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Abstract. The graph matching problem is a sparse optimization problem, which is also a significant special case
of the Quadratic Assignment Problem, with extensive applications in pattern recognition, computer
vision, protein alignment, and related fields. As the problem is NP-hard, relaxation and regulariza-
tion techniques are frequently employed to improve tractability. However, many existing regularizers
are nonconvex which poses optimization challenges. In this paper, we propose a linear reweighted
regularization framework for solving the relaxed graph matching problem while preserving convexity.
By solving a sequence of relaxed problems with the linear reweighted regularization term, one can
obtain a sparse solution. Moreover, we establish the local convergence of the proposed method to
the solution of the original graph matching problem. Furthermore, we present a practical version of
the algorithm by incorporating the projected gradient method. The proposed framework is applied
to synthetic instances and demonstrates promising numerical results.

1. Introduction. The Quadratic Assignment Problem (QAP), a key optimization problem
over permutation matrices, is one of the hardest combinatorial optimization problems and has
wide applications in fields such as statistics, facility layout, and chip design [7, 6]. Specifically,
the QAP involves the assignment of a set of facilities to a set of locations in such a way that
minimizes a given cost function, and can be expressed as:

(1.1) min
X∈Πn

tr(A>XBX>),

where Πn is the set of n-order permutation matrices, namely, Πn = {X ∈ Rn×n | Xe =
X>e = e,Xij ∈ {0, 1}}, A ∈ Rn×n, B ∈ Rn×n, e ∈ Rn is a vector of all ones. As the QAP
Problem is NP-hard [15], both vertex-based methods and interior-point methods have been
proposed to address this challenging problem. Vertex-based methods [1, 8, 16] update iterates
directly from one permutation matrix to another. Alternatively, interior-point methods relax
the nonconvex permutation matrix constraint Πn to a doubly stochastic matrix constraint
Dn, where Dn =

{
X ∈ Rn×n | Xe = X>e = e,Xij ≥ 0

}
. To enhance sparsity in solutions

derived from this relaxation, various regularization techniques have been introduced. Xia [17]
proposed L2 regularization approach, Huang [9] proposed quartic term regularization, and
Jiang et al [10] suggested using Lp norms [11]. These regularization techniques are generally
nonconvex, which can pose computational challenges. While adding a nonconvex term to
the relaxed problem may improve solution quality, it does not necessarily lead to greater
computational efficiency.

Notice that when X ∈ Πn,

(1.2) ‖AX−XB‖2F = −2tr(A>XBX>) + ‖A‖2F + ‖B‖2F,
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where ‖A‖F =
√∑m

i=1

∑n
j=1 |aij |2. Hence, the QAP problem can be expressed in the form of

a graph matching problem. In this paper, we focus on graph matching problem:

(1.3) min
X∈Πn

‖AX−XB‖2F.

We relax the the permutation matrix constraint Πn of graph matching problem to the doubly
stochastic matrix constraint Dn and obtain the relaxed graph matching problem (2.1). We
first extend nonconvex regularization terms and demonstrate that the relaxed problem (2.1),
when combined with certain concave regularization term, can achieve equivalence between the
relaxed and original graph matching problem when regularization term is sufficiently large.
However, incorporating a nonconvex term into the relaxed problem may enhance solution qual-
ity but does not necessarily improve computational efficiency. To better utilize the convexity
of the relaxed problem which is shown in Proposition 2.1, we propose a novel algorithmic
framework based on linear reweighted regularization to preserve the convexity of the relaxed
problem. Inspired by the effectiveness of reweighted L1 minimization in promoting sparsity [5],
our approach solves a sequence of relaxed problems. We show that, under certain conditions
on the initial guess, the model can achieve equivalence to the original graph matching prob-
lem. We design a solver based on the projected gradient method and incorporate line search
techniques to enhance computational efficiency. Additionally, we introduce the mathematical
formulation of the network alignment problem, illustrating how graph matching can address
problems in fields such as social networks and computer vision. Finally, we validate our ap-
proach through numerical experiments on synthetic full-rank dense datasets, demonstrating
promising results across a variety of instances.

2. Regularization.

2.1. Relaxation. The graph matching problem (1.3) can be relaxed to an optimization
problem with n th order doubly stochastic matrix constraint Dn:

(2.1) min
X∈Dn

‖AX−XB‖2F.

The relaxed problem is continuous optimization problem and has several properties.
Proposition 2.1. Let f(X) = ‖AX−XB‖2F, then f(X) is convex on Rn×n.
Proof. Define the function g(Y) = ‖Y‖2F. Its gradient and Hessian are given by

∇g(Y) = 2Y, ∇2g(Y) = 2I.

Since the Hessian ∇2g(Y) is a constant positive definite matrix, it follows that g(Y) is convex. 
Define the function h  as

h(X) = AX − XB.

Since g(Y) is convex and h(X) is a linear transformation, the composition f(X) = g(h(X)) 
is convex.

By the Birkhoff-von Neumann theorem [3], we know that D n is the convex hull of Πn, and 
the set of vertices of Dn is exactly Πn. Hence, f(X) is convex on Dn.
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Proposition 2.2. Let f(X) = ‖AX − XB‖2F. Then f is Lipschitz continuous on Dn. A
candidate Lipschitz constant is L = 2n

(
‖A‖F + ‖B‖F

)2.
Proof. We compute

|f(X)− f(Y)| = |‖AX−XB‖2F − ‖AY −YB‖2F|

= | 〈(AX−XB) + (AY −YB), (AX−XB)− (AY −YB)〉 |

≤ ‖A(X+Y)− (X+Y)B‖F · ‖A(X−Y)− (X−Y)B
∥∥
F
.

Applying the triangle inequality, we obtain

‖A(X+Y)− (X+Y)B‖F ≤ ‖A‖F ‖X+Y‖F + ‖B‖F ‖X+Y‖F,
‖A(X−Y)− (X−Y)B‖F ≤ ‖A‖F ‖X−Y‖F + ‖B‖F ‖X−Y‖F.

Therefore,
|f(X)− f(Y)| ≤

(
‖A‖F + ‖B‖F

)2 ‖X+Y‖F ‖X−Y‖F.

Finally, since 0 ≤ Xij ,Yij ≤ 1, we have

−2 ≤ Xij +Yij ≤ 2,

which implies

‖X+Y‖2F =

n∑
i=1

n∑
j=1

(Xij +Yij)
2 ≤

n∑
i=1

n∑
j=1

22 = 4n2, ⇒ ‖X+Y‖F ≤ 2n.

Hence,
|f(X)− f(Y)| ≤ 2n

(
‖A‖F + ‖B‖F

)2‖X−Y‖F.

By carefully choosing regularization term and adding it to (2.1), one can better ensure
the sparsity of the solution. More specifically, by adding h(X) and λ ≥ 0 results in:

(2.2) min
X∈Dn

‖AX−XB‖2F + λh(X).

2.2. Nonconvex Sparsity Regularization Terms. Now we briefly introduce several non-
convex sparsity regularization terms proposed in literature. Huang [9] used the quartic term:

(2.3) h(X) = ‖X� (1−X)‖2F,

to construct the regularization problem, where � is the Hadamard product and 1 ∈ Rn×n is
the matrix of all ones. Jiang et al [10] proposed the Lp norm term by observing that Πn can
be equivalently characterized as Πn = Dn ∩ {X | ‖X‖0 = n}, and hence use:

(2.4) h(X) = ‖X+ ε1‖pp =
n∑

i=1

n∑
j=1

(Xij + ε)p,
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with 0 < p < 1 to continuously approximate the ‖X‖0. The aforementioned regularization
all considered solving optimization over Dn with a concave regularization term. By a similar
proof in Theorem 3.2 in [10], it is not hard to show for any strongly concave regularization
term h(X), it holds that h(X) = 0, ∀ X ∈ Πn and h(X) > 0, ∀ X ∈ Dn/Πn. Then with a
finitely large λ, the problem (2.2) is equivalent to graph matching problem (1.3). For example,
h(X) = ‖(logX)� (X)||2F can yield the equivalence.

However, adding nonconvex regularization term h(X) would make (2.2) nonconvex which
may bring computational intractability when using iterative solvers.

3. Linear Reweighted Regularization Algorithmic Framework. Considering the good
performance of the linear reweighted regularization in recovering sparse solutions [5], we apply
it to relax the graph matching problem.

3.1. Linear Regularization Term. Linear regularization term is given by:

(3.1) hW(X) =
n∑

i=1

n∑
j=1

WijXij ,

where Wij represents a weight for element Xij for each (i, j).

3.2. Algorithm Description. We present an iterative algorithm to solve the graph match-
ing problem by using the linear reweighted regularization term. Specifically, the algorithm
solves a sequence of graph matching problems, each added by a linear regularization term
whose weight is determined based on the solution obtained in the previous iteration, subject
to the doubly stochastic matrix constraint Dn. With the reweighted regularization, the so-
lution obtained at each subproblem is expected to approach a sparse solution. The detailed
algorithmic framework is shown in Algorithm 3.1.

Algorithm 3.1 Linear Reweighted Regularization Algorithmic Framework
1: Input: A ∈ Rn×n, B ∈ Rn×n, τ > 0, ε0 > 0, and λ0 > 0.
2: Initialization: X(0) ∈ Rn×n, set k = 0, X(0) = 1

n1n ∈ Dn.
(We denote 1n as n× n matrix of all ones)

3: while not convergent do
4: W

(k)
ij = 1

X
(k)
ij +εk

5: X(k+1) = argmin
X∈Dn

f(X) + λk

∑n
i=1

∑n
j=1 W

(k)
ij Xij

6: Choose λk+1 ≥ λk, εk+1 ≤ εk
7: Let k ← k + 1
8: end while

3.3. Convergence. We now justify the effectiveness o f l inear r eweighted regularization 
algorithm in solving the graph matching problem by showing its local convergence property. 
Specifically, T heorem 3 .2 s hows t hat w hen t he m atrix X (k) s atisfies a sp ecific cri terion, the 
solution X(k+1) obtained in the next iteration by reweighted algorithm will be the same as 
the globally optimal solution of the graph matching problem. To prove Theorem 3.2, we first 
establish the following lemma.
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Lemma 3.1. Let X,Y ∈ Dn. Then
n∑

i=1

n∑
j=1

[Xij −Yij ]+ = −
n∑

i=1

n∑
j=1

[Xij −Yij ]− =
1

2

n∑
i=1

n∑
j=1

|Xij −Yij |,

where [Xij ]+ = max(Xij , 0) and [Xij ]− = min(Xij , 0).
Proof. Since X,Y ∈ Dn, we have

n∑
i=1

n∑
j=1

Xij =

n∑
i=1

n∑
j=1

Yij = n.

Hence,
n∑

i=1

n∑
j=1

(Xij −Yij) = 0,

and therefore by Xij −Yij = [Xij −Yij ]+ + [Xij −Yij ]−, it follows that

n∑
i=1

n∑
j=1

[Xij −Yij ]+ = −
n∑

i=1

n∑
j=1

[Xij −Yij ]−.

Moreover, it holds that |Xij −Yij | = [Xij −Yij ]+ − [Xij −Yij ]−, and thus

n∑
i=1

n∑
j=1

[Xij −Yij ]+ −
n∑

i=1

n∑
j=1

[Xij −Yij ]− =

n∑
i=1

n∑
j=1

|Xij −Yij |.

Hence, we conclude that
n∑

i=1

n∑
j=1

[Xij −Yij ]+ = −
n∑

i=1

n∑
j=1

[Xij −Yij ]− =
1

2

n∑
i=1

n∑
j=1

|Xij −Yij |.

Theorem 3.2. Let f(X) = ‖AX−XB‖2F and X∗ = argminX∈Πn
f(X). If ‖X(k)−X∗‖F ≤ a

for some a ∈ [0, 12), and λ ≥ 2(a+ε)(1−a+ε)
(1−2a) L, where L is the Lipschitz constant of f(X) on Dn,

then X∗ = argminX∈Dn
f(X) + λ

∑n
i=1

∑n
j=1

(
1

X
(k)
ij +ε

)
Xij .

Proof. By the L-Lipschitz continuity of f , it holds f(X) ≥ f(X∗)− L‖X∗ −X‖F for any
X ∈ Dn. Thus we have

f(X) + λ
n∑

i=1

n∑
j=1

(
1

X
(k)
ij + ε

)
Xij

≥f(X∗)− L‖X∗ −X‖F + λ
n∑

i=1

n∑
j=1

(
1

X
(k)
ij

)
X∗

ij + λ
n∑

i=1

n∑
j=1

(
1

X
(k)
ij + ε

)
(Xij −X∗

ij).
+ ε
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By Xij −Yij = [Xij −Yij ]+ + [Xij −Yij ]−, it follows from the inequality above that

f(X) + λ
n∑

i=1

n∑
j=1

(
1

X
(k)
ij + ε

)
Xij

≥f(X∗)− L‖X∗ −X‖F + λ
n∑

i=1

n∑
j=1

(
1

X
(k)
ij + ε

)
X∗

ij(3.2)

+ λ
n∑

i=1

n∑
j=1

(
1

X
(k)
ij + ε

)
[Xij −X∗

ij ]+ + λ
n∑

i=1

n∑
j=1

(
1

X
(k)
ij + ε

)
[Xij −X∗

ij ]−.

Notice that since X∗ is a permutation matrix, [Xij − X∗
ij ]+ is positive only if X∗

ij = 0.
In this case, it must hold that X

(k)
ij ≤ a by the condition ‖X(k) − X∗‖F ≤ a and thus

1

X
(k)
ij +ε

≥ 1
a+ε . Similarly, [Xij −X∗

ij ]− is negative only if X∗
ij = 1. In this case, X(k)

ij ≥ 1− a,

and 1

X
(k)
ij +ε

≤ 1
1−a+ε . Hence,

λ

n∑
i=1

n∑
j=1

(
1

X
(k)
ij + ε

)
[Xij −X∗

ij ]+ + λ

n∑
i=1

n∑
j=1

(
1

X
(k)
ij + ε

)
[Xij −X∗

ij ]−

≥λ
n∑

i=1

n∑
j=1

(
1

a+ ε

)
[Xij −X∗

ij ]+ + λ
n∑

i=1

n∑
j=1

(
1

1− a+ ε

)
[Xij −X∗

ij ]−

=
λ

2

n∑
i=1

n∑
j=1

(
1

a+ ε

)
|Xij −X∗

ij | −
λ

2

n∑
i=1

n∑
j=1

(
1

1− a+ ε

)
|Xij −X∗

ij |

=
(1− 2a)λ

2(a+ ε)(1− a+ ε)

n∑
i=1

n∑
j=1

|Xij −X∗
ij |,

where the first equality follows from Lemma 3.1.
Plugging the above equation into (3.2) yields

f(X) + λ
n∑

i=1

n∑
j=1

(
1

X
(k)
ij + ε

)
Xij ≥ f(X∗)− L‖X∗ −X‖F

+ λ
n∑

i=1

n∑
j=1

(
1

X
(k)
ij + ε

)
X∗

ij +
(1− 2a)λ

2(a+ ε)(1− a+ ε)

n∑
i=1

n∑
j=1

|Xij −X∗
ij |

≥f(X∗)− L‖X∗ −X‖F + λ
n∑

i=1

n∑
j=1

(
1

X
(k)
ij + ε

)
X∗

ij +
(1− 2a)λ

2(a+ ε)(1− a+ ε)
‖X∗ −X‖F

=f(X∗) +

(
(1− 2a)λ

2(a+ ε)(1− a+ ε)
− L

)
‖X∗ −X‖F + λ

n∑
i=1

n∑
j=1

(
1

X
(k)
ij + ε

)
X∗

ij

≥f(X∗) + λ
n∑

i=1

n∑
j=1

(
1

X
(k)
ij + ε

)
X∗

ij ,
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where the second inequality is by
∑n

i=1

∑n
j=1 |Xij −X∗

ij | ≥ ‖X∗−X‖F and the last inequality
follows from the condition on λ. This completes the proof.

By Theorem 3.2, we can conclude that if there exists kN > 0 such that ‖X(kN )−X∗‖F < 1
2

and λkN > 2(a+ε)(1−a+ε)
(1−2a) L, then X(k) converges to X∗. However, Theorem 3.2 does not

directly guarantee global convergence from arbitrary initial points. It only provides sufficient
conditions for local convergence. In practice, these conditions may not be satisfied at the
beginning of the iteration. Nevertheless, as the results in Section 6.1 show, convergence can
still occur in some cases even when the initial iterate lies outside the local neighborhood.

4. A Practical Reweighted Algorithm for Graph Matching Problem. Since X update in
Algorithm 3.1 is a constraint optimization problem and cannot be explicitly expressed. We
present a practical regularization algorithm in this section. Specifically, a sequence of relaxed
problems in the form of (4.1) is solved by using the project gradient method:

(4.1) min
X∈Dn

Fλ,X(0),ε(X) = min
X∈Dn

‖AX−XB‖2F + λ
n∑

i=1

n∑
j=1

(
1

X
(0)
ij + ε

)
Xij .

The main algorithm is given in Algorithm 4.1. The algorithm with projected gradient subsolver
to update Xk is given in Algorithm 4.2. The Projection (onto Dn) subsolver is given in
Algorithm 4.3.

Algorithm 4.1 A Practical Reweighted Regularization Algorithm
1: Input: A ∈ Rn×n, B ∈ Rn×n, ε0 > 0, and λ0 > 0
2: Initialization: Set k = 0, τ > 0, X−1 =

1
n1n ∈ Dn

3: while not convergent do
4: Set X

(0)
k = Xk−1

5: Find an approximate minimizer Xk of problem (4.1) with λk,X
(0)
k , εk

6: λk+1 ≥ λk, εk+1 ≤ εk
7: k ← k + 1
8: end while

4.1. Projected Gradient Method. To conduct a comparable numerical experiment using
reweighted regularization, we adopt a similar projected gradient approach as introduced in
[10], applying the projected gradient method to solve the minimization problem and update
Xk in Algorithm 4.1. Specifically, at the k-th iteration, starting from the initial X

(0)
k , the

projected gradient method for solving problem (4.1) with λk, X(0)
k , and εk proceeds as follows:

(4.2) X
(i+1)
k = X

(i)
k + δjD(i), δ ∈ (0, 1),

where the search direction:

(4.3) D(i) = PDn

(
X

(i)
k − αi∇Fλk,X

(0)
k ,εk

(X
(i)
k )
)
−X

(i)
k ,
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and PDn(·) is the projection onto Dn. A fast dual gradient is used for computing projection
onto Dn. The parameter j is the smallest nonnegative integer satisfying the nonmonotone line
search condition introduced in [19]:

(4.4) F
λk,X

(0)
k ,εk

(X
(i)
k + δjD(i)) ≤ Ci + θδj〈∇F

λk,X
(0)
k ,εk

(X
(i)
k ), D(i)〉, θ ∈ (0, 1),

where the reference function value Ci+1 is updated as the convex combination of Ci and
Fσk,p,εk(X

(i)
k ):

(4.5) Ci+1 =
ηQiCi + F

λk,X
(0)
k ,εk

(X
(i)
k )

Qi+1
,

with Qi+1 = ηQi + 1, η = 0.85, C0 = F
λk,X

(0)
k ,εk

(X
(0)
k ), Q0 = 1.

Algorithm 4.2 A Practical Algorithm with Project Gradient Method
1: Initialization: Set k = 0, τ > 0, X−1 =

1
n1n ∈ Dn, ε0, λ0 ≥ 0, θ, δ, γ ∈ (0, 1).

2: while ‖Xk−1‖0 > n+ τ do
3: Choose X

(0)
k = Xk−1. Set i = 0, αi > 0

4: while ‖X(i)
k −X

(i−1)
k ‖F/

√
n > τ do

5: Compute D(i) = PDn

(
X

(i)
k − αi∇Fλk,X

(0)
k ,εk

(X
(i)
k )
)
−X

(i)
k .

6: Find the smallest j such that δj satisfies (4.4)
7: Set X

(i+1)
k = X

(i)
k + δjD

(i)
k

8: i← i+ 1
9: end while

10: εk+1 = max(δεk, εmin), λk+1 = min(λk + γ, λmax)
11: k ← k + 1
12: end while

4.2. Fast Dual Gradient Algorithm for Computing the Projection onto Dn. In this sub-
section, we briefly summarize the fast dual gradient method introduced in [10] for computing
the projection onto Dn (4.6).

(4.6) PDn(C) = argmin
X∈Rn×n

1

2
‖X−C‖2F subject to Xe = e, X>e = e, X ≥ 0,

The Lagrangian dual problem of (4.6) is

(4.7) max
y,z

min
X≥0
L(X,y, z),

where

(4.8) L(X,y, z) =
1

2
‖X−C‖2F − 〈y,Xe− e〉 − 〈z,X>e− e〉,
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and y, z ∈ Rn are the Lagrange multipliers of the linear constraints Xe = e and X>e = e
respectively.

Let P+(·) denote the projection onto the nonnegative orthant. The dual problem (4.7)
can then be equivalently rewritten as:

(4.9) min
y,z

θ(y, z) :=
1

2
‖P+

(
C+ ye> + ez>

)
‖2F − 〈y + z, e〉.

The derivative of θ(y, z) can be written as:

(4.10) ∇θ(y, z) =

[
P+
(
C+ ye> + ez>

)
e− e

P+
(
C+ ye> + ez>

)>
e− e

]
.

The gradient method using the Barzilai-Borwein step sizes [2] to solve problem (4.9) is outlined
in Algorithm 4.3. After obtaining the optimal solution y∗ and z∗ of (4.9), one can recover the
projection of C by

(4.11) PDn(C) = P+
(
C+ y∗e> + e(z∗)>

)
.

Algorithm 4.3 Dual Barzilai–Borwein Method for Projection (Dual BB)
1: Input: Matrix C, tolerance tol
2: Initialize: y = 0, z = 0, e = 1 (all ones vector)
3: Set initial learning rate: α = 0.01
4: Initialize previous gradients and iterates: ∇θy0 = 0, ∇θz0 = 0, y0 = y, z0 = z

5: while ‖
[
∇θy
∇θz

]
‖F > tol do

6: Calculate M = C+ y · e> + e · z>
7: Calculate projection: M+ = max(M, 0)
8: Compute gradients: ∇θy = M+ · e− e, ∇θz = M>

+e− e
9: Compute step sizes for y and z: sy = y − y0, sz = z− z0

10: Update previous iterates: y0 = y, z0 = z
11: Compute gradient differences: δy = ∇θy −∇θy0, δz = ∇θz −∇θz0
12: Compute BB step sizes: αy =

s>y sy
s>y δy

, αz = s>z sz
s>z δz

13: Set α = 0.5 · (αy + αz)
14: Update iterates: y = y − α∇θy, z = z− α∇θz
15: Store current gradients for next iteration: ∇θy0 = ∇θy, ∇θz0 = ∇θz
16: end while
17: Output: Optimal values y∗ = y, z∗ = z

5. Application.
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5.1. Network Alignment Review. The quadratic programming formulation of a network
alignment objective is given in [12]. Specifically, given two undirected graphs A = G(VA,EA)
and B = G(VB,EB), with vertex sets VA and VB of size |VA| and |VB|, the goal of network
alignment is to find a matchingM between the vertices using a prior knowledge matrix L that
encodes the likelihood of vertex alignments. A binary matrix X is introduced to represent the
matching, where Xij = 1 indicates a match between vertex i in A and vertex j in B. Then,
the corresponding quadratic program can be formulated as

(5.1) max
X

αL ·X+ βA ·XBX>,

subject to the constraints,

(5.2)
|VA|∑
i=1

Xij ≤ 1, ∀j = 1, . . . , |VB|, Xij ∈ {0, 1},

(5.3)
|VB |∑
j=1

Xij ≤ 1, ∀i = 1, . . . , |VA|, Xij ∈ {0, 1},

where A · XBXT =
∑|VA|

i=1

∑|VB |
j=1 Aij(XBX>)ij is called overlap of matching M. Here, α

and β are non-negative constants that allow for tradeoff between matching weights from the
prior and the number of overlapping edges.

In our numerical experiments, we consider the matrix A and B as adjacency or distance
matrices for undirected and weighted graph with |VA| = |VB| = n, Xij ∈ Πn and no prior
knowledge is given (i.e. L = 0). Notice that when X ∈ Πn,

(5.4) ‖AX−XB‖2F = −2A ·XBXT + ‖A‖2F + ‖B‖2F.

Hence, problem (1.3) is equivalent to (5.1) when L = 0, |VA| = |VB| = n.

5.2. Graph in Social Network Alignment Problem. The social network alignment prob-
lem aims to identify individuals in two different graphs who share similar connection patterns. 
Given two social network graphs (e.g. Figure 1), this task can be completed by solving (5.1), 
where the matrices A and B represent the distance matrices for each social network graph. 
Specifically, each element in the distance matrix corresponds to the shortest distance between 
a pair of nodes in the graph. The distance matrix for a graph can be computed using the 
Breadth-First Search (BFS) algorithm [4]. This algorithm operates by growing a tree from a 
given node, expanding outward while incrementing the hop count at each expansion step and 
nodes that have already been visited are ignored.

5.3. Graph in Shape correspondence problem. Given two manifolds M1 and M2 sam-
pled by point clouds P1 = {xi}in=1 and P2 = {yi}in=1, the task of dense shape correspondence 
is to find a point-to-point map between P 1 and P 2. The task can be achieved by solving graph
matching problem (1.3) where A ∈ Rn×n and B ∈ Rn×n are two pairwise descriptors, such as 
geodesic distances, between points in P1 and P2 (e.g. Figure 2).
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From a more practical view, the surface M can be discretized using a triangular mesh
T = {τl}ni=1 with edges E = {eij}, and vertices of the mesh are denoted by V = {xi}ni=1. For
each edge eij connecting vertices pi and pj , the angles opposite to the edge are defined as αij

and βij . The stiffness matrix As is given by [13, 14]:

(5.5) Asij =

{
−2 (cotαij + cotβij) if i ∼ j∑

k∼iAs(i, j) if i = j,

where i ∼ j indicates that i and j are connected by an edge. For more information on sparse
pairwise descriptors, we refer the readers to [18].

Figure 1. An illustration of the graph
matching problem in social network alignment.
The two graphs represent connections between
individuals on different platforms. Facebook
(left) and Twitter (right). The goal is to identify
corresponding nodes (e.g. individuals) between
the two graphs based on their structural connec-
tivity.

Figure 2. The body matching result visual-
ization. Matrices A and B represent the pair-
wise geodesic distances between joints in two in-
dividuals. The visualization is obtained by solv-
ing relaxed graph matching problem with linear
reweighted regularization term that we proposed.

6. Experimental results.

6.1. Experimental Dataset. In our experiments, matrix A in (1.3) is obtained by first
creating n random 2D points using rand(n, 2)*10 in MATLAB and then each entry Aij is
computed as the Euclidean distance between points i and j. Matrix B = P ∗ A ∗ P′ + C,
where P is randomly generated permutation matrix and C is generated by 2D points using
rand(n, 2)*0.5, and then each entry Cij is computed as the Euclidean distance between
points i and j.

6.2. Implementation Details. To compare our proposed method with Lp norm regular-
ization, we implemented Lp-regularization-based solvers for the graph matching problem using
Lp=0.75 and Lp=0.5 regularization terms as h(X), following Algorithm 2 in [10]. We applied the
linear reweighted regularization term using Algorithm 4.2, where the projection is computed
using Algorithm 4.3. The initial point for all regularization algorithms is chosen as X0 =

1
n1n,

with the initial ε0 = 1, safeguards εmin = 10−3, and λmax = 106. The shrinkage parameter for 
updating λk is set to γ = 0.9. We define r(X) = ‖AX−XB‖2F, and denote the best numerical 
solution obtained at real time t as Xk. Since only a relatively small perturbation C is intro-
duced into the permuted matrix B in Section 6.1, we assume X∗ = arg minX∈Πn r(X) = P,
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where P is the permutation matrix generated in Section 6.1. The objective error at real time
t is defined as |r(Xk) − r(P)|, and the residual at real time t is given by ‖Xk − P‖F. The
experimental results using different regularization terms are presented in Figures 3 and 4.

Figure 3. Average and standard deviation results of Objective Error by linear reweighted, Lp=0.75 and
Lp=0.5 regularization term, on solving 50 independently random generated instances of graph matching problem
of dimension n = 50.

7. Discussion. In this work, we established the theory behind the linear reweighted reg-
ularization term. We provided a comprehensive justification for the use of linear reweighted
regularization in solving the relaxed graph matching problem. Additionally, we conducted nu-
merical experiments to empirically demonstrate that our reweighted regularization framework
outperforms other regularization terms. While our current experiments are based on synthetic
data, it is important to discuss potential performance on large-scale real-world datasets. In
particular, our method is expected to be effective for large-scale datasets that are not sparse.

In our future work, we plan to extend the graph matching problem to more applicable top-
ics and focus on large-scale real-world data. We also aim to propose an Augmented Lagrange
Multiplier (ALM)-based algorithm to ensure the effectiveness of our reweighted regularization
term when facing large-scale data.
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Figure 4. Average and standard deviation results of Residual by linear reweighted, Lp=0.75 and Lp=0.5

regularization term, on solving 50 independently random generated instances of graph matching problem of
dimension n = 50.

https://github.com/rongxuan-li/graph-match
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