new horizons.

Now back to the main question: should 
we be pleased about emerging solutions 
based on deep learning? Is our frustration 
justified? What is the role of deep learn-
ing in imaging science? These questions 
present themselves when researchers in 
the community meet at conferences, and 
the answers are diverse and confusing. 
The facts speak loudly for themselves; in 
most cases, deep learning-based solutions 
lack mathematical elegance and offer very 
little interpretability of the found solution 
or understanding of the underlying phe-
nomena. On the positive side, however, 
the performance obtained is terrific. This is 
clearly not the school of research we have 
been taught, and not the kind of science 
we want to practice. Should we insist on 
our more rigorous ways, even at the cost 
of falling behind in terms of output qual-
ity? Or should we fight back and seek ways 
to fuse ideas from deep learning into our 
more solid foundations?

To further complicate this story, cer-
tain deep learning-based contributions bear 
some elegance that cannot be dismissed. 
Such is the case with the style-transfer 

problem, which yielded amazingly 
beautiful results, and with inver-
sion ideas of learned networks 
used to synthesize images out of 
thin air, as Google’s Deep Dream 
project does. A few years ago we 
did not have the slightest idea 
how to formulate such compli-
cated tasks; now they are solved 
formidably as a byproduct of a 
deep neural network trained for 
the completely extraneous task of 
visual classification.

From my personal viewpoint, image pro-
cessing researchers have mixed feelings of 
disgust and envy towards this recent trend 
of deep learning that keeps pushing itself 
into our court. Some of us have chosen to 
remain bystanders for now, while others 
play along and divert their research agendas 
accordingly. I belong to the latter group, 
with some restrictions. In my opinion, it 
is impossible to imagine that this wave 
will pass without a marked influence on 
our field. Thus, I allow deep learning to 
influence my research team’s thoughts and 
actions, but we continue to insist on seeking 
mathematical elegance and a clear under-
standing of the ideas we develop. Time will 
tell if we are aiming for the impossible.

Briefly circling back to my opening state-
ment on deep learning’s massive impact on 

humankind, human lives will likely be very 
different several decades into the future. 
Humanoid robots and intelligence systems 
might surround us and influence many of 
our activities, employment and jobs may be 
things of the past, and relationships between 
people will probably change drastically. To 
put it bluntly, your grandchild is likely to 
have a robot spouse. And here is the punch 
line: much of the technology behind this 
bizarre future is likely to emerge from deep 
learning and its descendant fields.

While this technology progresses rap-
idly, we haven’t stopped to think if this is 
the future we want for ourselves. The curi-
osity and tremendous talent of engineers 
and researchers is driving us towards this 
future, as do companies that see profit as 
their main goal. How is it that we rarely 
engage in discussion about regulating or 
controlling this progress and guiding it 
towards a desired future? This is a matter 
for a different article.

What are your thoughts on the impact of 
deep learning on image processing — and 
humanity? Share your feedback by sending 
us a letter to the editor or blog post at sin-
ews@siam.org, or visit the online version 
of this article at sinews.siam.org/Current-
Issue and post a comment.
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Figure 2. A denoising example. Left. An original image (public domain). Middle. Image contaminated by additive Gaussian noise of STD=100. 
Right. The denoising outcome obtained by one of the leading algorithms — the BM3D [1]. Image credit: Michael Elad.

Figure 1. Neural networks have shown great potential, first in character recognition and subsequently in 
many other tasks. Image credit: Michael Elad.


