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Abstract. We consider trajectory optimal control problems in which parameter uncertainty limits the appli-
cability of control trajectories computed prior to travel. Hence, efficient trajectory adjustment is
needed to ensure successful travel. However, it is often prohibitive or impossible to recalculate the
optimal control in-transit due to strict time constraints or limited onboard computing resources.
Thus, we propose a framework for quick and accurate trajectory approximations by using post-
optimality sensitivity information. This allows the reduction of uncertain parameter space and an
instantaneous approximation of the new optimal controller while using sensitivity data computed
and stored pretransit.

1. Introduction. Optimal control problems pose physically difficult questions as opti-
mization problems. Given a physical system, often constrained by differential equations, a
control function is found such that an objective or cost function is minimized. This method
is commonly used in aerospace applications such as the famous example of determining when
to apply thrusters on the Apollo 11 mission [2].

In aerospace applications, the governing equations typically contain parameters that are
subject to uncertainty. Examples include environmental parameters such as atmospheric den-
sity or physical parameters such as drag and lift coefficients. This parameter uncertainty
restricts the usefulness of the precomputed solution to the optimal control problem. A small
change in lift or drag forces due to, for example, heat stress causing deformation of a shuttle,
can greatly influence how an aircraft maintains trajectory. For small changes, feedback con-
trollers may maintain trajectory [11]. In more extreme cases, an optimal trajectory must be
recomputed. We consider these in-transit computations.

Recalculation of the optimal path is computationally expensive, time-consuming, and lacks
any guarantee of obtaining a favorable solution. If a new optimal path is required to avoid
failure, a quick and efficient approximation of the optimal path is ideal [8, 3].

One approach to this computation is presented in [5]. Their adaptive flight control scheme
for an F-18 aircraft focuses on in-flight failures that they simulate, and it helps dampen the
affects of parameter uncertainties. We present a new method to approach this approximation.

Section 2 outlines our methods in generality, allowing for its application to a wide range of
problems. Our first goal is to reduce the number of significant parameters using global sensi-
tivity analysis. Then, rather than totally recomputing a solution, we focus on approximating
a solution, generalizing a method presented in [1]. By storing and interpolating sensitivity
information, which requires less memory due to parameter reduction, we may further reduce
in-transit computation time without significant sacrifices of accuracy. These three steps, (i)
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parameter reduction, (ii) sensitivity information interpolation, and (iii) approximating using
a general method from [1], individually constitute ways to improve computation time given
uncertainty, and we consider the efficacy of each. Hence, our approach is to adapt the optimal
trajectory dynamically based on sensitivity information. Typical feedback control which relies
on reactive adjustments, works well for small deviations but may struggle with large devia-
tions, and so this new approach can handle those larger perturbations given its adjustments
made using precomputed sensitivity information.

Thus, we want to emphasize that our method is intended to complement, rather than
replace, existing feedback control techniques, which remain well-suited for handling small
deviations. Additionally, this approach represents a singular strategy within optimal control,
and its applicability should be evaluated based on the specific problem at hand. Users should
consider its usefulness in conjunction with other established methods to determine the most
effective solution for their particular application.

Section 3 applies this solution method to a model Space Shuttle Trajectory problem from
[4]. There we solve for the optimal control angle which maximizes the longitude traveled in
a model space shuttle’s reentry. This provides an in-depth example that demonstrates the
strengths and limitations of each part of the procedure.

2. Generalized Framework for Approximation of the Optimal Control. As noted above,
our framework breaks down into 3 main steps.

(i) Conduct global sensitivity analysis to understand which parameters we may remove
from consideration.

(ii) Interpolate post-optimality local sensitivities to store onboard.
(iii) Use the interpolated data to make quick and accurate controller approximations for

perturbed parameters.
In particular, we perturb important parameters and solve this new optimal control problem

by relying on a method of using the sensitivity information to construct a differential equation
whose solution is the new optimal control.

2.1. Problem Formulation. We consider a general trajectory control governed by a system
of ordinary differential equations of the form,

(2.1)

{
ẋ(t) = f(t,x, u;p) t ∈ (0, T ),

x(0) = x0,

where t is time, with final time T > 0, x : [0, T ] → Rn is the state vector with initial condition
x0, u : [0, T ] → R is the trajectory controller, and p is the parameter vector containing P
parameters. To normalize parameter changes, we non-dimensionalize parameters to

(2.2) pi = (1 + β0θi)p̄i, for i = 1, 2, . . . , P

where p̄i is the nominal value of the parameter, and θi is the reparameterization. The factor
β0 determines the amount of change taken in these parameters. For example, if β0 = 0.1 this
simulates a maximum change of 10% from nominal parameter values.

To find the optimal control u∗(t), we minimize a cost function,

(2.3) min
u

J(x(t), u(t), t;θ).
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and impose inequality constraints and terminal state equality constraints.
Some optimal control solvers strictly enforce these constraints through spectral methods,

but constraints may also be imposed through penalty terms in the cost function J . The latter
method is less accurate, but is useful in situations with low computation power such as the
motivating in-transit case.

To solve this problem computationally, we discretize the time interval [0, T ] as t0, t1, ..., tN
for a chosen N ∈ N. We also linearly discretize the controller by storing the function uN (t)
as a vector [u0, u1, . . . , uN ] where

(2.4) uN (t) =
N∑
i=0

uiϕi(t)

for basis functions ϕi(t) given by

(2.5) ϕi(t) =


t−ti−1

ti−ti−1
t ∈ [ti−1, ti]

ti+1−t
ti+1−ti

t ∈ [ti, ti+1]

0 otherwise.

2.2. Dimension Reduction. The various uncertain parameters may influence the problem
at highly different degrees. Sensitivity information attempts to capture this information. In
the present work, this sensitivity analysis helps us locate those parameters most important
to the problem and thus we are locating parameters which have less influence on the optimal
control. Fixing unimportant parameters at their nominal values greatly reduces the complexity
of the problem when considering possible parameter changes and uncertainty estimation.

We consider the parameters (θ1, ..., θNp) ∈ Θ = Θ1 ×Θ2 × · · · ×ΘP ⊂ RP , for a space of
parameters Θ on which we define the probability law

(2.6) µ(dθ) =

Np∏
πj(θj)dθj

j=1

for the parameters. We wish to compute Sobol indices, which measure the amount of output 
variance that is caused by variance in input parameters [10]. It is important to note that Sobol 
indices come in three different f orms, main, i nteraction, and t otal. The main Sobol i ndex is 
simply the ratio of the variance of a single input, say the parameter θj , by the total variance 
of the output, in our case the optimal controller u. Thus, this main index measures the 
direct effects of the input variable and does not account for any interaction effects with other 
variables. These interaction indices capture how the combined variations of input parameters 
like θi and θj affect the model o utput. The total Sobol index captures the contribution of an 
input variable to the output variance, accounting for both its main effects and all interaction 
effects involving the input variable.

These total Sobol indices provide a clear ranking of how important input parameters 
are. Total Sobol indices range from 0 to 1, yet will not sum to 1 given the overlapping of 
interaction terms. These indices would allow the most unimportant parameters to be reduced 
to their nominal values and ignored for perturbation analysis. However, computing them
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can be expensive. Therefore, we bound Sobol indices using derivative-based global sensitivity
measures (DGSMs) as described in [6].

Note that, if Sobol indices could be precisely computed, the main Sobol indices would
provide a more valid reduction of parameter space. This is because, when setting a reduced
parameter to its nominal value, we are then ignoring all interaction effects, leaving only the
direct effects captured by the main Sobol indices. As such, the main Sobol indices would
better describe how important each parameter is and whether it should be retained in the
model.

However, since we are working with upper bounds on Sobol indices, the total index also
provides a valid measure of whether or not we should retain or discard a parameter. The total
index accounts for both direct and interaction effects, providing a comprehensive measure of
a parameter’s maximum possible contribution to output variance. For example, given a input
parameter with a small upper bound on its total index, we can then safely say that even
its maximum possible contribution (direct and interaction effects) to the output variance is
negligible.

Nevertheless, the use of upper bounds comes with limitations. While we can confidently
identify parameters with negligible total contributions, if given a large upper bound, i.e. an
upper bound above 1, we cannot infer the relative importance of the parameter and its direct
versus interaction effects. Thus, we leave these parameters with unclear significance to be
further analyzed through the perturbation-based methods in our framework.

The structure of computing the upper bounds on total Sobol indices is as follows. Let
u : Θ → RN+1 be a vector-valued function. The derivative-based global sensitivity measure
of u with respect to parameter j is defined as

(2.7) Nj(u) =

N∑
i=1

∫
Θ

(
∂ui
∂θj

)2

µ(dθ).

These DGSMs may be use to generate an upper bound on the Sobol indices. In the
simple case of a uniform random variable, these connect to the Sobol indices via the following
theorem. More complex and general versions may be found in [6].

Theorem 2.1. Let u be a vector-valued random variable and let Γ be its covariance matrix.
Assume the inputs θi are independent and identically distributed uniform random variables
U(a, b). Then,

(2.8) Stotj (u) ≤ cpj
Nj(u)

Tr(Γ)

where cpj =
(b−a)2

π2 .

Using this inequality to bound the Sobol indices from above, the DGSMs can show when
parameters are unimportant and may be ignored for small perturbations or totally removed
from perturbation analysis. This reduces the computational expense of solving updated prob-
lems.

Numerically, the DGSMs may be computed via a Monte Carlo method and the terms ∂ui
∂θj

may computed via Hyper-Differential S ensitivity Analysis a s s een i n S ection 2 .2.1. I n par-
ticular, a quasi-Monte Carlo (QMC) method employing low-discrepancy sequences to sample
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points, as presented in [9], is shown to converge faster than a standard Monte Carlo method
when computing DGSMs. It is also possible to vectorize the process by interchanging the
QMC summation and DGSM summation. With this interchange we have,

(2.9) Nj(u) ≈
1

M

M∑
k=1

N∑
i=1

(
∂u∗i
∂θj,k

)2

.

Using equation (2.9), upper bounds on Sobol indices for each parameter θi can be calcu-
lated. By ignoring the unimportant parameters the complexity of the optimal control problem
is reduced and when coupled with Hyper-Differential Sensitivity Analysis, the computational
cost for this reduction is feasible.

2.2.1. Hyper-Differential Sensitivity Analysis. Hyper-Differential Sensitivity Analysis
(HDSA) is a local sensitivity method that considers the change in the solution of an opti-
mal control problem with respect to perturbations of parameters appearing in the model [7].
It encapsulates this change by computing the derivatives ∂u∗

∂θi
, where u∗ is the discretized

optimal solution and θi are relevant parameters. It is possible to use numerical differentiation
to compute these, but it diminishes the error to use implicit differentiation as in [7].

Considering ∇uJ(u
∗(θ), θ) = 0, implicit differentiation with respect to θ gives

(2.10)

(
∂2J

∂ui∂uj

)(
∂u∗j
∂θk

)
+

(
∂2J

∂ui∂θk

)
= 0, for i, j = 0, . . . , N and k = 1, . . . , P

or

D = −H−1B(2.11)

where H = ( ∂2J
∂ui∂uj

)ij is the Hessian of J with respect to u, which is assumed to be invertible

at the optimal solution, B = ( ∂2J
∂ui∂θj

)ij is a matrix of mixed partials with respect to the con-

troller u and parameters θ, and D is the matrix of sensitivities
∂u∗

i
∂θk

. Since u is discretized,
the D matrix consists of local sensitivities of the discretized u with respect to each parameter
θ. The entries of D are used for calculating DGSMs and for approximating u∗ as in the next
section and the Hessian and mixed partials matrix may themselves be computed by stan-
dard numerical differentiation techniques such as complex step differentiation or sensitivity
equations.

2.2.2. Sensitivity Equations. The calculation of the gradient ∂J
∂ui

of the cost function
J(x(t),u(t), t;θ), is important in both HDSA and the convergence and precision of the opti-
mization process. Thus, employing an exact calculation rather than a numerical approxima-
tion is crucial. We choose to achieve this through the use of sensitivity equations.

Given a system of ODEs with state variables xi and a discretized controller u, sensitivity
of the state variables with respect to the controller can be calculated via sensitivity equations.
This is done by treating the discretized controller u as a parameter in the ODEs such that

x′(t;u) = f(t,x(t;u);u)

x(0) = x0(u).
(2.12)
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By treating the controller this way it is possible to differentiate with respect to u

(2.13)
∂x′i
∂uj

=
∂f

∂xi

∂xi
∂uj

+
∂f

∂uj
.

The derivatives ∂xi
∂uj

can be used to calculate a more accurate gradient, ∂J
∂uj

, when differentiating

the cost function directly. Appendix C shows calculations of sensitivity equations for the
example problem shown in section 3.

2.3. Approximating the Optimal Control Problem. In case of parameter change during
flight (either an actual change occurs or parameters are remeasured at better accuracy),
it is necessary to shift the precomputed trajectory to match the physical system, but the
time pressure and computational restrictions of in-flight computation impedes the ability to
recompute an optimal control, especially in the case of a highly non-convex objective function.
Instead, we shift to approximation of the optimal control. In particular, we focus on a method
relying on the sensitivity information described in the previous section.

2.3.1. Generalizing an Approximation Method. From subsection 2.2.1, we obtain the

matrix D = (
∂u∗

i
∂θj

)ij . For small changes in θ or changes with respect to less-important param-

eters, we may apply a first-order Taylor series approximation,

(2.14) u∗(θ1) = u∗(θ0) +D(u∗(θ0),θ0)(θ1 − θ0) +O(||θ1 − θ0||2),

for nominal parameters θ0 and perturbed parameters θ1. This approximation is already
relatively accurate. Computing the derivative information D offline and storing it in vehicle
systems allows for a rapid approximation. Higher order approximations may greatly improve
accuracy if derivatives are highly accurate as well.

The inaccuracy of the linear approximation depends on the curvature of the optimal
controller u∗ with respect to θ. This problem may be addressed by stepping over θ as presented
in [1]. This process first parameterizes the step from θ0 to θ1 as θ(t) = θ0+ t(θ1−θ0). Then,

(2.15)

∂u∗

∂t
=

∂u∗

∂θ

∂θ

∂t
= D(u∗(θ(t)),θ(t))(θ1 − θ0).

This creates a differential equation for u which may be evaluated to obtain u∗(θ1) =
u∗(θ(1)). In [1], this is presented via a time-stepping, or modified forward-Euler method. We
pick some M ∈ N, set h = 1

M and tm = mh, and apply the recursion

(2.16) u∗
m+1 = u∗

m + hD(u∗
m,θ(tm))(θ1 − θ0)

2
2

so u∗(θ1) ≈ u∗
M . Since this method does require re-computation of the derivative at various 

points, it trades accuracy for some computational speed. This is well-known to have a local
truncation error proportional to the square of the step size, or O(||θ1 −θ0|| ). In the case of in 
transit changes or large perturbations, this accuracy becomes extremely important. However, 
due to compounding error in calculating derivatives and steps, the number of step sizes that

259



A FRAMEWORK FOR APPROXIMATING PERTURBED OPTIMAL CONTROL PROBLEMS

improve the approximation is limited by the system involved. Any number of other numerical
differential equation methods may be applied instead of a forward-Euler method, such as
higher order Runge-Kutta methods which may help control when the ODE acts stiff at the
cost of computation time.

2.3.2. Interpolation of the Key Jacobian. In nth-order Runge Kutta, the number of
calculations of the derivative is on the scale of O (nMNP ) for M the number of steps, N
the discretization number, and P the number of parameters. Thus, the computation of these
derivatives throttles our increase of the order for accuracy. Depending on the curvature
of the objective, sacrificing some accuracy of the derivatives to improve the order of the
approximation may improve the approximation of the controller.

In particular, we focus on approximating the key Jacobian, D = (
∂u∗

i
∂θj

)ij . We precompute

the sensitivity matrix, D, on a mesh of values in the hypercube Θ, and store grid-call inter-
polation functions to approximate the derivative at given points. While this can be taxing
in terms of computational power prior to an experiment, it drastically improves computation
time in-situ. In some cases it improves accuracy due to the compounding error as the number
of ODE steps increases. We will refer to the ODE method using these derivatives for inputs
as the Interpolated Step method in the example shown in section 3.

Ironically, an increased number of steps tends to outweigh higher order methods in terms
of accuracy in practice. While several other ODE methods, such as Runge Kutta 3, Adams-
Bashforth multistep, Adams-Moulton multistep, and Gaussian Quadrature, were considered,
we will focus on the forward Euler method moving forward and show the effectiveness of the
interpolated step in section 3. Additionally, while it is not implemented in this paper, storing
higher-order derivatives to approximate the Jacobian ∂ui

∂θj
could similarly improve computa-

tional efficiency without sacrificing much accuracy.

3. Numerical Results. To demonstrate the effectiveness and efficacy of our  method, we 
provide an example of a 2 degree-of-freedom space shuttle re-entry problem.

Less complex problems, such as the classical Zermelo’s navigation problem, were consid-
ered but omitted as the small parameter space and ease of solution did not warrant parameter 
reduction or approximation, and did not display noticeable change with their application. 
However, with more complex systems, such as the 2 DOF space shuttle re-entry, in-transit 
parameter shifts can cause catastrophic results and thus require approximations to the opti-
mal control to be made. Furthermore, these problems contain many physical parameters and 
thus demonstrate the effectiveness o f o ur p arameter r eduction m ethod a nd approximation 
technique.

To achieve our proposed method, we implement this numerically in matlab. Algorithm 
3.1 provides a summary of the proposed approach.

260



R. LINK AND E.EBBIGHAUSEN

Algorithm 3.1 Computation of Mid-Trajectory Approximations

1: Solve the nominal trajectory problem (θ0 = 0) for states x∗ and optimal controller u∗

2: Subdivide the hypercube Θ into m equally distributed samples. At each sample compute
the optimal trajectory and take local hyper-differential sensitivities, D (2.11), about the
new trajectory. These sensitivities form the basis used for interpolation

3: Compute DGSMs (2.7) and reduce the parameter space using the Sobol Index upper
bounds (2.8)

4: Organize the sensitivities computed across all of Θ into a key Jacobian of sensitivities for
only the important parameters.

5: Assume a random parameter change, θ1, at t0 such as θj ∈ U([−1, 1])
6: Using (2.16), step across θ0 → θ1 and interpolate the key Jacobian to calculate the

sensitivities at each step in order to return the approximate trajectory uIS

3.1. Space Shuttle Problem. We consider a 2 degree-of-freedom space shuttle re-entry
problem posed in [4]. With 7 parameters to consider, this gives a sufficient amount of com-
plexity to examine the method described above. In particular, we note that the parameter
reductions and Jacobian interpolation do not substantially affect the accuracy of the approx-
imated optimal control (measured through norm difference of the controls and difference of
the associated costs). Further, we display the ability of this approximation method to mimic
the new optimal solution while noting some instability in this approximation method.

3.1.1. Problem Formulation. The motion of the space shuttle is defined by the following
set of equations:

(3.1) ẋ(t) =


ḣ(t) = v(t) sin (γ(t))

ϕ̇(t) = v(t)
r cos (γ(t))

v̇(t) = −D
m − g sin (γ(t))

γ̇(t) = L
mv(t) + cos (γ(t))

(
v(t)
r − g

v(t)

)
h altitude (ft)
ϕ longitude (deg)
v velocity (ft/sec)
γ flight path angle (rad)

The initial conditions, terminal conditions, and constraints of the system are as follows:

(3.2) x(0) =


h(0) = 260000

v(0) = 25600

γ(0) = − π
180

(3.3) x(T ) =


h(T ) = 80000

v(T ) = 2500

γ(T ) = −5 π
180

(3.4) η(t,x, u;θ) =


h(t) ≥ 0

v(t) ≥ 1

|γ(t)| ≤ 89 π
180

|u(t)| ≤ π
2

Appendix A contains the specific aerodynamic and atmospheric forces on the shuttle.
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The goal of the space shuttle re-entry is to maximize longitudinal distance, ϕ(t) := x2(t),
across t ∈ (0, T ). This is achieved by finding the optimal angle of attack u : [0, T ] → R such
that the cost function J(x(t), u(t), t;θ) is minimized. Thus let the optimal control problem
be formulated as,

(3.5) min
u

J(x(t), u(t), t;θ) = min
u

[−x2(T ) + S(x(t))]

where S(x(t)) is a function of penalty terms enforcing terminal conditions (3.3) and state
constraints (3.4). The full cost function is shown in appendix B. In particular, we take a
weighted penalty for each state and exponentiate to ensure the cost is twice-differentiable.

We analyze seven parameters of interest that are subject to change during flight or to
uncertainty in measurement:

p = [m, ρ0, a0, a1, b0, b1, b2](3.6)

where m is the mass of the space shuttle, ρ0 the initial atmospheric density, and ai and bi are
dimensionless parameters found in the coefficients of lift and drag. As shown in subsection
2.1, these parameters are nondimensionalized to θ ∈ Θ according to equation (2.2).

To solve the problem computationally, we linearly discretize the controller according to
equation (2.4). Thus the discretized controller is u : [0, T ] → RN+1. A discretization value of
N = 10 or N = 20 proved sufficient for computations with appropriate interpolation of the
controller when necessary.

Sensitivity equations were used for efficient computation of the gradient, ∂J
∂ui

, and the full
computations can be seen in appendix C. As mentioned previously, the calculation of the

gradient through this method also increases the accuracy of the local sensitivities,
∂u∗

i
∂θj

, which

are found through HDSA as outlined in subsection 2.2.1.

3.1.2. Parameter Space Reduction. We first assume that all nondimensionalied param-
eters, θj , follow a uniform distribution, U([−1, 1]), which allows for a maximum 10% change
in the parameters. This assumption is made due to the absence of further information on the
atmospheric space of interest or information on the non-dimensional drag and lift coefficients.

We computed DGSM’s and upper bounds on Sobol Indices according to equations (2.9)
and (2.8) respectively. For a sample of M = 800 the results are shown in Table 1.

Table 1
DGSM’s and upper bounds of Sobol Indices for parameters one through seven.

Parameter # DGSM Upper Bound

m 3.22× 10−3 2.13× 10−2

ρ0 3.56× 10−3 2.35× 10−2

a0 9.91× 10−3 6.54× 10−2

a1 2.66× 100 1.76× 101

b0 6.56× 10−1 4.33× 100

b1 5.39× 10−3 3.56× 10−2

b2 7.50× 10−1 4.95× 100
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Table 1 shows that the massm, atmospheric density ρ0, a0, and b1 parameters are relatively
unimportant. Consequently, we focus on perturbations to parameters a1, b0, and b2. Thus we
have reduced the total number of parameters to Np = 3 and so Θ ⊂ R3, allowing for quicker
computations. This process is shown to not diminish accuracy through results in subsection
3.1.3.

3.1.3. Space Shuttle Results. At nominal parameters θ0 = 0, the optimal solution is
denoted u∗. This is the expected path the space shuttle would follow given no perturbations in
parameters. We simulate a parameter change θ0 → θ1 at t = 2000 in which only the important
parameters found in subsection 3.1.2 are perturbed. The optimal solution for the parameter
change is denoted uopt. Figure 1 shows an approximation using our interpolated step method
for a random parameter perturbation θ0 → θ1 at t = 2000. This simulates a change halfway
through the trajectory that requires a new path. In this example the approximation is shown
to closely follow the new optimal solution in this parameter shift. However, note that in
Figure 1, even the optimal solution violates some final state constraints. This is due to the
fact that we impose constraints as penalties, allowing for some violations at the expense of an
increase in the cost function.

0 2000 4000

8

9

10

11

12

13

0 1

0 2000 4000

0.5

1

1.5

2

2.5

3

3.5
10

5

0 2000 4000

0

50

100

150

200

250

0 2000 4000

0

0.5

1

1.5

2

2.5

3
10

4

0 2000 4000

-6

-4

-2

0

2

Figure 1. Controller, u, and state variables, x, of the optimal solution and approximated solution for 
parameter shift θ0 → θ1 at t = 2000. The terminal constraints are represented by the thin dashed lines.

After 500 samples of random parameter perturbations, in which only the important pa-
rameters were perturbed, Figure 2 gives histograms of results to display the relative density 
of approximations.
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Figure 2. Cost difference (left) and error norm (right) between optimal and approximated solutions for 500 
parameter perturbations. Note that the cost is on the scale of 2 and ||u|| is on the scale of 0.68.

In Figure 2 we see that both the cost and the norm error skew right, thus implying most 
interpolated step approximations efficiently mi nimize co st an d ac curately ap proximate the 
optimal solution for the parameter change. We chose these two error metrics because we 
noticed that an approximation that minimizes error does not necessarily minimize cost and 
vice versa. Since we only have control over the costs here, this implies there are multiple 
paths that lead to similar results, and computationally this implies that this is a highly non-
convex problem with many local minima. By using both metrics, a more complete view of 
the effectiveness of our approximation i s shown.

Based on the scale of the cost and norm we notice that there are outliers for both cost 
and error measurements. Since we take random parameter perturbations, there are situations 
when they are beyond the ability of our optimizer (without extra care to find a  better initial 
guess), and the approximation fails in a similar way to the re-optimized result.

Finally, Figure 2 displays a bimodal distribution with a main mode around 0 and a second 
mode around 0.2. We notice that this secondary mode seems to be a feature of the problem. 
As more samples are taken, the tail extends and the mode persists. However, we can calculate,

P (∥uopt − uIS∥ < 0.2) = 0.84.

Thus, there is an 84% chance that our approximation is below this secondary mode and thus 
is an excellent error approximation. Additionally, given that we are looking at a considerable 
10% perturbation range, we would expect this probability to only increase with a more local 
approximation perturbation range of 5% or less.

Next, to verify the usefulness of parameter reduction, we use the 500 parameter changes
and compare the new optimal solution using all 7 parameter perturbations, u7opt, with the 
case of only considering the 3 parameter perturbations identified i n s ubsection 3 .1.2, u3opt. 
The following table summarizes the results:
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Table 2
Optimal Solutions and Parameter Reduction for 500 Perturbations

J
(
u7
opt

)
J
(
u3
opt

)
∥uopt−7p − uopt−3p∥

Mean 1.37× 100 1.11× 100 6.21× 10−2

Median −1.63× 100 −1.60× 100 2.11× 10−2

where ||u|| is on the scale of 0.68. The median difference, 0.0211, represents about a 3%
change in the controller norm and an even smaller change in the optimal solution’s cost.
Thus, optimizing with the reduced parameters returns solutions with nearly the exact same
cost and almost no difference in path.

Note that in this study, the constraints are encoded as penalties in the objective, so insta-
bility represents itself as the discrepancy between the median and mean in the approximation
costs, whereby the small norm difference highlights the nearness to the optimizer output.

Table 3 considers the linear (or forward-Euler) approximation over the same sample of
perturbed parameters sub-scripted as ulin, both over 7 parameters and 3 parameters with
notation as above. Table 4 compares the norm differences to the reoptimized solution.

Table 3
500 Perturbed Parameters Linear Approximation Costs without Reduction v.s. with Reduction

J
(
u7
opt

)
J
(
u7
lin

)
J
(
u3
lin

)
Mean 1.37× 100 2.54× 103 6.83× 102

Median −1.63× 100 −9.68× 10−1 −9.42× 10−1

Table 4
500 Perturbed Parameters Linear Approximation Errors without Reduction v.s. with Reduction∥∥u7

lin − u3
lin

∥∥ ∥∥u7
opt − u7

lin

∥∥ ∥∥u7
opt − u3

lin

∥∥ ∥∥u3
opt − u7

lin

∥∥ ∥∥u3
opt − u3

lin

∥∥
Mean 4.27× 10−2 1.48× 10−1 1.45× 10−1 1.44× 10−1 1.37× 10−1

Median 4.37× 10−2 1.21× 10−1 1.19× 10−1 1.26× 10−1 1.17× 10−1

∥ ∥

Table 3 provides two main results. First, the difference i n median values o f J (u7lin) and 
J(u3lin), i.e. −9.68 × 10−1 and −9.42 × 10−1 respectively, is minuscule, around a 3% difference.
This suggests that parameter reduction is an effective method for reducing computation cost 
while maintaining accuracy. Secondly, we see that on average a linear approximation does not 
do a good job of minimizing cost and has many outliers that greatly reduce its accuracy. This 
is shown by the high mean costs of 2.54 × 103 and 6.83 × 102.

Table 4 provides similar results. We see that the norm difference between approximations 
using the full parameter space versus the reduced space is extremely small, 4.37 × 10−2. This 
once again suggests that the parameter space reduction does not reduce accuracy of approxi-
mations. However, we see that error between any optimal solution and linear approximation 
is large, such as ∥u7opt − ul

7
in
∥ median of 1.21 × 10−1 which is an 82% increase from the nomi-

nal normed controller. This once again shows that a linear approximation is not effective at 
approximating an optimal solution.
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Tables 5 and 6 provide similar data but for our new interpolated step approximation
method denoted as uIS . The approximations were computed for the same 500 parameter per-
turbations and for both the full 7 dimensional parameter space and the reduced 3 dimensional
parameter space.

Table 5
500 Perturbed Parameters Interpolated Step Approximation Costs without Reduction v.s. with Reduction

J
(
u7
opt

)
J
(
u7
IS

)
J
(
u3
IS

)
Mean 1.37× 100 1.82× 100 1.34× 100

Median −1.63× 100 −1.46× 100 −1.39× 100

Table 6
500 Perturbed Parameters Interpolated Step Approximation Errors without Reduction v.s. with Reduction∥∥u7

IS − u3
IS

∥∥ ∥∥u7
opt − u7

IS

∥∥ ∥∥u7
opt − u3

IS

∥∥ ∥∥u3
opt − u7

IS

∥∥ ∥∥u3
opt − u3

IS

∥∥
Mean 7.56× 10−2 1.10× 10−1 1.15× 10−1 1.20× 10−1 1.04× 10−1

Median 4.63× 10−2 5.90× 10−2 5.42× 10−2 7.00× 10−2 4.70× 10−2

Table 5 shows a similar narrative to the case without interpolation. First, we see that the
mean and median are distant because as mentioned earlier, imposing constraints as penalties
represents itself as discrepancy. However, this has greatly improved the stability of the result
compared to the linear case. The mean and median costs now closely resemble that of the
optimized result, showing that our approximation method does a great job of minimizing cost,
just as seen and discussed for figure 2. Finally, we once again see that the minimal difference
between the 7- and 3-parameter cases, median costs of −1.46 and −1.39 respectively, justifies
the use of parameter reduction as it also greatly reduces the computational load of using the
interpolation.

Table 6 also shows similar norm error results to the linear case. The norm difference∥ ∥
between the 7- and 3-parameter approximations, ∥uI7S − uI

3
S
∥ having a median of 4.63×10−2, 

is small enough to again imply that parameter reduction is an effective method f or reducing 
computation cost while maintaining accuracy. Additionally, we see much lower errors showing 
that the interpolated step approximation method accurately replicates the optimal solution 
while only using precomputed data.

3.2. Space Shuttle Discussion. Using the general methods of HDSA, parameter reduc-
tion, and our interpolated step method, the shuttle trajectory problem (3.5) was adjusted 
accurately for the parameter perturbations without sacrificing r obustness. F igure 2  shows 
right skew that implies the interpolated step approximation minimizes cost and accurately 
approximates the optimal solution. Table 2 verifies that parameter reduction does not affect 
the optimized solutions accuracy. Tables 3, 4, 5, and 6 all show that reducing the parameter 
space of statistically unimportant parameters does not affect t he a ccuracy o f approximated 
solutions. Additionally, the difference i n approximation a ccuracy f rom t ables 3  and 4  t o ta-
bles 5 and 6, verify that our instantaneous interpolated step approximation method does an 
excellent job at approximating a new optimal controller.
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We observe a significant reduction in computation time, as shown in Table 7. As mentioned
earlier, recalculating the optimal solution in-transit is often prohibitive given the lack of any
guarantee of a favorable solution in any short period of time.

Table 7
500 Perturbed Parameters Approximations Mean Computation Times

time(uopt) time(uIS)

Mean (s) 3.19× 101 1.12× 10−1

Table 7 highlights the considerable decrease in computation time between obtaining the op-
timal solution and our interpolated step approximation. Note that the primary factor that is 
limiting the approximation from achieving even faster computation times is the speed of the 
interpolation function in matlab. Additionally, keep in mind that the data in Table 7 was 
acquired on a local workstation as opposed to the specialized chips and hardware that would 
be onboard this aircraft problem.

Concisely, our interpolation improves in-situation computation time and approximation 
stability for both cost and norm error metrics. When coupled with the parameter reduc-
tion, the load of precomputation for this method is reduced without a significant sacrifice of 
accuracy.

4. Conclusion. Optimal control under parameter uncertainty restricts the usefulness of 
the precomputed optimal solution due to in-transit parameter changes. Recalculation of the 
optimal path is seen to be computationally expensive, time-consuming, and lacks any guar-
antee of obtaining a favorable solution. The proposed framework of coupling parameter space 
reduction, an interpolated step approximation, and the use of hyper-differential sensitivity 
analysis (HDSA), focuses on a quick and accurate in-transit approximation of the optimal 
controller. For problems in aerospace, by precomputing sensitivity data and solving a simpler 
problem due to parameter space reduction, instantaneous approximations are able to save the 
vehicle from inevitable catastrophe.

As stated in the introduction, we want to emphasize that our method is intended to be 
used in conjunction with established methods for handling small parameter perturbations such 
as feedback control. The space shuttle example of Betts verifies the parameter reduction and 
interpolated-step approximation methods. While this is a limited application, the generality of 
these methods allows their accuracy to be controlled by the user and allows for more complex 
application. Stricter methods of applying constraints would also likely limit the instability 
possible in the approximated solution. It is important to note that this approach is one of 
many in the toolbox for solving perturbation issues in optimal control problems and thus users 
should consider other established methods alongside this new approach to determine the most 
effective a nd p ractical s olution f or t he a pplication u nder c onsideration. Yet, t he proposed 
approach has applications in aerospace trajectory control, parameter uncertainty calibration, 
and broad applicability to optimal control problems in which parameter space reduction could 
improve computation time with little to no reduction in accuracy.
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Appendix A. Parameters and Variables of the Space Shuttle Problem. Given below
are the parameters and variables for the 2 DOF space shuttle problem described in section 3.

Table 8
Static Parameters

Parameter Name Symbol Value

Vehicle Mass m 20300
32.173

(slug)

Aerodynamic Reference Area S 2690 (ft2)

Nominal Atmospheric Density ρ0 0.002378 (lb/ft3)

Scale Height Factor hr 23800 (ft)

Radius of the Earth Re 20902900 (ft)

GM for Earth µ 0.14076539× 1017 (ft3/s2)

Table 9
Dimensionless Drag and Lift Coefficients

Parameter Name Symbol Value

Constant Lift a0 −0.20704

Linear Lift a1 0.029244

Constant Drag b0 0.07854

Linear Drag b1 −0.61592× 10−2

Quadratic Drag b2 0.621408× 10−3

Table 10
Functional Variables

Function Name Variable Function

Atmospheric Density ρ(h) ρ0 exp (
h
hr

) (lb/ft3)

Distance from Earth’s Center r(h) Re+ h (ft)

Force of Gravity g(h) µ
r2

(ft/s2)

Angle of Attack û u 180
π

(deg)

Coefficient of Lift cL(û) a0 + a1û (-)

Coefficient of Drag cD(û) b0 + b1û+ b2û
2 (-)

Drag Force D(cD, ρ, v) 0.5cDSρv2 (lbft/s2)

Lift Force L(cL, ρ, v) 0.5cLSρv
2 (lbft/s2)

Appendix B. Space Shuttle Cost Function. Given below is the complete cost function
for the 2 DOF space shuttle problem. The first term aims to maximize longitudinal distance.
The next three penalties enforce terminal conditions and the final four penalties enforce state
constraints. The βi are tuning parameters. These tuning parameter values were chosen
experimentally and are going to be application dependent.

J(u) =
−x2(tf , u)

x2

+ β1

(
x1(tf , u)− hf

hf

)2

+ β2

(
x3(tf , u)− vf

vf

)2

+ β3

(
x4(tf , u)− gf

gf

)2

+ β4

(
(
∑

(x1(ti)<0 x1(ti)
4)

x14

)
+ β5

(
(
∑

(x3(ti)<1(x3(ti)− 1)4))

x34

)

+ β6

(
(
∑

(x4(ti)<
−89π
180

(x4(ti) +
89π
180 )

4))

x44

)
+ β7

(
(
∑

x4(ti)>
89π
180

(x4(ti)− 89π
180 )

4)

x44

)

Appendix C. Sensitivity Equations. The sensitivity equations compute dJ
dui

using a ma-
nipulation of chain rule that allows the exploitation of ODE solvers to make these derivatives 
more accurate than finite difference or complex step when calculated numerically. From the
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defining dynamical systems, we have dx
dt = F . Differentiating this gives

∂2x

∂ui∂t
=

∂F

∂x

∂x

∂ui
+

∂F

∂u

∂u

∂ui

Since the mixed partials are continuous, we may apply Clairaut’s theorem that ∂2x
∂ui∂t

=
∂2x
∂t∂ui

, establishing an ODE against time from which we solve for ∂x
∂ui

. In the context of the
space shuttle, we can set up this ODE as

dF

dx
=


0 0 sin(x4) x3 cos(x4)

−x3 cos(x4)
r2

0 cos(x4)
r −x3

r sin(x4)
−D
hr

+ 2g sin(x4)
r 0 2D

x3
−g cos(x4)

−L
x3mhr

+ cos(x4)(
−x3
r2

+ 2g
x3r

) 0 L
mx2

3
+ cos(x4)(

1
r +

g
x2
3
) sin(x4)(

x3
r − g

x3
)


and

dF

du
=


0

0
−1
2m(Sρ0e

−x1/hrx23)(b1 + 2b2û)(
180
π )

1
m(Sρ0e

−x1/hrx23)(a1)(
180
π )


Through applications of the Lebesgue differentiation theorem and Leibniz integration rule,

as well as considering the piecewise portions of the cost, we arrive at

∂J

∂ui
=

x2(−dx2
dui

(tf , u)) + x2(tf , u)
∂dx2
∂ui

)

(x2)2

+ 2β1
(x1(tf , u)− hf )

h2f

∂x1
∂ui

(tf , u) + 2β2
(x3(tf , u)− vf )

v2f

∂x3
∂ui

(tf , u) + 2β3
(x4(tf , u)− gf )

g2f

∂x4
∂ui

(tf , u)

+ 4β4

(x1
4(
∑

x1(ti)<0 4x1(ti)
3 ∂x1
∂ui

(ti, u))− (
∑

x1(ti)<0 x1(ti)
4)(4x1

3 ∂x1
∂ui

)

x18


+ 4β5

(x3
4(
∑

x3(ti)<1 4(x3(ti)− 1)3 ∂x3
∂ui

(ti, u))− (
∑

x3(ti)<1(x3(ti)− 1)4)(4x3
3 ∂x3
∂ui

)

x38


+ 4β6

(x4
4(
∑

x4(ti)<
−89π
180

4(x4(ti) +
89π
180 )

3 ∂x4
∂ui

(ti, u))− (
∑

x4(ti)<
−89π
180

(x4(ti) +
89π
180 )

4)(4x4
3 ∂x4
∂ui

)

x48


+ 4β7

(x4
4(
∑

x4(ti)>
89π
180

4(x4(ti)− 89π
180 )

3 ∂x4
∂ui

(ti, u))− (
∑

x4(ti)>
89π
180

(x4(ti)− 89π
180 )

4)(4x4
3 ∂x4
∂ui

)

x48


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