
Differential Privacy Made Simple(r)
Gambs and his collaborators turned to dif-

ferential privacy: a powerful mathematical 
formalism that in principle is the best avail-
able technique for securing confidentiality. 
However, the approach is also complex and 
difficult to implement without a high degree 
of statistical knowledge. To smooth the 

By Matthew R. Francis

Researchers across every scientific dis-
cipline need complete and reliable 

data sets to draw trustworthy conclusions. 
However, publishing all data from a given 
study can be undesirable. For example, 
medical data in particular include personal 
information that—if published in full—
would violate patients’ privacy and poten-
tially expose them to harm. Similarly, many 
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By Vegard Antun, Matthew J. 
Colbrook, and Anders C. Hansen

The impact of deep learning (DL), neural 
networks (NNs), and artificial intelli-

gence (AI) over the last decade has been 
profound. Advances in computer vision and 
natural language processing have yielded 
smart speakers in our homes, driving assis-
tance in our cars, and automated diagnoses 
in medicine. AI has also rapidly entered sci-
entific computing. However, overwhelming 
amounts of empirical evidence [3, 8] suggest 
that modern AI is often non-robust (unstable), 
may generate hallucinations, and can produce 
nonsensical output with high levels of predic-
tion confidence (see Figure 1). These issues 
present a serious concern for AI use within 
legal frameworks. As stated by the European 
Commission’s Joint Research Centre, “In 
the light of the recent advances in AI, the 
serious negative consequences of its use for 
EU citizens and organisations have led to 
multiple initiatives [...] Among the identified 
requirements, the concepts of robustness and 
explainability of AI systems have emerged 
as key elements for a future regulation.”1

Robustness and trust of algorithms lie 
at the heart of numerical analysis [9]. The 
lack of robustness and trust in AI is hence 
the Achilles’ heel of DL and has become a 
serious political issue. Classical approxima-
tion theorems show that a continuous func-
tion can be approximated arbitrarily well 
by a NN [5]. Therefore, stable problems 
that are described by stable functions can 
be solved stably with a NN. These results 
inspire the following fundamental question: 
Why does DL lead to unstable methods and 
AI-generated hallucinations, even in sce-
narios where we can prove that stable and 
accurate NNs exist?

1  https://publications.jrc.ec.europa.eu/
repository/handle/JRC119336

Our main result reveals a serious issue 
for certain problems; while stable and accu-
rate NNs may provably exist, no training 
algorithm can obtain them (see Figure 2, 
on page 4). As such, existence theorems 
on approximation qualities of NNs (e.g., 
universal approximation) represent only the 
first step towards a complete understanding 
of modern AI. Sometimes 
they even provide overly 
optimistic estimates of pos-
sible NN achievements.

The Limits of AI: 
Smale’s 18th Problem

The strong optimism that 
surrounds AI is evident in 
computer scientist Geoffrey 
Hinton’s 2017 quote: “They 
should stop training radi-
ologists now.”2 Such opti-
mism is comparable to the 
confidence that surrounded 
mathematics in the early 
20th century, as summed 
up in David Hilbert’s senti-
ment: “Wir müssen wissen. 
Wir werden wissen” [“We 
must know. We will know”].

Hilbert believed that 
mathematics could prove or 
disprove any statement, and 
that there were no restric-
tions on which problems 
algorithms could solve. The 
seminal contributions of 
Kurt Gödel [7] and Alan 
Turing [12] turned Hilbert’s 
idealism upside down by 
establishing paradoxes that 
expedited impossibility 

2 https://www.newyorker.
com/magazine/2017/04/03/
ai-versus-md

results about the feasible achievements of 
mathematics and digital computers.

A similar program on the boundaries of 
AI is necessary. Stephen Smale already sug-
gested such a program in the 18th problem 
on his list of mathematical problems for the 
21st century: What are the limits of AI? [11]. 

See Mathematical Paradoxes on page 4

Figure 1. Hallucinations in image reconstruction and instabilities 
in medical diagnoses. 1a. The correct, original image from the 
2020 fastMRI Challenge. 1b. Reconstruction by an artificial intelli-
gence (AI) method that produces an incorrect detail (AI-generated 
hallucination). 1c. Dermatoscopic image of a benign melanocytic 
nevus, along with the diagnostic probability computed by a deep 
neural network (NN). 1d. Combined image of the nevus with a 
slight perturbation and the diagnostic probability from the same 
deep NN. One diagnosis is clearly incorrect, but can an algorithm 
determine which one? Figures 1a and 1b are courtesy of the 2020 
fastMRI Challenge [10], and 1c and 1d are courtesy of [6].

Proving Existence Is Not Enough:   
Mathematical Paradoxes Unravel the Limits
of Neural Networks in Artificial Intelligence

See Synthetic Data on page 3

Figure 2. Researchers can protect privacy 
by performing a full statistical analysis on 
the original data set, then using a missing-
data algorithm called multiple imputation 
to construct a synthetic data set that has 
exactly the same statistical characteristics. 
Figure courtesy of the author.

Protecting Privacy with Synthetic Data
studies in the social sciences include demo-
graphic or geographical data that could 
easily be exploited by unscrupulous parties.

In short, researchers must strike a delicate 
balance between publishing enough data 
to verify their conclusions and protect-
ing the privacy of the people involved. 
Unfortunately, multiple studies have shown 
that simply anonymizing the data—by 
removing individuals’ names before publi-
cation, for instance—is insufficient, as out-
siders can use context clues to reconstruct 
missing information and expose research 
subjects. “We want to generate synthetic 
data for public release to replace the origi-
nal data set,” Bei Jiang of the University of 
Alberta said. “When we design our frame-
work, we have this main goal in mind: we 
want to produce the same inference results 
as in the original data set.”

In contrast with falsified data, which is 
one of the deadliest scientific sins, research-
ers can generate synthetic data directly from 
original data sets. If the construction process 
is done properly, other scientists can then 
analyze this synthetic data and trust that their 
conclusions are no different from what they 
would have obtained with full access to the 
original raw data — ideally, at least. “When 
you [create] synthetic data, what does it mean 
to be private yet realistic?” Sébastien Gambs 

of the University of Québec in Montréal 
asked. “It’s still an open research question.”

During the 2022 American Association 
for the Advancement of Science Annual 
Meeting,1 which took place virtually in 
February, Jiang and Gambs each presented  
formal methods for the generation of syn-
thetic data that ensure privacy. Their models 
draw from multiple fields to address chal-
lenges in the era of big data, where the 
stakes are higher than ever. “There is always 
a trade-off between utility and risk,” Jiang 
said. “If you want to protect people [who] 
are at a higher risk, then you perturb their 
data. But the utility will be lowered the more 
you perturb. A better approach is to account 
for their risks to begin with.”

Unfortunately, malicious actors have access 
to the same algorithmic tools as research-
ers. Therefore, protection of confidentially 
also involves testing synthetic data against 
the types of attacks that such players might 
utilize. “In practice, this helps one really 
understand the translation between an abstract 
privacy parameter and a practical guarantee,” 
Gambs said. In other words, the robustness 
of a formal mathematical model is irrel-
evant if the model is not well implemented.

1  https://aaas.confex.com/aaas/2022/
meetingapp.cgi

Figure 1. In addition to adding noise to 
the data set, Sébastien Gambs’ differential 
privacy-based method processes it with 
an information theory algorithm to obtain 
synthetic data that—in principle—shields 
the privacy of the people involved. Figure 
courtesy of the author.
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6 	 John von Neumann: The 
Man From the Future

	 Paul Davis reviews The Man 
from the Future: The Visionary 
Life of John von Neumann by 
Ananyo Bhattacharya — a 
lively biography of the famed 
mathematician and namesake 
of SIAM’s highest professional 
honor. Bhattacharya summa-
rizes von Neumann’s many 
contributions to the scientific 
and social milieu of his time.

8 	 SIAM Federal Research 
Priorities Advance as 
Congress Passes Omnibus 
Spending Package 

	 On March 11, Congress passed a 
spending package for the remain-
der of fiscal year 2022. Andrew 
Herrin and Miriam Quintal of 
Lewis-Burke Associates write 
about the moderate funding 
increases for multiple agencies 
that support applied mathemat-
ics and computational science.

10 	 Spinning Tops in    
Spinning Frames

	 Spinning tops have existed 
since ancient times. When 
spun quickly enough, Lagrange 
tops—which are axisymmetric 
bodies—precess around a verti-
cal axis while also possibly 
nutating. Mark Levi introduces 
a concept that is frequently 
lost in the lengthy calculations 
that comprise the standard 
treatments of Lagrange tops.

10 	 The Rational Krylov 
Toolbox: Nonlinear 
Rational Approximation

	 In a follow-up piece to his 
article in the April issue, Stefan 
Güttel explores the RKFIT 
method for nonlinear rational 
approximation — one of the 
core algorithms in the MATLAB 
Rational Krylov Toolbox, which 
is freely available online. He 
explains the use of RKFIT 
with two sample applications.

11 	 After Two Years, a Reunion 
in the Pacific Northwest

	 The Pacific Northwest Section 
of SIAM, which was founded 
in 2016, encompasses a large 
geographic area that includes 
several U.S. states as well as 
British Columbia. Thomas 
Humphries, who serves as 
secretary of the Section, pre-
views the speakers and top-
ics at the upcoming biennial 
meeting in Vancouver, Wash.
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Building a Mathematical Toolbox                     
for Biological Network Analysis
By Lenore J. Cowen

Large public databases that aggregate 
the many results of experiments in 

cell biology are increasingly expanding our 
knowledge of the relationships between 
human genes. Graph or network represen-
tations are appropriate for several types 
of data; for example, the classical protein-
protein interaction (PPI) network places an 
edge between two genes if experimental 
evidence indicates that their associated 
proteins physically bind within the cell. 
Analysis of biological networks like PPI 
networks can yield powerful insights into 
important problems in functional genomics 
and predict previously unstudied genes that 
are related to key biological pathways that 
affect human health and disease.

Much like social networks, biological 
networks tend to be low-diameter, “small-
world” networks. Homophily is a guiding 
organizational principle in most types of 
biological network data [10], meaning that 
genes typically associate with other genes 
that are involved with similar functional 
processes, pathways, and diseases. Some 
of the issues that researchers study in 
social and biological networks are directly 
analogous, and variants of diffusion pro-
cesses—also called network propagation 
[6]—can immediately uncover impor-
tant biological relationships and insights. 
However, several new problems require 

the development of novel domain-specific 
mathematical techniques in order to take 
full advantage of unique aspects of the 
biological network domain.

Biological Networks                    
Are Like Social Networks

The dense, low-diameter, small-world 
properties of both social and biological 
networks make it difficult for us to define 
a local neighborhood; notably, an ordinary 
shortest path distance is not sufficiently 
informative beyond direct neighbors. When 
we look to neighbors’ neighbors (with a 
shortest path distance of two), we see an 
explosion in neighborhood size that can 
quickly reach a large fraction of the network 
in question for many types of association 
networks. We can resolve these ties in prox-
imity to a more expressive and fine-grained 
measure of similarity via network propaga-
tion, which involves running short or lazy 
random walks from a gene of interest and 
observing the frequency at which different 
nodes are reached. A comprehensive survey 
of the multiple variants of network propaga-
tion that the computational biology commu-
nity used to analyze PPI networks prior to 
2019 is available in the literature [6].

Next we review one specific variant: dif-
fusion state distance (DSD) [3, 5]. DSD is 
distinguished from other related measures 
in that it is a true distance metric that satis-
fies triangle inequality [3]. In particular, it 

is a graph embedding method that associ-
ates each node or gene with a vector. We 
define H u vk( , ) as the expected number of 
times that the k-step symmetric random 
walk (starting with k=0) visits node v, 
and we classify the diffusion state vector 
that is associated with node u  as the vec-
tor of the H u vk

i
( , ) values for all the nodes 

v v
n1

, ...  in the graph. The DSD between 
nodes a  and b  is then

       
DSDk k ka b H a H b( , ) | ( ) ( )| ,= −

1

where | |× 1  represents the L
1
 norm of the 

vectors. DSD satisfies triangle inequality 
[3]; these differences go to zero as the walk 
mixes for larger k,  meaning that this mea-
sure converges as k→∞.

DSD also solves the ties in proximity 
problem.  For a variety of different settings 
in the PPI network, we can show that the 
t  closest DSD neighbors define coherent 
functional neighborhoods in biological net-
works. This realization leads to improved 
performance on classical inference prob-
lems like functional label prediction [5]. For 
instance, a “double-spectral” DSD approach 
followed by spectral clustering yielded 
the best performance in the 2016 Disease 
Module Identification DREAM Challenge1 
[4], suggesting the presence of new genes 
that are involved in illnesses such as type 2 
diabetes and Crohn’s disease.

DSD is just one of numerous network 
propagation methods, and we could 
instead substitute alternative diffusion-
based graph embedding techniques that 
have been previously proposed in the 
context of social networks. All of these 
diffusion-based method variants provide 
increased power and insight for the core 
classical problems that arise in biologi-
cal networks, including functional label 
prediction, link prediction (i.e., predicting 
new PPIs that have not yet been experi-
mentally observed), and disease module 
identification, which is directly analogous 
to the community detection problem in 
social networks (see Figure 1). The best 
such method is domain- and problem-spe-
cific. Customizing the appropriate embed-
ding for the domain at hand then becomes 
an important and compelling challenge.

Biological Networks Differ       
From Social Networks

Although we can directly map many 
important problems in biological networks 
to well-studied social network analogs, three 
categories of domain-specific differences 
are worth highlighting: (i) The organization-
al principles of the networks themselves can 
be different, (ii) the nature and availability 
of ground-truth data to test methods may 
differ, and (iii) we can leverage the power 

1  https://www.synapse.org/#!Synapse: 
syn6156761/wiki/400645

Figure 1. Experimental interactions between human genes in the neighborhood of PARK2 
and PINK1—both of which are implicated in Parkinson’s disease—as shown by the STRING 
network [12]. This figure was generated from https://string-db.org with seed genes PARK2 
(in red) and PINK1 (in light pink).
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See Biological Network on page 5
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Synthetic Data
Continued from page 1

edges, Gambs’ team combined differential 
privacy with a probabilistic concept known 
as vine copula—drawn from a model that 
mathematician Abe Sklar first published in 
1959 [4]—and applied the method to real 
data to demonstrate its usefulness.

In pure differential privacy applications,2 
researchers add a judicious amount of noise 
that is scaled by a parameter e to the origi-
nal data set in order to disrupt correlations 
between variables that could identify sensi-
tive information. Though this framework 
offers the strongest possible privacy guar-
antee in formal terms, it has a number of 
practical drawbacks. “One issue with differ-
ential privacy is keeping as much utility as 
possible,” Gambs said. “It’s abstract in the 
sense that the mathematics and the [privacy] 
guarantee are very formal. It’s difficult for 
people who use this method to understand 
what it means to choose a particular value 
of e in terms of what they’re protecting 
from privacy attacks.”

Gambs and his colleagues wanted their 
toolkit to be extremely user-friendly and 
flexible so that researchers without exper-
tise in formal privacy mathematics can 
apply it to their own data [1]. Their algo-
rithm first preprocesses the raw data via dif-
ferential privacy methods and a preselected 
noise “budget,” then follows up with the 

2  In a previous SIAM News article, 
Matthew Francis wrote about differential pri-
vacy and the U.S. census: https://sinews.siam.
org/Details-Page/using-differential-privacy-
to-protect-the-united-states-census.

vine copula technique on the scrambled 
data set to produce the final synthetic tables 
for analysis (see Figure 1, on page 1). The 
group also applies known types of attacks to 
their own synthetic data sets to ensure that 
their security levels are sufficient. “When 
you use differential privacy, you have some 
assumptions about the distribution of the 
data that are not necessarily true in real 
life,” Gambs said. “Instead, you might have 
a subpopulation [with] a high correlation 
between profiles. If you just rely on the the-
oretical guarantee of differential privacy but 
don’t do any practical privacy attacks, you 
might miss this kind of problem in the data.”

Striving for Maximum Usefulness
Jiang found that the differential privacy 

framework is actually too powerful in many 
respects, particularly in medical studies 
for rare diseases where the number of par-
ticipants may be fewer than 1,000. In these 
cases, it is paramount to protect subjects’ 
identities while still drawing scientifically 
valid conclusions. “The noise added to the 
data set [for differential privacy] is usually 
huge,” she said. “This means that you may 
not get the same inference results by using 
the synthetic data set.”

Instead, her team chose a model that pre-
serves the statistical conclusions between 
the raw data and the synthetic data set 
[2]. Their method is based on the multiple 
imputation (MI) framework that statistician 
Donald Rubin originally proposed in the 
1980s to draw inferences from data sets 
with missing entries [3]. Jiang and others 
turned this framework inside out; they 
began with existing complete data, built a 

model for it, then utilized MI to generate 
synthetic data (see Figure 2, on page 1). 
“MI is a missing data framework, but we 
don’t have missing data in the sense that 
the data provider actually has access to the 
private data set,” Jiang explained. “Our 
framework takes this fact into account, and 
then we generate additional data based on 
private data. Because the model is always 
correctly specified, we can maintain infor-
mation in our synthetic data. This is the 
novelty of our approach.”

The synthetic data set has the exact 
same statistical characteristics as the origi-
nal data because of its construction pro-
cess. But Jiang warned that this method 
is most valuable for small studies; more 
data begets a greater possibility for users 
to identify correlations between variables, 
even when the data themselves are artifi-
cial. The next phase of research involves 
circumventing this limitation.

Testing the Defenses
Governments around the world (includ-

ing in Canada, where both Jiang and Gambs 
are based) increasingly require their funded 
research projects to publish all data. This 
demand is laudable in general terms, as 
openness aids replicability and trust in sci-
ence. Yet in addition to the general need to 
refrain from exposing private information 
like names and addresses, researchers also 
do not want to inadvertently hurt participants 
in other ways. In particular, multiple forms 
of discrimination are legal — some U.S. 
states allow companies to fire LGBTQ+ 
employees, for example. Many scientific 
studies need to account for drug usage, sex 

work, and other widespread activities, and 
subjects rightfully hesitate to participate if 
they know that they are at risk of exposure. 
Employers too often skirt the law even when 
discrimination is illegal, such as for dis-
ability, pregnancy, or chronic illness. These 
actions make participant protection even 
more crucial during data publication.

With these concerns in mind, Jiang, 
Gambs, and their collaborators are inves-
tigating ways to prevent both inadvertent 
exposure and malicious privacy attacks. 
Regardless of which method is best for 
the research at hand, the goal remains the 
same: do not hurt your subjects to obtain a 
scientific conclusion.
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A Firsthand Look at the Novel Ph.D. Program in 
Mathematical Modeling at Rochester Institute of Technology
By Lina Sorg

The innovative Ph.D. program in math-
ematical modeling1 at Rochester 

Institute of Technology (RIT) accepted 
its initial cohort of students in 2017. This 
is the first and currently only Ph.D. track 
in the U.S. that focuses specifically on 
mathematical modeling, rather than applied 
mathematics or another variation there-
of. Since its onset, the program—which 
seeks to fill a niche in the workforce for 
applied mathematicians and computation-
al scientists—has grown steadily, expos-
ing students to a wide variety of classes, 
research areas, and hands-on experiences. 
Applications doubled in the last year alone, 
likely because increasingly more students 
are encountering mathematical modeling at 
the undergraduate level.

SIAM News recently sat down with 
Nathan Cahill, who has served as the direc-
tor of RIT’s Ph.D. program in mathematical 
modeling since 2019. Nathan detailed the 
program’s origins, explained the structure 
and organization of relevant coursework 
and research projects, discussed internship 
and career opportunities, and shared his 
vision for the program’s continued evolu-
tion in the coming years.

SIAM News: Why did RIT decide to 
establish a Ph.D. program in mathemat-
ical modeling?

Nathan Cahill: We owe a large part 
of our program’s history to Sophia 
Maggelakis, current dean of RIT’s College 
of Science and former head of the School 
of Mathematical Sciences.2 She started her 
career as a mathematics faculty member and 
recognized a huge need in the workplace 
for the type of skills that are associated 
with a mathematical modeling education. 
Sophia realized that RIT could fill a gap by 
creating a program that specifically trains 
students to collaborate with experts in dif-

1  https://www.rit.edu/study/mathematical-
modeling-phd

2  https://www.rit.edu/science/school-
mathematical-sciences

ferent fields and use mathematics to solve 
complicated, real-world problems. She 
broadened our Department of Mathematics 
and Statistics to a School of Mathematical 
Sciences, and brought in faculty who did 
not necessarily have traditional mathemat-
ics backgrounds but could involve students 
in research that applies math modeling to 
various settings. For instance, my Ph.D. is 
in engineering science.

In the early 2010s, we began mapping 
out a prospective Ph.D. program in math-
ematical modeling. It took a few years to 
put together a solid proposal and figure 
out how it would fit within RIT and the 
broader context of companies and govern-
ment agencies that hire mathematicians. 
We finally got approval from the state of 
New York in 2016 and welcomed our first 
class of students in 2017.

SN: Was it difficult to assemble a 
cohesive proposal since faculty back-
grounds are so diverse?

NC: We have a very heterogeneous 
group of faculty members in terms of 
research application areas, but we all draw 
on fundamental aspects of bringing math-
ematics to bear in real-world situations. 
We all tackle real-world problems in some 
capacity and work with experts who have 
domain-specific expertise that we don’t 
necessarily possess. We think about how 
we can translate their problems into the lan-
guage of mathematics; generate ideas based 
on mathematical tools; and propose math-
ematical methods to predict, analyze, and/
or provide insights. Once we understood 
that we all have this common foundation, 
we saw the foundation as something that 
we can teach graduate students.

SN: How has the program grown 
since its origin?

NC: We started with about five students 
in 2017 and admitted five or six students 
for the first few years, but we’ll prob-
ably admit eight or nine this fall. We tell 
students that it typically takes five years 
to get through the program; we’re at that 
five-year point right now and our first 

two graduates have defended their dis-
sertations. 28 Ph.D. students are currently 
enrolled across all levels, and 16 of them 
are women. We have a strong contingent of 
female faculty and want to build an acces-
sible environment that promotes women in 
the pipeline of the workforce.

SN: What is the program’s structure?
NC: The first year is entirely coursework. 

All students take one semester of numerical 
analysis and a two-semester sequence in 
mathematical modeling. We also require 
a one-credit graduate seminar course in 
both the fall and spring that teaches general 
research methods and exposes participants 
to different research areas. In addition, a 
high-performance computing course intro-
duces students to distributed and parallel 
computing for various types of problems.

Candidates also choose a concentration 
in their first year, each of which has sev-
eral core courses. Possible concentrations 
include biomedical mathematics, applied 
inverse problems and optimization, dynami-
cal systems and fluid dynamics, and discrete 
mathematics, among other topics. Beyond 

these courses, students must enroll in three 
electives of their choosing; they can even 
take graduate courses in other departments.

During their second year, students must 
take at least three research credits, iden-
tify a faculty mentor, and carry out a 
research project. At the end of that year, 
an examination of this project determines 
whether they are ready to begin disserta-
tion research. From then on, it’s basically 
all dissertation research.

SN: What makes RIT’s math mod-
eling Ph.D. different from a Ph.D. in 
applied mathematics?

NC: There is of course some overlap, 
but the thing that sets us apart is that we 
want our students to learn the process of 
modeling itself and understand how to 
talk to experts in specific domain areas. 
We train students to work collaboratively 
across disciplines, tease out the problems 
that domain experts are trying to solve, and 
establish these problems in mathematical 
settings. So while our focus does involve 
applied mathematics, it’s broader in the 

Ph.D. student Jenna McDanold is a research assistant at Los Alamos National Laboratory 
(LANL), where she studies the way in which tree characteristics affect surface fuel buildup and 
wildfire behavior. LANL is currently supporting her as she completes her Ph.D. in mathematical 
modeling at Rochester Institute of Technology. Photo courtesy of LANL.

See Novel Ph.D. Program on page 6
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Mathematical Paradoxes
Continued from page 1

As we gain a deeper appreciation of AI’s 
limitations, we can better understand its 
foundations and acquire a stronger sense of 
direction for exciting new AI techniques. 
This is precisely the type of growth that hap-
pened with the work of Gödel and Turing, 
which respectively lead to many modern 
foundations and modern computer science.

By expanding the methodologies of 
Gödel and Turing, we initiate a foundations 
program about the boundaries of AI and 
demonstrate limitations on the existence 
of randomized algorithms for NN training 
[4]. Despite many results that establish the 
existence of NNs with excellent approxima-
tion properties, algorithms that can compute 
these NNs only exist in specific cases.

Desirable NNs May Exist
Classical approximation theorems show 

that NNs can approximate a continuous 
function arbitrarily well [5]. In response, 
we might initially expect few restrictions 
on the scientific problems that NNs can 
handle. For example, consider the least 
absolute shrinkage and selection operator 
(LASSO) problem

         	  (1)
                            

for a fixed A m N∈ ×
  with variable y mÎ . 

Can we train a NN to solve this problem? 
Let us consider a simple scenario wherein 
we have a collection = ={ }y

k k
R
1
 and want 

to compute a NN j : , 

m N®  such that 
dist( ( ), ( ))j y y

k k
Ξ ≤ for some accuracy 

parameter >0  and any y
k
Î.

Here, dist( , ( ))x yX  denotes the l 2-dis-
tance of x mÎ  to the solution set X( ).y  
We take the word “compute” literally, 
meaning that a computer can never exactly 
give A  and the y

k
s;  for example, an entry 

of A could be an irrational number. Even 
if A and the y

k
s  are all rational, the over-

whelming majority of software runs float-
ing-point arithmetic in base-2. The training 
data that is available to an algorithm is 
thus the collection of all  = ∈({ } ,A

n n 

{ } ),
, ,
y
k n k R n≤ ∈  such that  

and  i.e., an arbitrary pre-
cision approximation of the dataset. By 
denoting the suitable collection of NNs 
with  ,  it follows easily from classical 

approximation theory that 
a mapping F  exists with

 Φ( )T NNT= ∈j ,

		
	

where
	     

(2)        

jT S( ) ( ) .y y y∈ ∀ ∈Ξ

This formula raises the 
following question: If we 
can prove the existence of 
a NN with great approxi-
mation qualities, can we 
find the NN with a training 
algorithm?

But They May         
Not Be Trainable

The answer to the aforementioned ques-
tion is “no,” but for quite subtle reasons. 
Consider the earlier LASSO problem (1). 
While a NN for this problem provably 
exists—as in (2)—it generally cannot be 
trained by an algorithm [4]. Pick any 
positive integers K³3 and L. Well-
conditioned classes of datasets, such that 
(2) is true, do then exist. Yet regardless of 
computing power and the data’s precision 
levels, we have the following:

(i) Not trainable: No algorithm, not 
even one that is randomized, can produce 
a NN with K  digits of accuracy for any 
member of the dataset with a probability 
greater than 1 2/ .

(ii) Not practical: K-1  digits of accu-
racy is possible over the whole dataset, but 
any algorithm that trains such a NN requires 
arbitrarily large training data.

(iii) Trainable and practical: K-2  dig-
its of accuracy is possible over the whole 
dataset via an algorithm that only uses L 
training data, regardless of the parameters.

Figure 3 depicts a Venn diagram of the 
intricate world of NNs that is based on the 
above results. We try to compute the exist-
ing accurate NN in Figure 4, even though 
we know that doing so is impossible.

The SCI Hierarchy
The techniques that prove our results 

stem from the seminal work of Gödel and 
Turing, with generalizations and extensions 
from the Solvability Complexity Index 
(SCI) hierarchy [2]. The SCI hierarchy and 
its accompanying tools allow users to obtain 
sharp boundaries of algorithms’ abilities. 
We expand upon and refine some of the 
tools that are associated with this hierarchy, 

as well as the mathematics behind Smale’s 
extended 9th problem about linear programs 
[1, 11]. To prove our results, we also intro-
duce and develop the theory of sequential 
general algorithms. General algorithms are 
a key tool within the SCI hierarchy, and 
sequential general algorithms broaden this 
concept and capture the notion of adaptive 
and/or probabilistic choices of training data.

The Boundaries of AI          
Through Numerical Analysis

Any theory seeking to understand the 
foundations of AI must be aware of meth-
odological limitations. This realization is 
increasingly apparent. “2021 was the year in 
which the wonders of artificial intelligence 
stopped being a story,” Eliza Strickland 

wrote in IEEE Spectrum.3 
“Many of this year’s top articles 
grappled with the limits of deep 
learning (today’s dominant 
strand of AI) and spotlighted 
researchers seeking new paths.”

Given the rich history of 
establishing methodological 
boundaries via condition num-
bers, backward errors, preci-
sion analysis, and so forth, it 
is natural to turn to numeri-
cal analysis for a solution. We 
must design a program about 
the boundaries of AI through 
numerical analysis to deter-
mine the areas wherein modern 
AI can be made robust, secure, 
accurate, and ultimately trust-

worthy. Due to methodological boundar-
ies, such a program cannot include all 
areas. The formidable question is thus: 
When can modern AI techniques provide 
adequate robustness and trustworthiness? 
The answer to this query will shape political 
and legal decision making and significantly 
impact the market for AI technologies.

Moreover, we cannot determine this 
theory solely with the extensive collection 
of non-constructive existence theorems for 
NNs, as evidenced by the previous impossi-
bility result. The big challenge is identifying 
the NNs that are not only stable and accurate, 
but can also be computed by algorithms. 
This collection is a small subset of the col-
lection of NNs that are proven to exist.
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Figure 3. The world of neural networks (NNs) according to the main results, along with the different collections 
of NNs based on the amount of data that is needed to compute them. For example, the dark green area that falls 
above the top dashed red line represents the family of NNs that training algorithms can compute to arbitrary levels 
of accuracy with only one data point. Figure courtesy of the authors.

Figure 4. Impossibility of computing approximations of the neural network (NN) to arbitrary 
accuracy. We demonstrate the impossibility statement on fast iterative restarted networks F

n
 

and learned iterative shrinkage thresholding algorithm networks Y
n
 [4]. The table reveals the 

shortest l 2-distance between the networks’ output and the problem’s true solution for different 
values of n (precision of training data is 2-n) and K  (integer from the theorem). Neither of the 
trained NNs can compute the existing correct NN to 10-K  digits of accuracy, but both compute 
approximations that are accurate to 10 1− +K  digits. Figure courtesy of [4].

Hearing directly from working professionals about research, career opportunities, and 
general professional development can help students better understand the workforce. 
SIAM facilitates such interactions through its Visiting Lecturer Program (VLP), which 
is sponsored by the SIAM Education Committee and offers a roster of experienced 
applied mathematicians and computational scientists in industry, government, and 
academia. Mathematical sciences students and faculty—including SIAM student chap-
ters—can invite VLP speakers to present about topics that are of interest to developing 
professional mathematicians. Why not host a SIAM visiting lecturer for a virtual talk? 

Points to consider when deciding to host a visiting lecturer include the choice of dates; 
speakers; topics; and any additional or related activities, such as follow-up discussions. 
Organizers can reach out directly to speakers and must address these points when com-
municating with them. Read more and view the current list of speakers online.1

1 https://www.siam.org/students-education/programs-initiatives/siam-visiting-lecturer-program
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of evolution in biology. Here we provide an 
example of each of these aspects.

The organizational principles of the 
networks themselves can be different. 
It is well known that social networks obey 
the principle of “triadic closure” so that 
triangles are likely; i.e., a friend of many 
of my friends is also likely to be my 
friend [9]. When we perform link predic-
tion on a social network, some of the 
highest confidence predicted links tend to 
occur between nodes with a lot of common 
neighbors. However, many protein-protein 
interactions are of a “lock and key” type. 
Specifically, if a set of keys exists for 
which a large overlapping subset opens 
two locks, we should predict that the rest 
of the keys that open lock 1 will also open 
lock 2, not that the two locks directly inter-
act. This concept forms the basis of the 
recently proposed “length three” measure 
[8]; incorporating this insight into a more 
complicated embedding measure improves 
PPI link prediction methods [7].

The nature and availability of ground-
truth data to test methods may differ. 
As remarked previously, the disease-gene 
module detection problem for biological 
networks  is directly analogous to the so-
called unsupervised community detection 
problem for social networks. However, 
method performance for community detec-
tion in social networks is usually measured 
in one of two settings:

(i) A setting in which ground-truth com-
munities are given (either from real data 
sets or via synthetic data wherein a clique 
or dense subgraph is planted [2]), and we 
measure how well the method recovers 
these communities.

(ii) A setting in which we assume that 
no ground-truth communities are known 
and instead measure performance based 
on the clusters’ mathematical coherence, 
according to standards such as modularity 
or conductance.

Neither setting perfectly captures the 
typical situation in computational biology 
domains, where ground truth availability is 
rarely all or nothing. Rather, we are most 
often in an in-between state with partial 
ground truth—not uniformly sampled—
from which we can nonetheless still derive 
principled performance tests based on how 
well our method aligns with the avail-
able data. For example, the designers of 
the 2016 DREAM Challenge conceived a 
clever way to test the predicted commu-
nities’ alignment with known biological 
disease genes. They used curated sets of 
genome-wide association study sequencing 
data as an independent empirical source to 
produce sets of genes that were associated 
with human disease, then awarded points 
for each community in which more genes 
for a certain disease occurred together than 
otherwise expected [4].

We can leverage the power of evolution. 
Many experiments that attempt to under-
stand human disease are performed on 
model organisms like yeast, fruit flies, or 
mice. Because some of this information 
is encoded in the form of a PPI network, 
a powerful idea involves the use of co-
embedding to simultaneously embed both 
networks in a space where local neighbor-
hoods indicate functional similarity, even 
across species. On the surface, this looks 
a lot like network alignment [11]: another 
well-studied problem in the context of 
social networks. But if the two species 
are as evolutionary distant as humans and 
mice, we cannot expect a one-to-one align-
ment. While we can match some human 
genes to unique mouse genes that evolved 
from a common ancestor, the mapping 
for other genes may be many to one or 
many to none if the gene in question was 
duplicated or lost in one or both of the spe-
cies. We therefore examine methods that 
perform a bijective alignment of a subset 
of genes with unique matches, then utilize 
distance within each network to complete 

the embedding. We unlock improvements 
in function prediction for human genes as 
well as for less-studied species of interest 
with minimal experimental data [1].

Outlook
The rich and important set of problems 

within the space of biological networks 
yields a fruitful path to important collabo-
rations between experts in computational 
biology and network science. As we cus-
tomize and develop a toolbox for the math-
ematical analysis of biological networks, 
critical biological and biomedical applica-
tions will continue to emerge.

This article is based on Lenore Cowen’s 
invited presentation at the 2021 SIAM 
Conference on Applied and Computational 
Discrete Algorithms,2 which took place 
virtually last year in conjunction with the 
2021 SIAM Annual Meeting.3
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sense of learning how to set up and build 
models in the first place.

There is also one component that is fairly 
unique, especially within mathematics pro-
grams: we require all students to complete 
an interdisciplinary internship. We keep 
things pretty flexible; our minimum require-
ment is a paid, full-time position that is 
outside of the university and at least a term 
long — either a full semester or eight-10 
weeks during the summer. We’ve had stu-
dents work in pharmaceutical companies, 
research wings of hospitals, and consulting 
companies. Some have done great work in 
national labs or government organizations, 
including Los Alamos National Laboratory3 
(LANL), Oak Ridge National Laboratory,4 
and the Air Force Research Laboratory.5 
We even allow students to conduct research 
in the labs of potential experimental col-
laborators at other universities. It’s been a 
great experience for them, and many have 
received offers for further internships.

SN: What sort of qualifications do you 
look for in prospective students?

NC: Applicants don’t have to be applied 
math majors to find success in our pro-
gram. Instead, our admissions committee 
looks for a specific interest in mathematical 
modeling and strong evidence of success 
in undergraduate coursework that is related 

3  https://www.lanl.gov
4  https://www.ornl.gov
5  https://www.afrl.af.mil

to linear algebra, probability, differential 
equations, and the like. We also see whether 
prospective students have demonstrated that 
they’re not afraid to get their hands dirty 
and do some coding. A lot of our applicants 
have strong research experience, either with 
faculty members or through the National 
Science Foundation’s Research Experiences 
for Undergraduates program,6 and that’s 
great. However, we recognize that some 
students don’t have the opportunity to spend 
a summer doing research.

As we grow, we hope to attract under-
graduates who realize that their passion is 
not just doing mathematics, but specifically 
finding ways to apply mathematics to com-
plicated, real-world problems.

SN: What types of careers do students 
envision for themselves after graduation?

NC: A number of students have found real 
interest in the government sector, and some 
have gone to the national labs. Two stu-
dents recently received fellowships through 
the Oak Ridge Institute for Science and 
Education.7 Both are working with the U.S. 
Food and Drug Administration to validate 
and analyze COVID-19 models and data.

A lot of students are interested in biomed-
ical applications and could work for compa-
nies that are devoted to health care and/or 
pharmaceuticals. And a number are trying 
to discern whether they want to follow an 
academic path after realizing that many 
research opportunities do exist in academia.

6  https://www.nsf.gov/crssprgm/reu
7  https://orise.orau.gov

SN: Can you share a few examples of 
student success stories?

NC: Nicole Rosato, our first gradu-
ate, currently works at Rochester Gas and 
Electric. The title of her job is “data engi-
neer,” but she does a great deal of data sci-
ence. She develops models to analyze and 
predict outage events — causes of outages, 
when and where they’re going to occur, 
potential impacts, and possible fixes to pre-
vent them from happening in the first place.

I’d also like to highlight Jenna McDanold, 
who came to our program as more of a 
nontraditional student. She is an artist who 
specializes in woodburning, and she wanted 
to learn how to apply mathematical model-
ing to wildfire spread. During her second 
year, Jenna reached out to a group at LANL 
under Rodman Linn,8 one of the world’s 
leading wildfire experts. She completed an 
internship there and they liked her so much 
that they asked her to stay. Now she’s a 
research assistant at LANL, which is sup-
porting her as she finishes her Ph.D.

SN: What do you envision for the 
program’s future?

NC: RIT faculty members Kara Maki and 
David Ross recently founded the Industrial 
Math Modeling Center9 (IMMC) within the 
College of Science at RIT, which started 
with connections that they had with local 
companies. Kara and David envision the 
IMMC as a place where organizations can 

8   https://www.lanl.gov/search-capabilities/
profiles/rod-linn.shtml

9  https://www.rit.edu/science/industrial-
math-modeling-center

connect with mathematical modeling stu-
dents as prospective interns or employees. 
We hope that the IMMC will be integrally 
associated with our Ph.D. program; as more 
companies feed us industrial problems in 
the next five to 10 years, we will connect 
students and faculty members to these proj-
ects so that they lead to internships and turn 
into dissertation topics.

SN: What do you hope that students 
will take away from this program?

NC: We want students to feel comfort-
able entering a new environment or appli-
cation area—a company, government lab, 
research setting in academia, or even a hos-
pital system—where they don’t necessarily 
have much background knowledge. If they 
can talk with experts in that area, under-
stand the relevant problems, and use math-
ematical modeling to propose techniques 
to solve these problems, then we’ll have 
done our job. We’re trying to help students 
build these foundational skills because new 
and complicated issues always arise in the 
world. 10 years from now, there will be 
problems that we can’t even envision — 
problems that people with strong analytical 
skills and mathematical backgrounds will 
be able to tackle. If we produce graduates 
who are capable of entering new settings 
and communicating with experts in those 
fields, then our program will have been 
wildly successful.

Lina Sorg is the managing editor of 
SIAM News.
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John von Neumann: The Man From the Future
The Man from the Future: The 

Visionary Life of John von Neumann. 
By Ananyo Bhattacharya. W.W. Norton & 
Company, New York, NY, February 2022. 
368 pages, $30.00.

Members of the SIAM community 
may come to Ananyo Bhattacharya’s 

fresh and lively biography of John von 
Neumann—The Man from the Future—
with a predictably positive bias. SIAM’s 
highest professional honor is the John von 
Neumann Prize,1 which is awarded for 
“distinguished contributions to the field of 
applied mathematical sciences and for the 
effective communication of these ideas to 
the community.” It was established to honor 
the Hungarian-American mathematician, 
physicist, and computer scientist whose 
seminal work helped found the field of 
modern computing. Winners are recognized 
at the SIAM Annual Meeting, where they 
deliver an associated flagship lecture; Leah 
Edelstein-Keshet of the University of British 
Columbia is the 2022 prize recipient.2

For many of us, the foundations of our 
own research have at least one brick that 
has been shaped by von Neumann’s ideas. 
Bhattacharya’s account of von Neumann’s 
life, research, and varied collaborations will 
refine readers’ understanding of his impact 
on the larger scientific and social milieu in 
which he worked, as well as the continuing 
influence of his legacy long after his death.

Bhattacharya naturally begins with von 
Neumann’s birth in 1903 and his child-
hood among the elite in “sparkling Belle 
Epoch Budapest.” He honed a formidable 
intelligence among schoolmates like future 
economist William Fellner and physicist 
Eugene Wigner, in addition to older men-
tors such as Theodore von Kármán, a pio-
neer of fluid dynamics.

While preparing to leave high school 
(more precisely, “real school” — a variant 
of the European gymnasium) at the age of 
17, von Neumann began his first major 

1   https://www.siam.org/prizes-recognition/
major-prizes-lectures/detail / john-von-
neumann-prize

2  https://sinews.siam.org/Details-Page/
leah-edelstein-keshet-is-the-2022-siam-john-
von-neumann-prize-lecturer

mathematical work. In a bold, early draft 
of what eventually became his doctoral 
thesis, he sought “to make Cantor’s ordinal 
numbers unambiguous and concrete.” The 
necessity of this task arose from the logical 
turmoil of Bertrand Russell’s 
famous set-theoretic paradox: 
Can the set of all sets that are 
not members of themselves be 
a member of itself? Russell’s 
paradox had materialized among the fallout 
from David Hilbert’s challenge to place all 
mathematics on an unshakable axiomatic 
foundation. The concepts of ordinality and 
cardinality that von Neumann developed 
in response to this 
challenge are still 
in use today.

Five years later 
and with a doctorate 
in hand (as well as a 
spare chemical engi-
neering degree to 
relieve his father’s 
concerns about 
future employment), 
von Neumann fol-
lowed a grant from 
the Rockefeller 
Foundation to 
Hilbert’s depart-
ment in Göttingen 
— the center of the 
mathematical uni-
verse at the time. He 
stepped directly into 
another intellectual 
maelstrom: Werner 
Heisenberg’s matrix 
formulation of quan-
tum mechanics was 
butting against Erwin Schrödinger’s wave 
theory amid no end of physically implausi-
ble behavior. Bhattacharya provides a vivid 
and accessible play-by-play account of the 
intellectual turmoil that von Neumann eased 
by deploying Hilbert’s spectral theory to 
reconcile the two apparently different math-
ematical formulations and begin untangling 
the physical conundrums.

The author’s rich account of quantum 
disputes among physics luminaries con-
tinues as he follows von Neumann to the 

University of Berlin, then to the University 
of Hamburg. In Berlin, the 23-year-old 
Privatdocent—the youngest ever appointed 
at the time—reveled in the city’s decadent 
post-war atmosphere. His childhood friend 

Wigner happened to be in 
Berlin at the same time, liv-
ing as a scholarly hermit who 
only emerged to attend phys-
ics colloquia. He reported that 

von Neumann “was sort of a bon vivant, and 
went to cabarets and all that.”

In 1929, von Neumann moved brief-
ly to Hamburg before receiving an 
invitation for a highly paid lectureship 

at Princeton Univer-
sity. He engineered 
a parallel invita-
tion for Wigner, 
and the two arrived 
in the U.S. nearly 
s i m u l t a n e o u s l y . 
Von Neumann was 
accompanied by 
both his new bride, 
Mariette Kövesi, 
and a prodigious 
reputation based 
on his foundational 
contributions to 
axiomatic set the-
ory and quantum 
mechanics.

Wigner recounted 
that at their first 
meeting in America, 
he and von Neumann 
quickly “agreed 
that we should try 
to become some-
what American.” 

According to Wigner, the Johnny von 
Neumann who emerged “was a cheerful 
man, an optimist who loved money and 
believed firmly in human progress.”

With von Neumann in the U.S., 
Bhattacharya’s illuminating sketches of the 
personalities and events of early and mid-
century European mathematics and phys-
ics expand to include America and the 
emergence of applied and computational 
mathematics during and after World War II. 
At this point, readers might feel as if they 

have stumbled into the story of a fictional 
time traveler from the Outlander series. Von 
Neumann somehow managed to be on loca-
tion for every major mathematical happen-
ing; he was in Budapest long enough to start 
repairing an essential part of the foundations 
of mathematics, then moved to Göttingen 
just as Schrödinger’s cat began to prowl.

Once von Neumann crossed the Atlantic 
and plunged into America’s war efforts, 
his pace quickened. The mathematical 
traveler was in Los Alamos to compute 
shock waves within bomb detonators and 
dispassionately select targets for atomic 
bombs; in Aberdeen to automate the cal-
culation of ballistics tables; in Princeton, 
Santa Monica, and elsewhere to develop 
game theory; and almost everywhere—
Philadelphia, Poughkeepsie, and maybe 
even London for a surreptitious collabora-
tion (who knows?) with Alan Turing—to 
crystallize the operational and design prin-
ciples of stored-program computers.

Perhaps Von Neumann’s most audacious 
stop was nominally in Pasadena, where he 
delivered the first major public presentation 
of his ideas about self-replicating automata. 
His abstract model was a universal Turing 
machine, and his thinking lay well ahead 
of what biologists knew about DNA and 
the mechanics of coding, copying, and rep-
licating life forms. The entire conception 
seemed to draw science perilously close to 
science fiction — and to the future.

Throughout his book, the author’s 
descriptions of the surrounding scientific 
landscape are generally so deft and effective 
that readers may feel that they are learning 
more about the setting than the protagonist. 
On the other hand, Bhattacharya frequently 
blends the reach of the scientific challenges 
that intrigued von Neumann with accounts 
of his achievements in ways that ultimately 
provide shadowy silhouettes of both his 
character and his scientific powers. For 
readers of a certain age, this chronicle offers 
some of the same pleasures of reminiscing 
with an old family album and connecting 
legendary names, places, and events from 
previous generations to our own. It also 
reminds us of Hungary’s disproportionate 
gifts to 20th-century mathematics.

BOOK REVIEW
By Paul Davis

The Man from the Future: The Visionary Life of 
John von Neumann. By Ananyo Bhattacharya. 
Courtesy of W.W. Norton & Company.

See John von Neumann on page 8
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SIAM and John von Neumann
By Paul Davis

SIAM’s John von Neumann Prize1 is 
naturally the best-known connection 

between SIAM and the esteemed mathema-
tician John von Neumann. It was established 
in 1959 as the “von Neumann Lecture,” with 
initial monetary contributions from IBM 
and other organizations. Once those assets 
were exhausted, SIAM funded all of the 
award’s expenses and continues to do so.

“Initially, the lecture alternated between 
someone inside the applied math com-
munity and someone from a more applied 
discipline that used a lot of applied math,” 
James Crowley, the former executive direc-
tor of SIAM, explained. “You hence see, 
for example, some notable economists in 
the list of former lecturers. Over time, the 
leadership began to regard this lecture as 
a flagship prize of SIAM, and the focus 
changed from alternating between applied 
mathematicians and users of applied math 
to recognizing the best in our field.” A few 
years ago, the Board of Trustees formally 
recognized this evolution by changing the 
designation from Lecture to Prize and not-
ing that it is the highest honor that SIAM 
bestows. The full list of past recipients is 
available on the prize webpage.2 

The prize signifies just one of many 
connections between von Neumann and 
the SIAM membership. At the 2003 SIAM 
Conference on Computational Science 
and Engineering,3 Gene Golub and Joseph 
Grcar organized “John von Neumann’s 
100th Birthday Celebration Symposium.” 

1   https://www.siam.org/prizes-recognition/
major-prizes-lectures/detail/full-prize-
specifications/john-von-neumann-prize

2  https://www.siam.org/prizes-recognition/
major-prizes-lectures/detail / john-von-
neumann-prize

3  https://archive.siam.org/meetings/cse03/
index.htm

Philip J. Davis provided a personal over-
view of the celebration in a SIAM News 
article4 [2] and recounted the remarks of the 
four speakers: William Aspray5 [1], Marina 
von Neumann Whitman6 [6], Peter Lax7 
[4], and Pete Stewart (the first three talks 
subsequently appeared in SIAM News in 
2005). The presentations collectively served 
as a rich mix of accounts and anecdotes 
that captured von Neumann’s personal and 
mathematical influ-
ences throughout the 
history of computing.

In addition, Grcar 
has analyzed in illumi-
nating detail [3] what 
he calls “the first mod-
ern paper in numeri-
cal analysis” — von 
Neumann and Herman 
Goldstine’s study of 
Gaussian elimination 
with ideas that are now 
well known under their 
modern names, such as 
condition number and 
Courant-Friedrichs-
Lewy stability criteria 
[5]. Of course, this 
research was the initial 
gust in a mighty storm 
of rigorous work in numerical computing, 
much of which was led by SIAM members 
and published in SIAM journals — notably 
the SIAM Journal on Numerical Analysis.8 

In his paper, Grcar also recounts many 
specifics about the intellectual property 
dispute that arose in part from Goldstine’s 
circulation of von Neumann’s “First Draft 

4  https://go.siam.org/ZDgP1d
5  https://go.siam.org/8mkZ9L
6  https://go.siam.org/XZ2YSN
7  https://go.siam.org/htwbWm
8 https://www.siam.org/publications/journals/

siam-journal-on-numerical-analysis-sinum

of a Report on the EDVAC.”9 This obvi-
ously incomplete text was the first descrip-
tion of an architecture for a stored-program 
computer, with only one reference and 
von Neumann as its single author. It was 
written during a time when von Neumann 
would have been fully cognizant of J. 
Presper Eckert and John Mauchly’s work 
with ENIAC — an automatic calculator and 
predecessor to the programmable EDVAC.

Ananyo Bhatta-
charya’s new von 
Neumann biogra-
phy, The Man from 
the Future,10 offers 
further details and a 
slightly different per-
spective. However, the 
key takeaway is that 
von Neumann’s report 
became the legal can-
non that crippled 
Eckert and Mauchly’s 
plans to commercialize 
their work. The duo’s 
firm did ultimately 
produce the UNIVAC I 
(UNIVersal Automatic 
Computer I), a machine 
that was sold at a loss 
to the U.S. Department 

of Commerce to automate the analysis of the 
1950 census. In the meantime, von Neumann 
enjoyed a well-paid consulting assignment 
with IBM while the patent disputes, the 
historic question of “Who invented the com-
puter?,” and the dilemmas of public and 
private rights simmered on for years.

Mauchly went on to serve as the fourth 
president of SIAM — a critical contribution 

9  https://web.mit.edu/STS.035/www/
PDFs/edvac.pdf

10  See page 6 for Paul Davis’ review of 
The Man from the Future: The Visionary Life 
of John von Neumann.

in SIAM’s embryonic, volunteer-driven 
early years. He is now largely overlooked 
in the shadows of von Neumann’s larger 
and well-deserved reputation.

A different and broader cache of sto-
ries from the youthful years of scien-
tific computing is available in SIAM’s 
“History of Numerical Analysis and 
Scientific Computing,”11 which contains 
fascinating oral histories, articles, and 
other resources about key players and 
developments. While many of the modern 
chapters began with von Neumann and 
Goldstine’s famous Gaussian elimination 
paper [5], the story grows richer and more 
satisfying every day. And SIAM remains 
the place to follow it.
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courtesy of the U.S. Department of Energy.



8 • May 2022 SIAM NEWS 

In addition, these accounts prompt ques-
tions—perhaps many are unanswerable—
about the man, his life, and his work. 
Would von Neumann’s decisive selection 
of atomic bomb targets in Japan have been 
so dispassionate if Germany were still fight-
ing? Would his classic Theory of Games 
and Economic Behavior with economist 
Oskar Morgenstern have ventured beyond 
collaborative games if he were not the 
quintessential centered European? If von 
Neumann had lived into the 1970s, might 
he have spoken of the RAND Corporation 
and its clones in a paraphrase of his famous 
comment about the relative simplicity of 
mathematics: “If you think your simple 
mathematical model explains everything, 
you don’t understand how complicated life 
is”? What ideas might he pour across a col-
loquium’s video screen today?

Von Neumann may indeed have been 
The Man from the Future who returned 

to steer his era toward what he had seen. 
Bhattacharya’s sweeping and well-
informed biography makes an even better 
case that von Neumann was a genius of 
multiple talents who had sensed the future 
but never seen it fully. His conception of 
the future was sometimes imperfect, but it 
was shaped so well that disparate segments 
of the scientific and technical community 
could pull it toward realization, shape it 
to meet new complexities, and ride it to 
new opportunities. Bhattacharya adroitly 
describes many of the challenges that 
occupy applied and computational math-
ematicians while recounting one of our 
profession’s most important origin stories 
to a broader audience.3 

Paul Davis is professor emeritus of 
mathematical sciences at Worcester 
Polytechnic Institute.

3  Readers can find more specialized 
accounts in the accompanying article on page 
7, “SIAM and John von Neumann.”

John von Neumann
Continued from page 6

SIAM Federal Research Priorities Advance       
as Congress Passes Omnibus Spending Package
By Andrew Herrin                      
and Miriam Quintal

After nearly six months of stop-gap 
funding measures that maintained 

government spending at fiscal year (FY) 
2021 levels, Congress passed a spending 
package on March 11 for the remainder of 
FY 2022. This package follows President 
Biden’s first year in office, during which 
the administration set ambitious funding 
goals; pursued massive legislative packages 
to improve the nation’s infrastructure; and 
addressed public health, climate and clean 
energy, innovation, education, and racial 
equity — all while continuing to combat 
the COVID-19 pandemic. Throughout the 
first year of the Biden administration, the 
SIAM Committee on Science Policy1 has 
championed increased funding for federal 
agencies that support applied mathematics 
and computational science.

The FY 2022 omnibus package includes 
moderate increases for agencies such as 
the National Science Foundation (NSF), 
Department of Energy (DOE), Department 
of Defense (DOD), and National Institutes 
of Health (NIH). The increases will allow 
these agencies to move forward with major 
initiatives like the new Advanced Research 
Projects Agency for Health2 (ARPA-H); 
a new NSF Directorate for Technology, 
Innovation, and Partnerships (TIP); and 
many climate and infrastructure programs.

The omnibus will fund the NSF at 
$8.838 billion, an increase of $351.24 
million (or 4.1 percent) from the FY 2021 
enacted level. Though this represents the 
largest growth in NSF funding in more 

1  https://www.siam.org/about-siam/
committees/committee-on-science-policy-csp

2  https://www.nih.gov/arpa-h

than a decade, the funding level remains 
far below the major increases that were 
proposed in President Biden’s budget 
request3 and House and Senate draft bills.

The Research and Related Activities 
(R&RA) account—which includes the 
Division of Mathematical Sciences and all 
NSF research directorates—will be funded 
at $7.16 billion, an increase of $249.63 
million (or 3.6 percent) from the FY 2021 
level. The omnibus also approves the cre-
ation of the new TIP Directorate within 
R&RA but does not specify a funding level. 
The explanatory statement that accompa-
nies the omnibus outlines TIP’s goals4 “to 
advance science and engineering research 
leading to breakthrough technologies, to 
find solutions to national and societal chal-
lenges, to strengthen U.S. global competi-
tiveness, and to provide training opportu-
nities for the development of a diverse 
STEM workforce.” The Directorate for 
Education and Human Resources—which 
funds programs that broaden participation 
in undergraduate and graduate education, 
among other activities—will receive $1.01 
billion, a 3.9 percent increase over FY 2021 
funding levels. Undergraduate education 
programs are flat funded at FY 2021 levels, 
but programs and graduate fellowships that 
broaden participation will each see modest 
increases of four to seven percent.

The omnibus will provide $44.9 billion 
for DOE: an increase of $5.2 billion (or 13 
percent) above the FY 2021 enacted level. 
Consistent with the Biden administration’s 
priorities to accelerate the development 
and deployment of clean energy technolo-

3  https://sinews.siam.org/Details-Page/
siam-advocates-for-research-growth-as-biden-
administration-releases-funding-request

4  https://www.aip.org/fyi/2021/fy22-
budget-outlook-national-science-foundation

gies to meet ambitious net zero carbon 
goals, the omnibus significantly increases 
investments in all fundamental and applied 
energy programs. Mathematical, compu-
tational, and computer science research 
will be funded at $260 million, which 
represents an increase of $10 million (or 
four percent) from FY 2021 enacted lev-
els. The DOE’s Computational Science 
Graduate Fellowship5 is set to receive its 
first increase in many years; funding for 
the program will reach at least $15 million 
— a 50 percent increase over the FY 2021 
enacted level. Funding for artificial intel-
ligence (AI) and machine learning (ML) 
across all Office of Science programs faces 
a small cut to its $120 million budget.

DOD’s science and technology 
accounts—which include basic research, 
applied research, and advanced technology 
development—will be funded at $18.8 bil-
lion, a 12 percent increase to the FY 2021 
level. Basic research accounts across the 
services and department wide will experi-
ence a five percent increase overall, with 
the Army securing the largest increase 
(10.4 percent) and the Air Force collect-
ing the smallest increase (0.8 percent). 
Basic research at the Defense Advanced 
Research Projects Agency (DARPA) will 
collect $446 million — $50 million over 
the budget request but six percent below the 
FY 2021 funding level. Congress provides 
specific funding for AI, ML, and cyber 
efforts within the Army and DARPA. For 
the first time, Congress will also bestow 
$15 million to the new Space Force6 for 

5  https://science.osti.gov/ascr/CSGF
6  https://www.spaceforce.mil

fundamental research, which could include 
novel basic research efforts.

The omnibus will supply a total of $45 
billion to NIH in FY 2022 — an increase of 
$2.03 billion (or 4.7 percent) over the FY 
2021 enacted level. This marks the seventh 
consecutive funding increase for NIH. In 
addition, Congress will provide $1 billion to 
the Secretary of Health and Human Services 
(HHS) to establish ARPA-H. The HHS 
Secretary can choose to transfer this money 
and is expected to move the funding to 
NIH. ARPA-H, which was first articulated 
in President Biden’s budget request, aims 
to speed up transformational innovation in 
health research; support high-risk, high-
reward research; and accelerate the transla-
tion of fundamental biomedical research 
into clinical applications to provide more 
treatments and cures for disease. SIAM 
has been engaging with NIH and the White 
House Office of Science and Technology 
Policy7 to encourage ARPA-H’s support of 
innovations in applied mathematics, com-
putational science, data, AI, and ML.

Now that FY 2022 appropriations are 
finalized, Congress turns to FY 2023 appro-
priations and awaits the president’s FY 
2023 budget request. SIAM will continue 
to advocate for strong funding for applied 
mathematics and computational science 
programs at relevant agencies, and will keep 
members informed as the process unfolds.

Andrew Herrin is an associate and 
Miriam Quintal is Managing Principal 
at Lewis-Burke Associates LLC, SIAM’s 
governmental relations partner. They are 
SIAM’s liaisons in Washington, D.C.

7  https://www.whitehouse.gov/ostp

John von Neumann poses with the first computer at the Institute for Advanced Study (IAS) in 
Princeton, NJ. Photo courtesy of the Archives of the IAS.
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The Rational Krylov Toolbox: Nonlinear Rational Approximation
By Stefan Güttel

In the April 2022 issue of SIAM News, 
I provided a brief introduction to ratio-

nal Krylov methods—a critical tool in the 
field of scientific computing—and dis-
cussed several applications.1 Now I focus 
on the RKFIT method for nonlinear rational 
approximation, one of the core algorithms 
in the freely available MATLAB Rational 
Krylov Toolbox (RKToolbox).2 The tool-
box comprises an extensive collection of 
examples that users can explore and mod-
ify; here they are printed in typewriter 
font for easy identification.

Nonlinear Rational Approximation
The purpose of RKFIT is to solve nonlin-

ear least-squares problems

                  (1)

where A  and F  are given square matrices 
of the same size and b  is a given vector of 
compatible size. In the simplest case, the 
minimization in (1) occurs over all rational 
functions r  of degree m  (i.e., quotients 
r p q= /  of two polynomials of degree m). 
This is a nonconvex minimization problem 
that may be ill posed, meaning that we can 
generally only ask for a solution that makes 
the left side of (1) “small.”

The formulation (1) contains several 
familiar special cases, including rational 
approximation on a discrete set when both 
A  and F  are diagonal matrices, or multi-
point Padé approximation when A has 

1  https://sinews.siam.org/Details-Page/
the-rational-krylov-toolbox

2  http://rktoolbox.org

nontrivial Jordan blocks. In many applica-
tions, F f A= ( ) is a complicated matrix 
function of A; we thus aim to compute r  
without resorting to A's eigenvalues or 
other spectral information. RKFIT achieves 
this objective by iteratively transforming 
the matrices in a rational 
Arnoldi decomposition 
and solving least-squares 
problems with orthonormal 
rational Krylov bases; more 
details are available else-
where [1, 3].

The use of RKFIT in the RKToolbox is 
straightforward; Figure 1 presents a basic 

example. This code 
computes a degree-4 
rational function r  such 
that r A b Fb( ) »  for 
the nonnormal Grcar 
matrix A,  which is a 
popular test matrix in 
numerical analysis. The 

computed function is represented by an 
RKFUN object called ratfun that users 
can incorporate in further computations. 

Figure 2 checks the relative error 
 and displays 

the four poles of r.
RKFIT has a number of option-

al functionalities and parameters 
that individuals can list by typ-

ing help rkfit. 
For instance, instead 
of providing F as a 
dense matrix like in 
our basic example, 
it is typically more 
efficient to provide 

a function handle for the computation of 
matrix-vector products; it is also possible 
to enforce stable poles (param.stable). 
The RKToolbox contains several RKFIT-
related examples, two of which I will dis-
cuss in some detail.

Exponential Integration
Linear initial value problems such as 
u Au' ,+ = 0  u b( )0 = —where A  is a 
large sparse matrix—arise in many applica-
tions. In the RKToolbox demonstration at 

Figure 1. Computation of a degree-4 RKFIT approximant to a 
matrix exponential.

SOFTWARE  AND 
PROGRAMMING

example_expint.hmtl,3 we are con-
cerned with the efficient solution of this 
problem with uniform accuracy over a 
given time interval, say [ , ].T T

0 1
 The solu-

tion, which is given as u t e bAt( ) ,= −  can 
conveniently be approximated by a family 
of rational functions in partial fraction form:

r A b t I A b e bt
i

i

m

i
At( )( ) ( )( ) .= − ≈

=

− −∑α ξ
1

1

3  http://guettel.com/rktoolbox/examples/
html/example_expint.html

Figure 2. Exploring an RKFIT approximant.

Figure 3. Optimization of parameters for the uniform integration of a linear initial value problem via RKFIT. 3a. The approximation error 
 for a symmetric positive semidefinite matrix A  as a function of t Î[ . , ]0 1 10  for RKFIT (represented by the red solid curve with 

circles) and a contour-based approach (represented by the blue dashed curve with squares). The solid black line depicts the errors of the RKFIT 
surrogate approximant. 3b. The pole locations of the two families of rational approximants—RKFIT and contour-based—in the complex plane.

See Rational Krylov on page 12

Spinning Tops in Spinning Frames
Spinning tops have existed since ancient 

times. The popular toy is so old that it 
is difficult to say something simultaneously 
(i) new, (ii) correct, and (iii) interesting 
about it. The Lagrange top is an axisym-
metric body that pivots on a needlepoint. 
When spun quickly enough, it precesses 
around the vertical axis while also pos-
sibly nutating.1 In most books about clas-
sical mechanics [1, 3], the top is treated 
with somewhat lengthy calculations. Here I 
describe a point (pun intended) that is lost 
in standard treatments.

Let us keep track of the point P  where 
the top’s axis punctures a sphere centered at 
O  (see Figure 1). Dynamics of the top admit 
a remarkably simple description: 

The motion of P  is identical to that of 
a point mass m  constrained to the sphere 
of radius R  and subject to two forces: (i) 
gravity and (ii) the (magnetic-like) force 
perpendicular to the velocity and of mag-
nitude equal to the product of axial angu-
lar momentum L,  the Gaussian curvature 
K R= −2 of the sphere and the velocity.

1  “Nutus” = “nod” in Latin.

Both R  and m  are specified in terms 
of the top’s mass, moments of inertia, and 
the center of mass’ distance to the pivot; 
these expressions—as well as the claim’s 
proof—are available in [2]. The Lagrange 
top is thus equivalent to the charged particle 
on the sphere in the magnetic field that is 
perpendicular to the sphere (as if a magnetic 
monopole was at O) and subject to gravity. 
The strength of the magnetic field is given 
by the sphere’s Gaussian curvature, and the 
charge is the angular momentum L.

Near-vertical Motions
Figure 2 shows projection z x y= =( , )  
x iy+  of P  onto the tangent plane to the 
north pole. For near-vertical motions, z  is a 
good approximation for P  and 
it satisfies, up to higher order 
terms in | |,z

          z ibz az= + .            (1)

Here, a g R= /  and 
b LK m= / , although this is not important 
for the forthcoming point. Figure 3 shows 
typical trajectories of z. Interestingly, when 
viewed in a rotating frame they are uniform 

circular motions — provided that we choose 
the right angular velocity for our frame. 
Indeed, any solution of (1) is a combination 

of two circular motions:

 			    (2)
    
z Ae Bei t i t= +w w1 2 ,

where i iw w
1 2
,  are the roots of 

the characteristic polynomial 
l l2 0− − =ib a . These roots are purely 
imaginary if b a2 4> , which happens if the 
spin L  is large enough (here, A  and B are 
complex numbers). If we put ourselves in 

the frame that is rotating with angular veloc-
ity w1, then the motion (2) will acquire a 
clockwise rotation from our point of view:

              e z A Bei t i t− −= +w w w1 2 1( ) .

This rotation is a uniform circular motion 
centered at A.

The figures in this article were provided by 
the author.
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MATHEMATICAL 
CURIOSITIES
By Mark Levi

Figure 1. L is the angular momentum 
around the symmetry axis and K R= −2 is 
the Gaussian curvature of the sphere.

Figure 2. Projection (left) and the two forces in the right-hand side of (1) (right).

Figure 3. Motions of z  (the projection of P) near the north pole; spin angular momentum L 
increases from left to right. Bottom circles are the same motions but viewed in rotating frames.
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After Two Years, a Reunion in the Pacific Northwest
By Thomas Humphries

In addition to majestic forests, stunning 
mountains, and a beautiful coastline, the 

Pacific Northwest (PNW) region of North 
America is also home to a thriving applied 
mathematics community. The tradition of 
regular meetings between applied math-
ematicians in this part of the continent dates 
back at least 35 years, to the first Pacific 
Northwest Numerical Analysis Seminar1 
(PNWNAS) at the University of Washington 
in September 1987. This day-long confer-
ence, which consists of invited talks from 
speakers in both academia and industry, has 
convened almost every year since; the latest 
edition took place virtually in 2020.

In more recent years, collaboration 
between faculty at Oregon State University 
and Portland State University gave rise to 
the first CASCADE meeting in April 2014. 
This gathering—named for the mountainous 
Cascade Range in the PNW—uses a rodeo 
or circus format, in which the order and 
length of talks is determined on the day of 
the meeting based on which attendees volun-
teer to speak. The less-formal style makes it 
an ideal forum for students and early-career 
researchers to present their work. The meet-
ing was later renamed CASCADE RAIN2 
(for Regional, Applied, Interdisciplinary, 
and Numerical mathematics) — an allusion 
to the PNW’s infamously wet climate. The 
last iteration3 occurred online at the start of 
the COVID-19 pandemic in 2020.

The PNW Section of SIAM4 originated 
in 2016 to organize PNWNAS, CASCADE 

1  https://sites.google.com/view/pnwnas
2  https://sites.google.com/site/cascaderain

meetings/home
3  https://sites.google.com/view/cascade 

rain2020
4  https://sites.google.com/site/siampnw

section/home

RAIN, and related events under one 
umbrella and make them accessible to 
students and participants beyond the major 
research universities in the region. The 
Section encompasses a large geographi-
cal area that includes the U.S. states of 
Washington, Oregon, and Idaho, along 
with the Canadian province of British 
Columbia. It organizes virtual seminars5 
by distinguished speakers several times a 
year to enable participation from a wide 
variety of members. Seminar topics have 
included tsunami modeling (see Figure 1), 
mathematical modeling of biological cells, 
clustering of complex networks, and ethical 
allocation of ventilators during COVID-19.

The PNW Section’s most prominent 
event is its biennial meeting, the first of 
which was held in October 2017 at Oregon 
State University; the second conference 
took place at Seattle University two years 
later. Planning for the 3rd Biennial Meeting 
of the SIAM PNW Section6 has been espe-
cially challenging in light of the ongoing 
COVID-19 pandemic. Although the gath-
ering was originally scheduled for the fall 
of 2021, the organizers opted to postpone 
the meeting to the spring of 2022 due to 
continually high COVID-19 case counts. 
Subsequent logistical issues and scheduling 
conflicts resulted in several date changes 
and one venue change, but the organiz-
ing committee is now pleased to officially 
host the next biennial meeting from May 
20-22 at Washington State University in 
Vancouver, Wash. Due to continued uncer-
tainty surrounding the COVID-19 situation, 
the conference will employ a hybrid format; 
registered participants can choose to attend 
on campus or remotely via Zoom.

5  https://sites.google.com/site/siampnw
section/seminar-series

6  https://sites.google.com/view/siampnw21

Four plenary speakers—Tegan Emerson 
(Pacific Northwest National Laboratory), 
Jodi Mead (Boise State University), Jessica 
Stockdale (Simon Fraser University), and 
Jevin West (University of Washington)—
will headline the meeting. They will pres-
ent on topics such as COVID-19 model-
ing, the spread of viral misinformation, 
and topological data analysis. In addition, 
a number of minisymposia and contrib-
uted talks—organized by researchers from 
across the region—will address subjects 
like mathematical biology, computational 
fluid dynamics, numerical analysis, com-
putational partial differential equations, 
and imaging science. Furthermore, a two-
hour, in-person poster session on May 
21 will allow students to practice their 
presentation skills and compete for prizes. 

We look forward to seeing many of our 
colleagues in person again after two long 
years of virtual meetings!
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Figure 1. Tsunami simulation of a synthetic earthquake rupture off the coast of the 
Pacific Northwest in North America [1]. Image courtesy of Randall LeVeque and map © 
OpenStreetMap contributors.
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Note that the poles xi  of r t( ) are indepen-
dent of t  and the evaluation of r A bt( )( )  
hence requires the solution of m  shifted 
linear systems ( ) ,x

i i
I A x b− =  which are 

independent of the number of time points t 
for which we want to evaluate. Furthermore, 
all of these linear systems are decoupled 
and can be solved in parallel.

A popular approach for obtaining fami-
lies of such rational approximants is to 
apply a quadrature discretization to the 
Cauchy integral formula

         
        

e e I AAt t− − −= −∫
1
2

1

π
ζ ζζ

i
d

Γ
( )

with an appropriately chosen contour G  that 
encloses A' s  eigenvalues [4]. Alternatively, 
we can run RKFIT to numerically compute 

a family of rational approximants so that 
the error  is uniformly 
small for all t T TÎ[ , ].

0 1
 To that end, RKFIT 

employs a surrogate approach wherein A 
and b  are replaced by a “simpler” matrix Â 
and vector .̂b  The surrogate matrix Â  should 
capture A's  spectral properties while being 
easy to compute with. For instance, one 
could obtain Â  from a coarser discretization 
if A  arises from the spatial discretization of 
a differential operator. Figure 3 (on page 10) 
illustrates an example of this concept [1]. 
Here, the matrix A  is symmetric positive 
semidefinite and the time interval of interest 
is [ , ] [ . , ].T T

0 1
0 1 10=  

Figure 3a displays the approximation 
error of both the original and surrogate 
problems. The RKFIT family of rational 
approximants r A bt( )( )  achieves a near-
uniform error over the entire time interval. 
We also compare this approach to a contour 
integration-based technique that is opti-

mized for a single time parameter t =1, 
where the poles of the rational function lie 
on a prescribed contour (see Figure 3b, on 
page 10). The contour approach achieves a 
high accuracy at t =1,  but the accuracy dete-
riorates significantly at other time points.

Compression of                   
Layered Waveguides

The example at example_ehcom-
press.html4 relates to absorbing bound-
ary conditions for wave problems and the 
optimization of transmission conditions in 
domain decomposition methods. Consider 
a two-dimensional waveguide with varying 
wave number in the horizontal direction 
(see Figure 4a). Depending on the structure 
of the layers, the Dirichlet-to-Neumann 
(DtN) map of this waveguide, f A( ),  may 
be a highly irregular matrix function where 
f  has many singularities (so-called scatter-
ing poles) near A's  eigenvalues. It is there-

fore impossible to construct 
a uniform rational approxi-
mant r A f A( ) ( )»  on A's 
spectral region. We recently 
proposed the computation of 
a low-order RKFIT approxi-
mant r A b f A b( ) ( )»  with a 
random probing vector b  [2]. 
The continued fraction form 
of r  is equivalent to a finite-
difference representation of 
the DtN map; this representa-
tion can be appended to an 
existing discretization as an 
artificial boundary condition.

An important property of 
RKFIT approximants is their 
inherent spectral adaptation. 
Even though one does not 
explicitly need A's  eigen-
values to run RKFIT, the 
computed approximant will 

4   h t t p : / / g u e t t e l . c o m /
rktoolbox/examples/html/
example_ehcompress.html

resolve the function f  more accurately in 
some parts of the spectrum than in others (see 
Figure 4b). This spectral adaptation effect 
allows for the construction of finite-differ-
ence grids that undercut the Nyquist limit 
for discretizations of wave problems [2].

Summary
Here I have presented a brief introduction 

to the RKFIT method for nonlinear rational 
approximation and discussed two sample 
applications. The RKToolbox provides 
some additional RKFIT examples that are 
related to model order reduction (exam-
ple_frequency.html5 and exam-
ple_iss.html6) and graph label propa-
gation (example_digits.html7).

All figures are courtesy of the author.
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Figure 4. Compression of a layered waveguide. 4a. The amplitude and phase of a Helmholtz solution for a 
two-dimensional waveguide with varying coefficients (wave numbers) in the horizontal x -direction. The coef-
ficient jump occurs at x=150, as indicated by the vertical dashed line. 4b. A plot of the Dirichlet-to-Neumann 
(DtN) function f  of the waveguide (represented by the solid red line) over the spectral interval of an indefinite 
matrix A (the trace operator at the x = 0  interface). The RKFIT approximant of degree m= 8 (represented by 
the dotted blue curve) is not uniformly close to f  on the spectral interval of A. It exhibits spectral adaptation 
to some of A's  eigenvalues (represented by the black dots).

Rational Krylov
Continued from page 10

Anticipating the 2023 SIAM Conference on 
Computational Science and Engineering in Amsterdam
By Hans De Sterck, Karen Devine, 
Dirk Hartmann, Sarah Knepper, 
Wil Schilders, and Kees Vuik

Goedendag! It’s time to dust off your 
Dutch—or at least your passport—

because the 2023 SIAM Conference on 
Computational Science and Engineering1 
(CSE23) is set to take place from February 
26 to March 3, 2023, in Amsterdam, the 
Netherlands. CSE23 will be the first SIAM 
CSE conference outside of the U.S. in the 
meeting’s 20-plus-year history; it will also 
be the first in-person iteration of CSE since 
CSE192 in Spokane, Wash. Stroll along the 
canals of Amsterdam while you catch up 
with colleagues, build your professional 
networks, and make new friends!

The biennial CSE meeting is histori-
cally SIAM’s largest conference. It brings 
together applied mathematicians, computer 
scientists, domain scientists, and engineers 
to facilitate in-depth technical discussions 
about a wide variety of large-scale problems 
in computational science and engineering. 
The advanced models, simulations, and 
algorithms that CSE practitioners create 
inspire applications in fields that range 
from aerospace and chemistry to medicine, 
finance, and marketing. The broad audience 
that utilizes these applications thus fosters 
the interdisciplinary culture of CSE and 
helps train the next generation of scientists.

Some of the many themes of CSE23 
include the following:

1  https://www.siam.org/conferences/cm/
conference/cse23

2  https://www.siam.org/conferences/cm/
conference/cse19

•   Artificial intelligence and CSE
•   High-performance computing
•   Scalable linear and nonlinear solvers 
•   Reduced order modeling
•   Data science for CSE
•   Scientific machine learning
•   Graphs and networks
•    CSE in industry, including optics, ener-

gy, electronics, aerospace, and automobiles.
These and numerous other topics will 

manifest in the eight plenary talks that 
experts will present throughout the confer-
ence. Multiple minitutorials will provide 
opportunities for attendees to thoroughly 
explore subjects of interest in CSE, includ-
ing software and tools. Engaging poster 
sessions will inspire individual and small 
group discussions that address state-of-the-
art research. Finally, an awards ceremony 
with lectures from prize recipients will wrap 
up the week-long conference.

Other highlights at CSE23 include 
multiple panel discussions. In addition to 
the standard early- and mid-career pan-
els (perennial favorites at the conference), 
another panel will focus on diversity — 
including the retention and long-term suc-
cess of diverse employees as well as the 
integration of diversity into successful 
teams. In addition, a forward-looking panel 
composed of experts in the field will iden-
tify future trends in CSE.

Another first for CSE23 is the addition of 
a Hackathon that will take place alongside 
the conference. During this event, teams 
of students and their mentors will work on 
real-world industrial problems, meet other 
members of the future workforce, and learn 
about the complex problems that plague 
today’s organizations.

While the plenary talks, panels, and mini-
tutorials comprise the backbone of the con-
ference, the bulk of the program consists 
of the multitude of minisymposia talks, 
contributed lectures, and posters that will 
be submitted and presented by the attend-
ees themselves. We encourage SIAM News 
readers to submit their proposals once the 
call for participation is posted in May 2022.

Opportunities are available for institutions 
and companies to sponsor CSE23 activities 
and even host multiday booths at the con-
ference. Sponsorship details and forms are 
accessible via the conference page.3

While SIAM membership4 is not 
required for conference registration, it 
does provide a discount. An additional dis-
count is available to members of the SIAM 
Activity Group on Computational Science 
and Engineering;5 attendees can also save 
money by registering early.

CSE23 promises to be a great meeting 
that will unite CSE practitioners from all 

3  https://www.siam.org/conferences/cm/
program/exhibits/cse23-exhibits

4    https://go.siam.org/bVLwuH
5  https://www.siam.org/membership/

activity-groups/detail/computational-science-
and-engineering

academic and career levels in a unique 
European venue. We hope to see you in 
Amsterdam, and tot dan!
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