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Abstract. The two-stage Markov task, widely-used for measuring model-based relative to model-free learning
in humans, has faced skepticism regarding its effectiveness. We suggest a modification to better
distinguish the two learning approaches. Our revised task incorporates an additional phase for
learning local contingencies, mirroring a strategy from machine learning for separating model-free
from model-based algorithms. We evaluated the effectiveness of our revised task through simulations,
employing model-free and model-based strategies.
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1. Introduction. Reinforcement learning and psychology communities are interested in
distinguishing between model-free (MF) and model-based (MB) learning [3, 26]. With de-
cision making tasks, MB learning refers to methods that require a model for the transition
probabilities of the environment, while MF learning methods do not need such a model [25].
Note that these definitions make the classification of MB or MF mutually exclusive and ex-
haustive. [3] proposed a two-stage Markov task to evaluate individual’s inclination for MF vs.
MB learning. It has been widely used [1, 4, 5, 6, 7, 9, 13, 16, 17, 18, 19, 20, 21, 23, 24, 27, 30].
However, it has recently been criticized for not performing its intended function.

In the two-stage task, participants initially choose an action that transitions them to
a second stage via common or rare transitions. They make another choice that results in
a probabilistic reward. By analyzing participants’ likelihood of repeating their first-stage
choice based on reward outcomes and transition types, researchers aim to measure individual’s
inclination for MF and MB learning [3]. Daw et al propose that for MF learning, the chance
of repeating a choice will be based solely on reward, while for MB learners the chance of
repeating a choice will be based solely on if the transition was rare or common. However,
a purely MF learner can demonstrate either pattern when risk-seeking and risk-sensitivity
are incorporated into their exploration strategy [8]. The behavior pattern also varies with
how much participants misconstrue the task based on the directions they are given [11, 12].
Moreover, minor task modifications can alter the characteristic behavior of established MB
and MF algorithms, making results difficult to interpret [10]. These observations prompt us
to determine if simple modifications to the task could improve its function.
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Previous approaches to refining the two-stage Markov task, such as simulation-based vali-
dations [2, 14, 28] or task complexity adjustments[15], have attempted to address these issues 
but often lack a clear mechanism for separating learning strategies. Inspired by machine 
learning’s progress towards separating MB from MF algorithms, we propose adapting local 
change adaptation (LoCA)[26] for use in human tasks. This approach leverages principles 
akin to performance metrics in machine learning, such as precision and recall, to systemati-
cally differentiate t he c ontributions o f e ach s trategy [ 22].By addressing t hese c riticisms, our 
framework offers a  n ovel s olution t hat improves t he r obustness a nd d iscriminative p ower of 
the task compared to prior efforts. We analyze our proposed task in simulation.

2. Background. Decision-making experiments can often be described as discrete-time 
Markov Decision Processes (MDP). A discrete-time MDP consists of states, actions, rewards, 
and a transition distribution. At each time step t, an agent observes state st, selects action 
at, and transitions to a new state st+1 while receiving reward rt according to the transition 
distribution. This process repeats over a time horizon T .

We describe the two-stage Markov task from [3] as an MDP with 3 states, st ∈ {1, 2, 3}, 
and two possible actions at ∈ {1, 2}. The agent starts in state 1 (s1 = 1). After selecting 
action a1, the agent transitions to state 2 or 3, with no immediate rewards (r1 = 0). If at = 1, 
there is a 70% chance of transitioning to state 2, termed as a common transition, and a 30%
chance of transitioning to state 3, termed as a rare transition. If a1 = 2, the probabilities 
and transition type labels reverse. After selecting action a2, the agent receives reward r2. 
The decision-making scenario then repeats, represented as a deterministic transition back to 
state 1. We use the 70/30 split originally proposed by Daw et al. [2]. Modifying this split 
affects how distinct model-based and model-free behaviors appear; more extreme splits (e.g., 
90/10) may inflate model-based behavior, while near-uniform splits (e.g., 60/40) may obscure 
differences (see Appendix A.1).

Recent machine learning research emphasizes that a defining t rait o f MB l earning i s its 
capacity to modify its policy across all states when encountering a local change [26, 29]. 
This inspired the LoCA task, where agents navigate a finite r ectangular g rid. Each grid cell 
represents a state in an MDP with deterministic transitions, and available moves correspond 
to actions. There are two additional states, T1 and T2, located outside the grid at the left and 
right boundaries respectively. When the agent is near the leftmost edge of the grid, known 
as the event horizon, it is forced to navigate only toward T1 and cannot move away from 
it. Rewards are given only when the agent transitions to states T1 or T2, after which they 
transition back to a state in the grid.

The task comprises three learning phases. In Phase I, the agent is initialized at any grid 
state and transitions back to any grid state after receiving a reward. In this phase, rewards 
are greater at T1 compared to T2. In Phase II rewards are smaller at T1, and the agent is 
initialized and transitioned back to within the event horizon, restricting it to navigate near T1. 
In the final phase, Phase I II, the rewards remain the same as in Phase I I. However, the agent 
is initialized at any grid state and transitioned to any grid state after receiving a reward.

Performance is assessed by the fraction of instances it reaches state T2 instead of T1 during 
Phase III. Effective u se o f M B l earning a llows t he a gent t o a dapt t o t he a ltered rewards 
in Phase II and integrate this locally obtained knowledge into its policy across all states,
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facilitating successful navigation towards the higher rewards at T2 at the start of Phase III.
Without using MB learning, the agent needs to re-explore the state space in Phase III, just
as it does in Phase I, in order to effectively learn to navigate to T2 rather than T1.

3. Methods. We propose a task that captures the core elements of the LoCA task within
the general structure of the two-stage Markov task (see Figure 1). This new task can be
described by an MDP with identical states, actions, and transition types as the two-stage
Markov task. However, we also divide the task into three phases following the ideas of the
LoCA task.

In Phase I, the agent starts in state 1, receives a reward after taking an action in state 2
or 3, and transitions back to state 1. In Phase II, the agent starts in state 2, receives a reward
after taking an action, and then transitions back to state 2. In Phase III, transitions revert to
those of Phase I. Each phase continues until a given number of visits to states 2 and 3. During
Phase I, average rewards are designed to be higher in state 2 than in state 3, establishing an
initial preference for actions leading to state 2. We then modify the reward distribution for
Phases II and III so average rewards are higher in state 3 than in state 2. As in the LoCA
task, we can evaluate an individual’s inclination for MB and MF learning by measuring their
performance at the start of Phase III.

We developed a simulation of our task, accessible at https://github.com/jwvineyard/mxm
sp23-Learning. We fixed the number of visits to states 2 or 3 at 50 for each phase. For
simplicity, every choice in state 2 would lead to a reward drawn from a normal distribution
with mean 4 and variance 1 and every choice in state 3 would lead to a reward drawn from a
normal distribution with mean 2 and variance 1, regardless of the action chosen. In Phases II
and III, choices in state 2 would always result in a reward drawn from a normal distribution
with mean 1 and variance 1, while the rewards for state 3 remained the same.

We ran this simulation 10,000 times, applying MF and MB algorithms. For our MF
algorithm, we used Q-learning with an ε-greedy action selection, as presented in [25]. For
our MB algorithm, we tracked the Q-values at each step using the same update as our MF
algorithm, and followed the action selection procedure used for the MB algorithm in the
original two-stage Markov task paper introduced by Daw et al [3]. In states 2 and 3, we use
the same ε-greedy action selection as the MF algorithm. In state 1, with probability ε we
select a random action. With probability 1− ε, the action was chosen to maximize

(3.1) QMB(a) = P (st+1 = 2|st = 1, a)max
a′

Q(2, a′) + P (st+1 = 3|st = 1, a)max
a′

Q(3, a′)

where Q(s, a) is the Q value for state s and action a, and P (st+1 = S′|st = S, a) is the 
probability of transitioning from state S to state S′ with action a. For both algorithms we 
used a learning rate of 0.5, a discount rate of 0.1, and ε = 0.1. We then calculated the average 
reward obtained from each choice in state 2 or 3 in both algorithms. We included 95% Wald 
confidence intervals for these averages.

4. Results. Results are shown in Figure 2. In Phase I, the MB algorithm improved 
slightly quicker than the MF algorithm. However, adjusting parameters could potentially 
reverse this difference in early p erformance. What i s more striking i s the initial performance 
of MB during Phase III, which occurs as a direct consequence of incorporating locally learned
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Figure 1. The proposed task’s three phases are illustrated as follows: A) The first phase mirrors t he two-
stage decision-making scenario of the two-stage Markov task. B) In the second phase, the emphasis shifts to 
locally learning the modified reward d istributions a ssociated w ith a ctions t aken i n s tate 2  ( R̂21 a nd R̂ 22). C) 
The third phase repeats the two-stage decision-making scenario but uses the modified reward d istribution from 
Phase II. Reward distributions are designed such that state 2 can yield higher average rewards than state 3 in 
Phase I, but lower average rewards in Phases II and III. Effective MB l earning i nvolves swiftly i ntegrating the 
local knowledge gained from Phase II into a policy for Phase III, enabling navigation towards the higher average 
rewards. States are represented by circles, and state transitions for each action are depicted by directed arrows, 
with the probability of each transition shown next to the arrow. The corresponding reward distribution is also 
displayed next to each arrow and labeled with an uppercase R.

reward information from Phase II and also an effect not seen in the MF learner, which must re-
explore. The MB algorithm starts Phase III close to optimally, extrapolating insights gained
from learning local rewards in Phase II to enhance its policy in Phase III, while the MF
algorithm must first explore the new space.
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Figure 2. Average reward, along with 95% confidence i ntervals, a cross 1 0,000 t rials p lotted a gainst visit 
number to state 2 or 3 during Phases I and III. At the beginning of Phase III, the MB learning algorithm shows 
a noticeable improvement in performance compared to both its initial phase performance and that of the MF 
learning algorithm.

To assess the robustness of our results, we expanded our simulation experiments to include 
a variety of parameter settings. We varied the learning rate (0.1, 0.3, 0.5), discount factor 
(0.85, 0.95, 0.99), and exploration rate ( 0.1, 0.2, 0.3) in a factorial design (see Appendix A.2).

5. Discussion. Distinguishing between model-free and model-based learning is an essen-
tial component to many psychology and reinforcement learning studies. We presented an 
adaptation of local learning within the two-stage Markov task to better distinguish between 
the two. Unlike the original two-stage Markov task, our task incorporates the LoCA frame-
work which has been shown to identify model-based learning for varied parameters and task 
representations [26].

There are several limitations to consider. Primarily, a study with human participants is 
needed to demonstrate that the task is acceptable, reliable, and learnable by humans. We 
made the simplifying assumption that rewards following state 2 or 3 would be independent 
from the decision made in state 2 or 3. This sped up learning, but could lead to disengagement 
with human participants. We also assumed the MB algorithm has perfect knowledge of the 
transition probabilities. Needing to learn the transition probabilities could also slow down 
learning.

6. Acknowledgements. This material is based upon work supported by the Madison 
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7. Appendix.

7.1. A.1 Transition Probability Sensitivity. To evaluate how transition probabilities af-
fect task performance, we simulated two alternative versions of the task using 60/40 and 
80/20 splits for common/rare transitions. All other parameters were held constant. Results 
indicate that while model-based learners still outperform model-free learners after the Phase 
II reward change, the degree of separation varies. Under 60/40, the difference narrows due to 
increased ambiguity in transition type; under 80/20, model-based advantages become more 
pronounced. These results are visualized in Figure 3 and support the robustness of our task 
while highlighting trade-offs in parameter tuning.

7.2. A.2 Parameter Sensitivity. To assess the robustness of our results, we expanded our 
simulation experiments to include a variety of parameter settings. While dynamic exploration 
schedules (e.g., decaying epsilon or uncertainty-based exploration) are an important direction 
for future research, we chose a fixed set of exploration values to simplify comparison and focus 
on the structural impact of task modifications. We varied t he l earning r ate ( 0.1, 0 .3, 0.5), 
discount factor (0.85, 0.95, 0.99), and exploration rate (0.1, 0.2, 0.3) in a factorial design. 
For each parameter combination, we ran simulations with both model-free and model-based 
agents and analyzed their Phase III performance. Despite differences i n l earning s peed and 
variability, model-based agents consistently adapted more quickly to the contingency change 
introduced in Phase II, confirming that the task structure robustly differentiates learning
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Figure 3. Alternative Transition Prob Tests :Phase III performance of model-based and model-free agents
under different common/rare transition probabilities (60/40 and 80/20). As transition probabilities become
more deterministic (80/20), model-based advantages become more pronounced. With increased stochasticity
(60/40), the performance gap narrows due to ambiguity in transition structure.

strategies across a broad parameter space.

Figure 4. Phase III accuracy of model-free and model-based agents across varying learning rates, discount
factors, and exploration rates: Model-based agents consistently outperform model-free agents across all param-
eter combinations, indicating the robustness of our task in distinguishing learning strategies.
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