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Abstract. We make connections between the well-known gambler’s ruin problem and the enumeration of
bounded Motzkin and Dyck paths. We start with a basic recurrence relation for a variation of
the gambler’s ruin that permits ties, derive explicit formulas for the corresponding probability gen-
erating functions, explain the correspondence between this ruin variation and Motzkin paths, and
obtain algebraic and rational expressions for the generating functions that enumerate height-bounded
Motzkin and Dyck paths.

1. Introduction. In the classic gambler’s ruin problem, a gambler and an opponent square
off in a tournament comprised of independent games. In each game a player wins or loses
a point from the other player until one of them runs out of points and is “ruined”. The
problem goes back to the beginnings of probability itself [5] and inherently involves Catalan
numbers and Dyck paths. We consider a slight twist to the problem—in an individual game
the players can also tie with no points exchanged. This three-outcome problem involves
lattice walks called Motzkin paths. For a sampling of recent articles about Motzkin paths, see
[2, 3, 7, 8, 10]. Unlike these articles, we approach enumeration of various types of Motzkin
paths from a purely probabilistic point of view. We start with a recurrence relation that models
the gambler’s ruin problem, derive generating functions for the probabilities for the gambler to
be ruined, apply differentiation to obtain known results for the moments of this distribution,
and finally make connections to Motzkin paths. Our main contribution is obtaining algebraic
and rational formulas in Equations (5.2), (5.4), (5.5), and (5.7) for the generating functions of
height-bounded Motzkin paths and Dyck paths. This approach uses only elementary notions
of probability.

In section 2 we review Dyck paths, Motzkin paths, and the basics of generating functions.
In section 3 we lay out recurrence relations governing the probabilities of the gambler’s ruin
and the associated generating functions. In sections 4 and 6 we obtain explicit formulas
for the generating functions of the probability distributions of the gambler’s ruin, where the
opponent has either finite or infinite resources, and compute moments of these distributions.
In section 5 we make connections between the gambler’s ruin problem and Motzkin paths and
derive new formulas for the generating functions of height-bounded Motzkin and Dyck paths.
We conclude in section 7 with further possibilities for relating gambler’s ruin variations with
other kinds of restricted Motzkin paths.

2. Background. The central tool for analyzing sequences of combinatorial objects is the
generating function. If ⟨ak : k ≥ 0⟩ is a sequence of numerical values, the generating function
of the sequence (in the variable x) is the power series

∑
k≥0 akx

k. There are two main methods
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of computing generating functions—the recursive method, examined for instance, in [11] and
the symbolic method, for instance, in Part A of [4]. We use both. Generating functions
are particularly useful in computing statistics. One basic result relates the moments of the
probability distribution of a random variable to the derivatives of the generating function of the
distribution. If X is a random variable with integer support and P (x) =

∑
k≥0 prob(X = k)xk

is the generating function of its probability distribution, then P (1) =
∑

k≥0 prob(X = k) = 1,

E(X) = P ′(1), and Var(X) = P ′′(1) + P ′(1)−
(
P ′(1)

)2
.

The Catalan numbers, A000108 in [9], enumerate many combinatorial objects, including
triangulated polygons, binary trees, strings of matched parentheses, and lattice paths known
as Dyck paths, which are helpful tools in visualizing the game play of the classic gambler’s
ruin. A Dyck path starts at the origin, remains on or above the x-axis, consists of up steps
with displacement (1, 1) and down steps with displacement (1,−1), and ends back on the
x-axis. The kth Catalan number ck is the number of distinct Dyck paths ending at (2k, 0),
where k is commonly referred to as the semi-length of the path. A cousin of the Dyck path
is the Motzkin path, which has the same parameters as a Dyck path, but with an additional
allowance of a horizontal step with displacement (1, 0). The number mk of distinct Motzkin

Figure 1. All nine Motzkin paths of length four. The red dashed paths are also Dyck paths.

paths ending at (k, 0) is the kth Motzkin number, A001006 in [9]. Figure 1 shows that c2 = 2 
and m4 = 9.

Often, steps are weighted with values representing probabilities or counts. We weight up, 
down, and horizontal steps with the values p, q, and r, respectively. The weight of a path 
is the product of the weights of the individual steps along the way. We do not specifically 
mention weights in our notation, and so mk variably denotes either the number of Motzkin 
paths of length k when p = q = r = 1, the number of Dyck paths of semi-length k when 
p = q = 1 and r = 0, or the probability of traversing a Motzkin path of length k when p, q, r 
represent the probabilities of individual steps. Whenever the weights play a crucial role in a 
computation, we carefully specify them within context.

The symbolic method makes computing the generating function of weighted Motzkin paths 
almost effortless. A Motzkin path can be empty, a horizontal step followed by another Motzkin 
path, or an up step followed by a Motzkin path and a down step followed by another Motzkin

∑path, as the black paths in Figure 2 show. Therefore, the generating function M(x) = 
k mk x

k for the weighted Motzkin numbers is a solution of M = 1 + r xM + pq x2M2, which
96
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1 + rx M(x) + px M(x) qx M(x)

h

1 + rx Mh(x) + px Mh−1(x) qx Mh(x)

Figure 2. Symbolic method derivation of the generating functions for unbounded Motzkin numbers (black)
and bounded Motzkin numbers (red).

has the two roots

(2.1) M±(x) =
1− rx±

√
1− 2rx+ (r2 − 4pq)x2

2pq x2
.

Since there is only one empty Motzkin path and one is a finite number, M(x) must be the
negative root M−(x). We maintain the distinction between the negative and positive roots
for referencing in later equations.

Similarly, the generating function C(x) =
∑

k ckx
k for the weighted Catalan numbers is a

root of the quadratic C = 1+ pq xC2, which results from application of the symbolic method
on Dyck paths (keeping in mind that only up steps carry an x term in a Dyck path). The two
roots of this equation are

(2.2) C±(x) =
1±

√
1− 4pq x

2pq x
,

where C−(x) is equivalent to C(x).
We also consider Dyck paths and Motzkin paths with a height restriction and define ch,k to

be the number of Dyck paths of semi-length k that have a maximum height of at most h and
mh,k to be the number of Motzkin paths of length k that have a maximum height of at most
h. Figure 1 shows that c0,2 = 0, c1,2 = 1, and c2,2 = 2, while m0,4 = 1, m1,4 = 8, and m2,4 = 9.
A Motzkin path of height at most h can be empty, a horizontal step followed by a Motzkin
path of height at most h, or an up step followed by a Motzkin path of height at most h − 1
and a down step followed by another Motzkin path of height at most h, as the red paths in
Figure 2 show. Again by the symbolic method, the generating function Mh(x) =

∑
k mh,kx

k

must satisfy Mh(x) = 1 + r xMh(x) + pq x2Mh−1(x)Mh(x). Solving for Mh(x) results in the
recurrence

(2.3) Mh(x) =
1

1− r x− pq x2Mh−1(x)

for h ≥ 1. Since there is only one path of height 0 for any length and it consists entirely of 
horizontal steps, M0(x) = 1/(1 − rx). Repeated application of Equation (2.3) gives the first
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h levels of the continued fraction

(2.4) Mh(x) =
1

1− rx−
pq x2

1− rx−
pq x2

1− rx−
. . .

1− rx−
pq x2

1− rx

.

Equation (2.4) deserves several comments. First of all, it is well-known and appears, for
example, as Theorem 10.9.1 in [2], Proposition 5 in [3], Example V.21 in [4], and Equation 25
in [10]. We derive new representations of Mh(x) as an algebraic function in Equation (5.2) and
as a rational function in Equation (5.4). It is a quick exercise to show the full continued fraction
in Equation (2.4) gives the generating function for the unbounded Motzkin numbers, M−(x),
in Equation (2.1). Lastly, many of the sequences of height-bounded Motzkin paths appear
in [9] with M1(x), . . . ,M6(x) as A011782, A171842, A005207, A094286, A094287, A094288,
respectively, with Alois P. Heinz commenting on their enumeration of height-bounded Motzkin
paths.

For the sake of completeness, we also mention Ch(x), the generating function of bounded
Catalan numbers, which satisfies the recurrence

(2.5) Ch(x) =
1

1− pq xCh−1(x)

for h ≥ 1 with the initial condition C0(x) = 1. This recurrence appears as Corollary 3 in [6],
and its repeated application produces the continued fraction

(2.6) Ch(x) =
1

1−
pq x

1−
pq x

1−
. . .

1− pq x

,

√
which can also be obtained from making the substitutions of 0 for r and x for x in Equa-
tion (2.4). Once again, many of the sequences for height-bounded Dyck paths appear as 
individual entries in [9] for different values of h , but A080934 combines them all into a  single 
table.

3. The general gambler’s ruin and recurrence relations. In modeling the tournament 
of independent games between the gambler and the opponent, we assume the gambler begins 
with finite r esources, s ay a  t ally o f i  p oints. I n e ach game t he gambler wins one p oint from 
the opponent with probability p, loses one with probability q, and ties with probability r. 
The games continue until one player runs out of points, if it ends at all. To quantify the 
tournament, we make several definitions. Let GRi be the event that the gambler is ruined
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before the opponent and pi be the probability for this to happen, i.e., pi = prob(GRi). In this
case, let the random variable Ni be the number of games for the gambler to be ruined, and
pi,t be the probability that Ni = t, i.e., pi,t = prob(Ni = t). For the gambler to be ruined, it
must happen in some number of games, so pi =

∑
t≥0 pi,t. For each i ≥ 0, we also define the

generating function Pi(x) =
∑

t≥0 pi,tx
t.

A general recurrence relation follows from conditioning on the three possible outcomes of
the first game. After the first game, the tournament can be thought of as starting over with
the gambler’s updated tally of points from a win, loss, or tie with the opponent, but one less
game in which to be ruined. Therefore, a recurrence relation for the probabilities is

(3.1) pi,t = p pi+1,t−1 + r pi,t−1 + q pi−1,t−1 for all i, t ≥ 1.

There are boundary conditions for starting with no points and no games remaining. First,
p0,0 = 1 and p0,t = 0 for t ≥ 1 because if the gambler starts without any points, then he
immediately meets his ruin. It follows that P0(x) = 1. If no games remain and the gambler
has a positive tally of points, then the gambler has yet to be ruined and pi,0 = 0 for i ≥ 1.
We discuss further boundary conditions in sections 4 and 6.

A similar recurrence holds for the generating functions by multiplying the terms of Equa-
tion (3.1) by xt and summing over t ≥ 1, resulting in

(3.2) Pi(x) = pxPi+1(x) + rxPi(x) + qxPi−1(x) for all i ≥ 1.

For each x, Equation (3.2) is a recurrence in the variable i for the values of the generating
function Pi(x). This recurrence is linear, second order, homogeneous, and has “constant”
coefficients (“constant” meaning that they do not depend on i, but very well could depend on
x, p, q, r). The characteristic polynomial of the recurrence in Equation (3.2), which Lengyel
also obtains in [8], is (px)ρ2 + (rx− 1)ρ+ qx. Solving for the roots results in

(3.3) ρ± =
1− rx±

√
1− 2rx+ (r2 − 4pq)x2

2px
,

where we have suppressed the dependence in ρ± on x, p, q, r for clarity and brevity’s sake.
The solution to the recurrence in Equation (3.2) must have the form

(3.4) Pi(x) = A+(x)ρ
i
+ +A−(x)ρ

i
− for all i ≥ 0,

where A±(x) are functions of x that can be determined from boundary conditions.
For comparison with a well-known example, consider the Fibonacci numbers ⟨fi : i ≥

0⟩ = 0, 1, 1, 2, 3, 5, . . . , which also satisfy a linear, second-order, homogeneous recurrence with
constant coefficients, namely fi = fi−1 + fi−2. Binet’s formula

(3.5) fi =
1√
5

(1 +
√
5

2

)i

−

(
1−

√
5

2

)i


gives an explicit formula for the Fibonacci numbers and is also a linear combination of powers 
of the two roots of the characteristic polynomial ρ2 − ρ − 1 of the recurrence. Oddly, it is
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not immediately obvious from Equation (3.5) that fi is even a rational number, much less an
integer. However, just as in Identity 235 in [1] which is attributed to Catalan, we can use the
binomial theorem to expand the powers of the characteristic roots and then cancel like terms
to get a version of Binet’s formula that obviously has a rational result

(3.6) fi =
1

2i−1

⌊ i−1
2

⌋∑
j=0

(
i

2j + 1

)
5j .

The main difference between these computations is that Binet’s formula in Equation (3.5) gives
an explicit formula for numbers, while Equation (3.4) gives an explicit formula for generating
functions.

4. An opponent with finite resources and bounded Motzkin paths. Suppose the gambler
and the opponent both begin the tournament with finite resources, say with a combined total of
n > 2 points. To highlight the finiteness of the opponent’s resources, in this section we append
a subscript of n, now Pi,n(x), to the probability generating function in Equation (3.4). As
noted before, if the gambler starts with no points, he is immediately ruined and so P0,n(x) =
1. On the other hand, if the gambler starts with all n points, he immediately wins, has
no chance of losing at all, and so Pn,n(x) = 0. With these boundary conditions, we can
evaluate Equation (3.4) at i = 0 and i = n to solve for the coefficients, resulting in A+(x) =
ρn−/(ρ

n
− − ρn+) and A−(x) = −ρn+/(ρ

n
− − ρn+). Plugging these solutions into Equation (3.4)

yields the probability generating function

Pi,n(x) =
ρn−ρ

i
+ − ρn+ρ

i
−

ρn− − ρn+
.

The product ρ+ρ− of the roots of the characteristic polynomial is q/p, which we abbreviate
as β, and so this equation simplifies to

(4.1) Pi,n(x) = βi

(
ρn−i
− − ρn−i

+

ρn− − ρn+

)
.

From here, deriving formulas for the distribution and statistics of Ni is straightforward, simply
by evaluating the generating function in Equation (4.1) and its derivatives at x = 1. For the
case where p = q the formulas result by taking the limit as β → 1. For instance, the probability
of the gambler’s ruin starting with a tally of i is

pi = Pi,n(1) =

{
βi−βn

1−βn if p ̸= q
n−i
n if p = q.

Likewise, the expected number of games for the gambler to be ruined, assuming he is the one
to be ruined, is

E(Ni|GRi) =
P ′
i,n(1)

Pi,n(1)
=

{
2n(βn−i−βn)−i(1+βn−i−βn−β2n−i)

(q−p)(1−βn−i)(1−βn)
if p ̸= q

2ni−i2

6p if p = q.
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The conditional variance, skewness, and further moments theoretically can be obtained by
evaluating higher order derivatives of Pi,n(x), but are behemoths of equations and consequently
are omitted for the sake of brevity. However, with the help of symbolic programming, they
are obtainable by continuing this process.

n

n− 1

...

2

i = 1

0

h = n− 2

Figure 3. A Motzkin path or tournament of a gambler starting with one point, followed by the final loss.

5. Correspondence between lattice walks and tournaments. There is a direct correspon-
dence between lattice walks and tournaments simply by equating up, down, and horizontal
steps in a walk with wins, losses, and ties in a tournament. More specifically, there is a special
correspondence between Motzkin paths and tournaments in which the gambler starts with
exactly one point and eventually loses. In all but the last game, the gambler’s tally must
remain strictly positive, and in the penultimate game his tally must revert back to a single
point, followed by a loss in the final game. In other words, a tournament for the gambler’s
ruin starting from one point traces out a Motzkin path, followed by a down step. If, in ad-
dition, the gambler and opponent start with a combined finite tally of n points, as discussed
in section 4, the gambler’s tally throughout the tournament must remain at or below n − 1
points, else he would win. So, his ruin traces out a Motzkin path, bounded by a height of
(n − 1) − 1 = n − 2, as depicted in Figure 3. In terms of generating functions, this means
P1,n(x) = qxMn−2(x) or, equivalently,

Mh(x) =
P1,h+2(x)

qx

=
1

px

ρh+1
− − ρh+1

+

ρh+2
− − ρh+2

+

=
1

px

(
1−rx−

√
1−2rx+(r2−4pq)x2

2px

)h+1

−
(

1−rx+
√

1−2rx+(r2−4pq)x2

2px

)h+1

(
1−rx−

√
1−2rx+(r2−4pq)x2

2px

)h+2

−
(

1−rx+
√

1−2rx+(r2−4pq)x2

2px

)h+2
(5.1)

giving the generating function of the weighted and bounded Motzkin paths as an algebraic 
function. With a little more algebra, we can express Mh(x) in terms of the two Motzkin roots
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M±(x), abbreviated as M±, from Equation (2.1) to get

(5.2) Mh(x) =
1

pqx2
Mh+1

− −Mh+1
+

Mh+2
− −Mh+2

+

.

Amazingly, the bounded Motzkin paths can be generated from an algebraic combination of
the generating function M−(x) of the unbounded Motzkin paths and its conjugate M+(x).

To get the generating function Mh(x) for counts of bounded Motzkin paths, we simply
make the substitutions p = q = r = 1 in Equation (5.2), giving

(5.3) Mh(x) = 2

(
1− x−

√
1− 2x− 3x2

)h+1
−
(
1− x+

√
1− 2x− 3x2

)h+1

(
1− x−

√
1− 2x− 3x2

)h+2
−
(
1− x+

√
1− 2x− 3x2

)h+2
.

We can now represent Mh(x) as a rational function, using the same process of expanding
powers with the binomial theorem and cancelling like terms, as in Equations (3.5) and (3.6)
that represent the Fibonacci numbers as rational numbers, resulting in

(5.4) Mh(x) =

2

⌊h/2⌋∑
j=0

(
h+ 1

2j + 1

)
(1− x)h−2j

(
1− 2x− 3x2

)j
⌊(h+1)/2⌋∑

j=0

(
h+ 2

2j + 1

)
(1− x)h+1−2j

(
1− 2x− 3x2

)j .

This rational function is equivalent to the continued fraction in Equation (2.4). In Equa-
tion 10.74 of [2] Krattenthaler gives yet another representation of Mh(x) as a ratio of Cheby-
shev polynomials of the second kind. Furthermore, making the substitution r = 0 into Equa-
tion (5.1) yields the generating function that enumerates height-bounded Motzkin paths with-
out horizontal steps, i.e., height-bounded Dyck paths. Because of the caveat that Dyck paths
are counted based on semi-length, the additional substitution of

√
x for x is made to obtain

the generating function for height-bounded Catalan numbers

Ch(x) =
1

pqx

(
1−

√
1−4pqx
2pqx

)h+1
−
(
1+

√
1−4pqx
2pqx

)h+1

(
1−

√
1−4pqx
2pqx

)h+2
−
(
1+

√
1−4pqx
2pqx

)h+2

=
1

pqx

Ch+1
− − Ch+1

+

Ch+2
− − Ch+2

+

,(5.5)

once again, expressed in terms of the roots C±(x) in Equation (2.2). The additional substi-
tutions of p = q = 1 in Equation (5.5) yield Ch(x) for the counts of bounded Dyck paths as
the algebraic function

(5.6) Ch(x) = 2

(
1−

√
1− 4x

)h+1 −
(
1 +

√
1− 4x

)h+1(
1−

√
1− 4x

)h+2 −
(
1 +

√
1− 4x

)h+2
.
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Yet again, expanding the powers and canceling like terms gives

(5.7) Ch(x) =

2

⌊h/2⌋∑
j=0

(
h+ 1

2j + 1

)(
1− 4x

)j
⌊(h+1)/2⌋∑

j=0

(
h+ 2

2j + 1

)(
1− 4x

)j .

6. An opponent with infinite resources and unbounded Motzkin paths. Now suppose
the gambler squares off against an opponent, such as a casino, whose initial point tally dwarfs
the gambler’s. In this case, the gambler essentially has no chance of winning, and losing
takes at least as many games as his initial tally. Therefore, limi→∞ Pi(x) = 0 for any x.
The boundary condition for the ruin P0(x) = 1, as well as the recurrence for the Pi(x)’s in
Equation (3.2), still hold. To obtain an explicit formula for each Pi(x), we must determine
the coefficients A±(x) in Equation (3.4), but this requires an argument. Basic methods from
calculus show that limx→0 ρ+ = ∞ and limx→0 ρ− = 0, and so there must be an interval about
0 where ρ+ > 1 and ρ− < 1 for each x in this interval. Taking the limits of the terms in
Equation (3.4) as i → ∞, we have

lim
i→∞

Pi(x) = 0 = lim
i→∞

[
A+(x)ρ

i
+ +A−(x)ρ

i
−
]
= A+(x) · ∞+A−(x) · 0 = A+(x) · ∞,

which forces A+(x) = 0. The initial condition P0(x) = 1 = A−(x)ρ
0
− then forces A−(x) = 1

for x in this interval. However, as long as A+(x) and A−(x) are analytic, then it must be
the case that A+(x) = 0 and A−(x) = 1 not just for x in this interval, but for all x in the
common domains of the coefficients. Therefore, the generating function for the probabilities
of the gambler’s ruin when starting with i points is remarkably simple

(6.1) Pi(x) = ρi−

for all x. This time the terms of P1(x) represent unbounded Motzkin paths with up, down,
and horizontal steps of weights p, q, r, respectively, followed by a final down step to finish
off the ruin, and so P1(x) = M(x)qx. This provides a completely probabilistic derivation of
the fact that the generating function of the unbounded Motzkin paths is M(x) = ρ−/qx, in
agreement with M−(x) in Equation (2.1).

With the simpler generating function in hand, the computation of the probabilities and
statistics for the distribution of the ruin is even easier. Recalling β = q/p, the probability of
eventual ruin is

pi = Pi(1) =

{
βi if p > q

1 if p ≤ q.

Again, the expected number of games for the gambler to be ruined, assuming he is the one to
be ruined, is

E(Ni|GRi) =
P ′
i (1)

pi
=

{
i

|p−q| if p ̸= q

∞ if p = q.
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and the conditional variance is

Var(Ni|GRi) =
P ′′
i (1)

pi
+

P ′
i (1)

pi
−
(
P ′
i (1)

pi

)2

=

{
i(p+q−(p−q)2)

|p−q|3 if p ̸= q

∞ if p = q.

As before, higher order derivatives aid in finding further moments.

7. Further considerations. Our main result shows how the generating function for the
gambler starting with a single point can be used to derive the generating function for height-
bounded Motzkin paths. This methodology can be extended to derive the generating functions
for other types of restricted Motzkin paths. For example, increasing the gambler’s initial point
tally to an arbitrary value corresponds to the Motzkin paths that have a minimum number of
initial up-steps. Similarly, the gambler’s final point tally corresponds to generating functions
for Motzkin paths with a minimum number of final down-steps. Since the gambler either ends
with all of the points or no points at all, there is a correspondence to Motzkin paths which
either have a minimum final down-step requirement equivalent to their maximum allowable
height or have no final down-step requirement at all. These types of restricted Motzkin paths

are discussed in [10], which uses M
(a,b)
n|N to denote the number of Motzkin paths of length n

that start with at least a up steps, finish with at least b down steps, and have a maximum
height of at most N .

Additionally, our main result starts with the gambling perspective and works towards
the lattice-path enumeration. This process could be reversed by starting with some Motzkin
path variation and deriving generating functions that describe a correlated variation of the
gambler’s ruin problem. For instance, a Motzkin path with an arbitrary minimum number of
final down-steps corresponds to a gambling scenario in which one gambler has a lucky number
of points for which he is repeatedly given the option to either cash-out or continue playing.
Such a scenario may be difficult to analyze from merely the recurrence relation due to the
ambiguous boundary conditions for the termination of the series of games, which attests to
at least one benefit of starting from the lattice-path perspective.
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